LG Programmable Logic Controller

Positioning Module(Pulse-Out Type)

Please read the safety information described in the data sheet and this manual carefully prior to using the product

Caution items described here are only for G3F-POPA, G4F-POPA, G4F-POPB and G6F-POPA.

Please refer to GLOFA CPU module or MASTER-K CPU module-related user manual respectively according to CPU module used for the details on safety information for PLC system.

Cautions are intended to remind you of precautions in the warning triangle as displayed below as based on the Danger level.

Caution may describe serious results according to situations.
Be sure to observe the 2 displays where important information is specified.
Keep the user manual nearby for prompt reference as necessary.

Designing Caution

- Don' t let input/output signal line connected with the driver and sensor be wired close to high-voltage or power cable but min . 100 mm away if possible, in order to prevent abnormal operation caused by noise.

Wiring Caution
-Use PLC in conditions as described
in the general specification.
-If not, electric shock, fire, abnormal
operation or damage on product may
occur.
-Besure to fix the module after inserting
the mounting protrusion into the module
mounting hole
-Abnormal operation, error or dropping
may happen if the module is not
equipped correctly.

Caution for preparation, repair

\triangle

Caution

Don' t remove PCB from the module case nor remodel the module.
error, abnormal operation, damage on product may happen.

Assembly/disassembly of the module
shall be after powered off
-If not, error or abnormal operation
may happen

Caution for waste

-Don' t touch the terminal when powered, abnormal operation may happen.

Prior to cleaning or tightening the the terminal screws, let it powered off. -ff not, error or abnormal operation may happen.

-
shall be as short as possible ($1-3 \mathrm{~m}$)
-Length of the connection cable shall be as short as possible
-Use safe power source(DC 5V, DC24V)
-If any noise is expected, let input/output signal line wired in twist pair and shield cable ca

Connection distance between position-decision module and driver

Caution

© CONTENTS

Chapter 1 Introduction
 1-1 ~ 1-13

1.1 Features ... 2
1.2 Features Of Position-Decision Control Function 1 - 3
1.2.1 Position-Decision Control Function... 1 - 3

1.2.3 Introduction of Acceleration/Deceleration Processing 11

1.2.5 Introduction Of The Return To Starting Point $\ldots \ldots \ldots$

Chapter 2 Specification ... 2-1 ~ 2-12

2.2 Performance Specification .. 3
2.3 Input/Output Specification Of The Outer Interface 2 - 4
2.3.1 Input Specification .. 2 - 4
2.3.2 Output Specification .. 5
2.4 Outer Interface Connector... 2 -
2.4.1 Connector's Pin Arrangement.. 2 - 6

2.5 Designation And Function Of The Parts........................ 2 - 11
2.6 Connector's Pin Arrangement ... 2 - 12
Chapter 3 Functions .. 3-1~3-46
3.1 Position-Decision Control \quad..

3.1.2 Speed Control \quad... 7
3.1.3 Speed/Position Switchover Control \quad... 9
3.2 Operation Mode... 10
3.2.1 Separate Operation .. 3-11

© CONTENTS

3.2.2 Repeated Operation 3-13
3.2.3 Auto-Operation 3-16
3.2. 4 Continuous Operation 3-17
3.2. 5 Constant Operation 3-18
3.2.6 Position-Decision Constant Operaion 3-20
3.3 Position-Decision Stop[POŠ_STP] 3-21
3.3.1 Stop Command And Stop Causes 3-21
3.3.2 Stop Processing And Priority 3-22
3.4 Restart After Position-Decision Stop [POŞ_AST] 3-23
3.5 Return To Starting Point [POŠORG] 3-23
3.5.1 How To Return To Starting Point• 3-23
3.5.2 Starting Point Detection After Approximate Starting Point Off 3-24
3.5.3 Starting Point Detection After Deceleration At Approximate Starting Point On $\cdots 3$ 26
3.5.4 Starting Point And Starting Point Detection By Top/Bottom Limit 3-27
3.5.5 Starting Point Detection By Approximate Starting Point 3-28
3.6 Manual Operation 3-29
3.6.1 Jog Operation[POŞ_JOG] 3-29
3.6.2 Operation Of Manual Pulse Generator [POŞ_MPG] 3-31
3.6.3 Inching Operation[POSY_INC] 3-32
3.6.4 Shift To Prior Position To Manual Operation [POSY_RPT] 3-33
3.7 Speed Change In Position-Decision Operation 3-34
3.7.1 Speed Change Command[POŞ_VCG] 3-34
3.7.2 Operation Step No. Change By Continuous Operation [POSY_NM] 3-35
3.7.3 Speed Change By Speed Override [POS $\left.\zeta_{0} O R\right]$ 3-37
3.8 Top/Bottom Stroke Limit 3-39
3.8.1 Outer Input Top/Bottom Stroke Limit 3-39
3.8.2 S/W Top/Bottom Stroke Limit 3-40
3.9 Random-Positioned Address Value Setting To Starting Point And Present Position Change 3-41 3.9.1 Random-Positioned Address Value Setting To Starting Point• 3-41

© CONTENTS

3.9.2 Present Position Change[POS__PRE] 3-41
3.10 Fixed Starting Point Setting[POS弓_FLT] 3-42
3.11 Teaching Function 3-42
3.11.1 RAM Teaching Function And ROM Teaching Function 3-42
3.112 Speed Teaching [POSY_VLT] 3-43
3.123 Position Teaching [POŞ TEA] 3-44
3.12 Operation Step No.Assignment ${ }^{\left[P O S \zeta _S M C\right]}$ 3-45
3.13 Parameter Change In Program에서 [POS弓_PRM] 3-46
Chapter 4 SIW Package 4-1 ~ 4-5
41 Main Menu Bar 4-2
4.2 Shortened Icon 4-4
4.3 Pre-Operation Mode 4-4
4.3.1 Monitoring Axis Selection 4-4
4.3.2 Monitoring Start/Stop 4-4
4.3.3 Command Selection_ Selection Of The Axis To Pre-Operate 4-4
4.3.4 Pre-Operation By S/W Package 4-5
4.3.5 Jog Operation By S/W Package 4-5
Chapter 5 Position-Decision Parameters 5-1 ~ 5-17
5.1 Basic Parameters 5-3
5.11 Acceleration/Deceleration Time 5-3
5.12 Backlash Correction 5-4
5.13 Bias Speed• 5-5
5.14 S/W Top/Bottom Stroke Limit 5-6
5.15 Speed Limits 5-6
5.16 Position Passing Time 5-6
5.2 Output Direction 5-8
5.3 Rotation Direction 5-8
54 M Code Mode 5-9

© CONTENTS

5.5 Jog Speed 5-13
5.6 Processing Method Of The Return To Starting Point 5-13
5.7 Return To Starting Point 5-14
5.7.1 Direction 5-14
5.7.2 Correction 5-14
5.7.3 Speed Of The Return To Starting Point 5-15
5.7.4 Address 5-15
5.7.5 Dwell Time 5-15
5.8 Zone Setting 5-16
Chapter 6 Position Data For Position Decision 6-1 ~ 6-7
6.1 Step No. 6-3
6.2 Coordinates 6-3
6.21 Absolute Coordinates 6-3
6.22 Relative Coordinates 6-4
6.3 Override 6-4
6.4 Operation Method 6-5
6.5 Invalid/Valid 6-5
6.6 Operation Mode 6-5
6.7 Position Address 6-5
6.8 M Code 6-6
6.9 Speed No. 6-6
6.10 Dwell Time 6-6
6.11 Speed Data 6-7
Chapter 7 Function Block 7-1 ~ 7-23
7.1 Function Block Registration For Position-Decision Module In GMWIN 7-2
7.2 Function Block For Module Information Read 7-3
7.2.1 Code Information Read AtPresent Operation State 7-3
7.2.2 Bit Information Read At Present Operation State 7-4
7.3 Function Block For Operation 7-6
7.3.1 Start ${ }^{-}$ 7-6
7.3.2 Linear Stepped Start• $\cdot 7-7$
7.3.3 Start To Return To Starting Point $-7-8$
7.4 Function Block For Manual Operation -7-8
7.4.1 Inching Operation 7-8
7.4.2 Jog Operation 7-9
7.4.3 Return To Prior Position To Manual Operation• 7-10
7.4.4 Operation Approval Of Manual Pulse Generator(MPG) 7-10
7.5 Teaching Function Block 7-11
7.5.1 Position Teaching(Teaching) 7-11
7.5.2 Speed Teaching(Teaching) 7- 12
7.6 Function Block For Module Information Read 7-13
7.6.1 M Code Off 7-13
7.6.2 Speed Change 7-13
7.6.3 Continuous Operation 7-14
7.6.4Speed Override... 7-15
7.6.5 Assignment Of Operation Step No. --15
7.6.6 Deceleration Stop 7-16
7.7 Function Block For Error Processing 7-17
7.7.1 Inner Emergency Stop 7-17
7.7.2 Cancellation Of Output Prohibition. 7-17
7.7.3 Error Reset ${ }^{-}$ 7-18
7.8 Other Function Blocks 7-19
7.8.1 Fixed Starting Point Setting 7-19
7.8.2 Present Position Preset 7-19
7.8.3 Parameter Change 7-20
7.9 Error Codes In Function Block $7-21$
Chapter 8 GM Program 8-1 ~8-10
8.1 Prior To Program Introduction 8-1
8.2 Basic Program 8-3
8.3 Application Program 8-4
8.3.1 Position-Decision For Separate, Repeated, Auto And Continuous Operation•• 8-4
8.3.2 Program With M Code 8-6
8.3.3 2-Axes Linear Stepped Operation• 8-8
8.3.4 Position Teaching With MMI 8-10
Chapter 9 Inner Memory And Input/Output Signal $9-1 ~ 9.21$
9.1 Inner Memory 9-1
9.1.1 Contents Of Inner Memory - 1
9.1.2 State Of Inner Memory 9-4
9.1.3 Command And Data Of Common-Used RAM (Inner Memory) 9-7
9.2 Input/Output Signal 9-12
9.21 Contents Of Input/Output Signal 9-12
9.22 State Signal 9-14
9.2.3 Command Signal 9- 17
Chapter 10 MK Program 10-1~10-29
10.1 Information Exchange Between Position-Decision Module \& PLC CPU 10- 2
10.1.1 Exchange Of Input/Output Signals (Bit Information) 10- 2
10.12 Exchange Of Word Data (Word Information) 10-3
10.2 Programming 10-4
10.21 Programming Caution• 10-4
10.22 Basic Program 10-6
10.3 Application Program 10-16
10.3.1 Speed Change, Next Move, Change Of Start Position No. 10-16
10.3.2 Position Teaching By Jog Operation 10-21
10.3.3 Continuous Teaching (Position Teaching, Speed Teaching)* 10-23
10.3.4 Start, Speed Teaching, Return To Starting Point, Inching, Jog Operation……10-25

11.1 Operation Proceedings \quad.
11.2 Installation... $11-2$
11.21 Installation Conditions.. 11 - 2
11.22 Caution For Treatment.. $11-2$
11.3 Wiring.. 11 - 2
11.31 Wiring Caution.. 11 - 2
11.3.2 Caution For Treatment \quad.. 11 - 3
11.3.3 Connection Between Subo And Stepping Motor Drive Device 11 - 3
1) Connection With FDA -3000 AC Subo Driver 11 - 3
2) Connection With FDA-5000 AC Subo Driver \cdot............................ 11 - 4
4) Connection With MITSUBISHI MELSERVO-J Type \ldots....................... 11 - 6
5) Connection With UPD566(Stepping Motor Driver) ${ }^{\text {a }}$ (..................... 11 - 7
6) Connection With UPK5114NW2(Stepping Motor Driver) \ldots................... 11 - 8
8) Connection With MITSUBISHI MELSERVO-SA Type \cdot........................ 11 - 10
Chapter 12 External Dimensions ... 12-1 ~ $12-3$
12.1 G6F-POPA .. 12 - 1
12.2 G4F-POPA/G4F-POPB \quad... $12-2$
Appendix 1 How To Set Position-Decision Module Parameters For Stepping Motor Drive App.1-1 ~ App.1-3
Appendix 2 Calculation Of Shifting Amount Per Pulse - App.2-1 \sim App.2-3

Chapter 1 Introduction

Chapter 1 Introduction

This user manual describes the specification of the positioning module displayed below, installation, how to use each
positioning function, programming and wiring with outer devices.

Number of control axes	Model	
1-axis	GAF-POPA	
2-axes	G3F-POPA	
	GAF-POPB	
	G6F-POPA	

Fig. 1.1 Position control for stepping motor

Fig.1.2 Position control for subo motor

Chapter 1 Introduction

1.1 Features

The features of the position-decision module are as follows.

1) Positioning module can be used for GLOFA GM series and MASTER-K series.
(1) Positioning module for GM3 series and K1000S series: G3F-POPA(2-axes)
(2) Positioning module for GM4 \& K300S series: G4F-POPA(1-axis), G4F-POPB(2-axes)
(3) Positioning module for GM6 \& K200S series: G6F-POPA(2-axes)
2) Various control functions of positioning
(1) Max. 300 position-decision setting data are allowed including position-decision address and operation method per axis.
(2) Linear control by position-decision control of each axis, separate position-decision by 1 position-decision data and continuous position -decision by several data is available.
(3) Linear stepped control by position-decision control of 2 -axes, separate position-decision by 1 position-decision data and continuous position -decision by several data is available.
(4) Various returning control functions to starting point.
A) Return to origin point can be performed by selection of one of those below ;

- origin point detection after near zero point Off
- origin point detection after deceleration at near zero point On
- origin point detection by origin point and upperllower limit
- origin point detection by near zero point
B) Position-decision control (floating point set setting) can be executed from random position to origin point of the machine.

3) The number of positioning modules used at one base is unlimited.
4) Convenient maintenance and repairs.

G6F-POPA is designed to save position-decision data, parameters and other data in the flash memory of positioning module.

Chapter 1 Introduction

1.2 Features of position-decision control function

Summary of positioning control function will be described.

1.2.1 Positioning control function

Summary of positioning by positioning datawill be described below.

1) Linear position-decision control

Available operation modes are single, repeated, auto and continuous operation.
(1) 1-axis linear positioning control

Positioning of assigned axis is controlled from start address (presently stopped position) to target position.

Control by absolute method (Absolute Coordinates)

A) Positioning is controlled from start address to target position.
B) Shift direction is decided by start address and target address.
[Ex.]
When operated with the target of positioning address values of $5,000 \& 15,000$ if start address is 10,000 ,

Control by incremental method (Relative Coordinates)
A) Positioning is controlled as much as target at start address.
B) Shift direction is decided by signals $(+/$-) of shifting amount.
-If the signal of shifting amount is + (or no signal) incremental direction : position decided to forward direction(address)

- If the signal of shifting amount is-decrement direction : position decided to reverse direction(address)
[Ex.]When operated with the target of shifting amount of $5,000(+5,000)$ and $-5,000$ if start address is 10,000 .

1-3

Chapter 1 Introduction

(2) 2-axes linear interpolation control

Linear interpolation control is performed at start address(presently stopped position) using assigned 2 -axes.

Control by absolute method (Absolute Coordinates)

A) Linear interpolation control is performed from start address to target address wsing 2 -axes.
B) Travel direction is decided by start point address and specified address of each axis.
[Ex.]
When operated with the target of positioning address of axis1: 2,000 \& axis2: 5,000 if start point address is axis1 : $1,000 \&$ axis $2: 2,000$

Control by incremental method (Relative Coordinates)

A) Positioning is controlled from start point address to the position, which includes travel direction and travel value assigned as a target per axis.
B) Travel direction of each axis is decided by travel value sign of each axis.

- If the sign of shifting amount is + (or no sign) incremental direction : positioning decided to forward direction(address)
- If the signal of shifting amount is-decrement direction : positioning decided to reverse direction(address)
[Ex.]
When operated with the target of travel value of axis $1: 1,000 \&$ axis $2: 3,000$ if start point address is axis $1: 1,000 \&$ axis2 : 2,000.

Chapter 1 Introduction

2) Speed control

positioning control is performed at the specified speed until deceleration stop command (POS $\zeta_{_}$STP, POS ζ_{2} TMP) is input after positioning start (POS ζ_{2} AST) is executed.

- Available operation mode is constant operation.

3) Speed/position switching control

If speed/position switching signal is input via positioning module outside starting from speed control by positioning start (POS__AST) and then changed into position control, the position is decided as much as travel value set as a target.

Available operation mode is positioning constant operation.

Chapter 1 Introduction

1.2.2 Introduction of the operation mode

- Positioning module can be set by positioning data user-defined in combination with control method (position control, speed control, speed/position switching control), positioning address, operation method, etc.
- Max. 300 positioning setting data are allowed at step No. 0- 299 per axis..

Positioning data	Step No.	Coordinat es	Override	Operation method	Invalid /valid	Operation mode Single	Address	Mcode	Speed No.	Dwell (x 10 ms)
Setting rangeltype	$\begin{gathered} 0 \\ \sim \\ 299 \end{gathered}$	Absolute/ Relative	Allowable/ Prohibited	Continuo us/ Complete	Invalid 1 Valid	Repeated Auto Continuous Constant Constant(Posi tion)	$\begin{gathered} -16,744,447 \\ \underset{\sim}{\sim} \\ 16.744,447 \end{gathered}$	$\begin{gathered} 0 \\ \sim \\ 255 \end{gathered}$	$\begin{gathered} 0 \\ \sim \\ 127 \end{gathered}$	$\begin{gathered} 0 \\ \sim \\ 999 \end{gathered}$

$>$ Positioning operation by 1 positioning data and positioning operation by several positioning data at single positioning start(POS $\zeta_{_} \mathrm{AST}$:rising edge \uparrow) are respectively decided according to userset operation mode to the positioning data.

1) Single operation mode (positioning complete)
(1) Positioning is complete upon positioning executed to the target position by positioning start(POS $\zeta_{_}$AST :rising edge \uparrow) and the dwell time elapsed.
(2) Positioning complete in this operation mode can be used for the operation mode of the last positioning data in autooperation mode and continuous operation mode.
(3) Operation direction is decided according to position address value.
(4) Operation pattern is of trapezoid with acceleration, constant, and deceleration stages according to set spee d and position data, however the following operation pattern may be produced in compliance with set value.
a) Normal operation pattern

b) Abnormal operation pattern

Chapter 1 Introduction

2) Repeated operation mode (positioning complete)
(1) Positioning is complete upon positioning executed to the target position by start command(POS $\zeta_{_}$AST :rising edge \uparrow) and the dwell time elapsed.
(2) The pattern of repeated operation mode is the same as separate operation, however the ne xt operation is decided by operation step No. which is set at assignment command of operation step No. (POS ζ_{2} SMC :rising edge \uparrow) previously executed after positioning is complete. Thus, if assignment command of operation step No. (POS $\zeta_{-} S M C$) is not previouslyexecuted,
step No. " 0 " is assigned and then operated at the next start command(POS_AST).
Accordingly it is very useful in the system where several operation steps are repeated.
(3) Operation direction is decided according to position address value.
(4) Operation pattern

Chapter 1 Introduction

3) Auto-operation mode (positioning complete)
(1) Positioning is complete upon positioning executed to the target position
by positioning start(POS $\zeta_{\text {AST }}$:rising edge \uparrow) and the dwell time elapsed.
(2) Operation step (present operationstep No. +1) position is decided for operation in this mode without additional positioning start(POSY_AST).
(3) Accordingly, operation mode of the last operation step shall be set to single operation mode or repeated operation mode.
(4) Several operation steps of auto-operation mode can be successively executed.
(5) Operation direction is decided according to position address value.
(6) Operationpattern

4) Continuous operation mode (positioning complete)
(1) Positioning is complete upon positioning executed to the target position without stopping operation step set to continuous operation mode by startcommand (POS ζ AST :rising edge \uparrow) and the dwell time elapsed.
(2) Accordingly, operation mode of the last operation step shall be set to separate operation mode or repeated operation mode.
(3) Continuous operation command(POŠ_NM:rising edge \uparrow) is available if next step position and speed are desired before the presently engaged operation step reaches the target position.
However, continuous operation command(POS _NM $_{2}$) can be executed only at constant speed.
(4) Only the same direction is available for continuous operation mode, and operation direction is decided according to position address value.
(5) Operationpattern

Chapter 1 Introduction

5) Constant operation mode (positioning incomplete)
(1) In constant operation mode, the operation at speed set without target position is continued by speed control operation.
(2) Since constant operation is not the positioning operation, it displays " 0 " for present position and is switched over to undecided starting point state even if the starting point has been previously decided.

- G3F-POPA, G4F-POPB, G6F-POPA : Dwell time is available but positioning complete signal is not.
- G4F-POPA: Dwell time \& positioning complete signal are unavailable.
(3) Accordingly, if the next operation step is at decided starting point state, returning to starting point shall be executed or operation after fixed starting point setting shall be executed.
(4) If confronted by deceleration stop command(POS_ STP:rising edge \uparrow) in constant operation, the correspondent step operation is regarded as complete leading to the next operation step of position data at restart.
(5) If confronted by deceleration stop command(POS $\zeta_{_} \mathrm{STP}$) in acceleration stage, constant stage, deceleration stage of the constant operation, it stops as decelerated.
(6) Operation direction is decided according to the prior position address. (However,G6FPOPA is decided according to position address sign)
(6) Operation pattern

Chapter 1 Introduction

6) Positioning constant operation mode (positioning complete)
(1) If an outer input signal of speed position control-switching signal is input in speed control operation, positioning constant operation is changed into position control operation to regard the signal-detected position address value as " 0 " and execute positioning upto target position (position address value) set to position data to finish positioning upon the dwell time elapsed.

- In G6F-POPA positioning module, if stopped during operation as decelerated by deceleration stop command(POS ζ_{2} STP:rising edge \uparrow), the correspondent step operation is regarded as incomplete leading to the same step number operation as position data at restart.
- The outer input signal of speed/position control-switching signal is valid only in positioning constant operation mode.
(2) Positioning constant operation is available for positioning ope ration starting from the position of sensor input point via marker sensor input at packer or for its equivalent.
(3) Deceleration stop command(POS ζ_{-}STP) is available at acceleration stage of positioning constant operation, however speed/position control-switching signal input is available only at constant stage.
-Error occurs if speed position control-switching signal is input during acceleration.
(4) If the position address is set smaller than positioning amount by deceleration inclination in position-decision constant operation, positioning module recalculates the deceleration inclination for operation.
Accordingly, stop can be followed as decelerated abruptly rather than deceleration inclination set by parameters.
(5) Operationpattern

1.2.3 Introduction of acceleration/deceleration processing

- Applied to start point \& stop point of positioning operation, starting point returning high -speed operation and jog high speed operation, and also to continuous operation command(POS $\zeta_{2} \mathrm{NM}: r i s i n g$ edge \uparrow), speed change command(POSK_VCG:rising edge \uparrow) and speed override command(POSK_OR:rising edge \uparrow) in positioning operation.
However, error may occur if deceleration stop command(POS弓_STP) is used during acceleration/deceleration staged operation at continuous operation command(POS $\left.\zeta_{-} N M\right)$, speed change command(POS $\left.\zeta_{-} V C G\right)$ and speed override(POS ζ_{-}OR) in positioning operation.
- Acceleration/deceleration time shall be set in unit of axis at parameters of S / W package.

Setting range is $0 \sim 999$ (Unit: 10 ms) per axis.

1) Acceleration time : Time required to reach speed limit set at parameter from speed" "0"(stop state).
\triangleright It means the time required to reach speed limit from bias speed if bias used.
(Bias speed and speed limits can be set at parameters.)
2) Deceleration time : Time required to reach speed " 0 "(stop state) from speed limit set at parameter
\triangleright It means the time required to reach bias speed from speed limit if bias used.

- Tems

Speed limit: Max. speed when position is decided as set within the speed limits in parameter items of S/W package.
Setting speed: Speed data value actually operated by position data.
Actual acceleration time : Time required to reach speed value set to speed data from speed " 0 "(stop state).
Actual deceleration time : Time required to reach speed " 0 "(stop state) from speed value set to speed data.

Chapter 1 Introduction

1.2.4 Introduction of starting

If stopped by stop causes in position controlling (POSY_SRD, ST6[3]), positioning can be executed at stopped position address value by restart.

- Start type is of 1)positioning start, 2)interpolation positioning start, 3) positioning start to return to origin point, 4)jog command \& 5)inching command.
- If startexecuted, surely check that operation signal(POS ζ _SRD, ST6[3]) is at "Of" "state.

1) Positioning start(POSS__AST)
; A command to start operation by parameters, position data and speed data set per axis of positioning module.
2) Interpolation positioning start $\left(\mathbf{P O S} \zeta _\right.$_NT)
(1) A command only available for 2 -axes positioning module to perform operation in a straight shift channel as allowed by 2 -axes.
(2) Take preautions for interpolation positioning start at which 2-axes are simultaneously operated.
a) Operation-related subdata is operated as based on Xaxis.
; position data(step, coordinates, override, operation method, invalid/valid, operation mode, position address, M code, speed No., dwell time)

;M code mode among parameter items

b) Classified into major axis and minor axis according to positioning address amount of X -axis \& Y-axis at interpolation positioning start.
;Speed data of minor axis is calculated as follows.

Minor axis speed $=$	Majoraxis speed X Minor axis length
Major axis length	
\qquad Tems	
major axis : Xaxis or Yaxis of whichever positioning address amount is larger in applicable operation step No. minor axis : Xaxis or Yaxis of whichever positioning address amount is smaller in applicable operation step No.	

;Speed, acceleration time, deceleration time and bias speed of minor axis will be recalculated at this time.
c) Operating items based on setting value per axis are
;Backlash compensation, S/W upper limit, S/W lower limit, position passing time and zone setting area of parameter items
(3) Available operation mode is sepaate operation, repeated operation and autooperation only.
3) Positioning start to return to stating point POS ζ _ORG)

- An operation command to find origin point of the machine according to origin point return processing method by direction, correction, speed(high/low), address and dwell time set at origin point return -parameters of each axis. And if complete signal of return to origin point is On , origin point return-operation of the machine is complete.

4) Jog command(POŠ_JOG)

- As a test operation function itis necessary to check system operation, wiring and position address.
- Jog operation is available at high speed and low speed.
(1) Jog high-speed operation : accelerationdececeration pattem available. (2) Jog low-speed operation: acceleration/deceleration pattern unavailable.

5) Inching command(POS ζ INC)

One of manual operation methods used to process minute operation as deteminate operation.

- Jog command operation is hard to move to exact position because operation starts and stops according to the com mand, but via the inching command with travel value easily set as desired the target is easy to reach.
- Thus, after rapid move near to work position by jog command, perform operation by inching command for minute move to the exact work position to reach.

Chapter 1 Introduction

1.2.5 Introduction of the return to origin point

Origin point return is executed to check origin point of the machine when powered.

- Various methods for origin point return are available according to the structure and stop accuracy of the machine, while approximate origin point (adjacent DOG) method is used for LG positioning module.
If origin point position is decided to origin point return, detection signal of origin point is not used during positioning operation.

1) Near zero point(adjacent DOG) methods

4 near zero point(adjacent DOG) methods for origin point return-processing are as follows.
(1) origin point detection after near zero point Off
(2) origin point detection atter deceleration at near zero point On
(3) origin point detection by origin point and upperllower limit
(4) origin point detection by near zero point
2) Parameter items of S/W package which influence origin point return are as follows.
(1) origin point return-direction
(2) origin point compensation
(3) origin point return-speed(high/low)
(4) originpoint address
(5) dwell time for origin point return

Chapter 2 Specification

Chapter 2 Specification

2.1 General specification

General specification of GLOFA GM series and MASTER-K series is described in Table 2.1.

Chapter 2 Specification

Remark

1) IEC(International El ectro techni cal Commi ssi on)
:An international nongovernmental organization which promotes internationally cooperated standardization in el ectric/el ectronic fields, publishes international standards and manages applicable estimation systemrel ated with.
2) Pollution degree
: An index indicating pollution level of the application environment which decides insulation performance of the device. Pollution degree 2 means that only nonconductive contamination occurs. However temporary conduction may occur according to condensat i on.

Chapter 2 Specification

2.2 Performance specification

Performance specification of positioning module is described in Table 2.2.

*1: G6F-POPA available only

Chapter 2 Specification

2.3Inputtoutput interface specification with external device

Input /out put interface with the External device is described.
2.3.1 I nput specification

Signal	Rated input voltage/curr ent	Used voltage range	On voltage	Off voltage	Input resistance	Response time
Near zero point	DC24V10 mA	DC20.4~ 26.4V	DC 16V or above	DC 4V or below	Approx. 2.7x	1.8 ms or below
Extemal upper linit	DC24V10 mA	DC20.4~ 26.4V	DC 16V or above	DC 4V or below	Approx. 2.\%\%	1.8 ms or below
Extemal lower linit	DC24V10 mA	DC20.4~ 26.4V	DC 16V or above	DC 4V or below	Approx. 2.x\%	1.8 ms or below
Emergency stop	DC24V110 mA	DC20.4~ 26.4V	DC 16V or above	DC 4V or below	Approx. 2.x\&	1.8 ms or below
	DC24V10 mA	DC20.4~ 26.4V	DC 16V or above	DC 4V or below	Approx. 2.4x	On:0.1ms or below
Oigin point						
	DC5V	DC4.25~5.5	DC 4V or above	DC1V or below	Approx. 430Ω	1.8 ms or below
	DC12V	DC10.8~ 13.2 V	DC8V or above	DC 2V or below	Approx. 430Ω	
Manual puse generator	1) Pulse width 2)Phase difference			address val head of phase address va ead of phase	creased pulse. creased pulse.	A input B input
Positioning constant operation	DC24V10 mA	DC20.4~ 26.4V	DC 16V or above	DC4V or below	Approx. 2.78	On:1.8ms or below

Chapter 2 Specification

2.3.2 Ottput specification

Chapter 2 Specification

2.4 External interface connector

2.4.1 Connect or's pi n ar rangenent

Number, signal name, signal contents, signal's input/output direction, shape of the
connect or pins are descri bed.

Pin No.				Signal		nput/output direction	
$\begin{aligned} & \text { G3F- } \\ & \text { POPA } \end{aligned}$	$\begin{aligned} & \text { G4F- } \\ & \text { POPB } \end{aligned}$	G6F- POPA	G4F- POPA			Positioning Module	Outerdevice
2	26	1	2	X_FP	X-axis forward direction pulse output		\longrightarrow
11	4	2	3	X_RP	X-axis reverse direction pulse output		\rightarrow
2	25	3	-	Y_FP	Y-axis forward direction pulse output		\rightarrow
11	3	4	-	Y_RP	Y-axis reverse direction pulse output		\rightarrow
24	18	5	9	X_ZOC	X -axis origin point input(DC24V)	\leftarrow	-
25	28	6	4	X_ZL	X-axis origin point input(DC5V)	\longleftarrow	-
15	6	7	8	X_ZCOM	X-axis origin point input Ground		\rightarrow
24	17	8	-	Y_ZOC	Y-axis origin point input(DC24V)		-
25	27	9	-	Y_ZL	Y -axis origin point input(DC5V)	\longleftarrow	-
15	5	10	-	Y_ZCOM	Y -axis origin point input Ground		\rightarrow
22	22	11	12	X_ORG	X -axis near zero point switch input (A contact)	\longleftarrow	-
18	21	12	13	X_OV-	X-axis external lower limit switch input (B contact)	\leftarrow	-
3	22	13	14	X_OV+	X-axis external upper limit switch input (B contact)	4	-
-	-	14	-	X_VTP	X -axis speed position switching input (A contact)	\longleftarrow	-
22	31	15	-	Y_ORG	Y-axis near zero point switch input (A contact)	\longleftarrow	-
18	20	16	-	Y_OV-	Y-axis external lower limit switch input(B contact)	\longleftarrow	-
3	9	17	-	Y_OV+	Y-axis external upper limit switch input(B contact)		-
-	-	18	-	Y_VTP	Y-axis speed position switching input (A contact)	\longleftarrow	-
19	32	19	15	EMG	E. stop switch input_X/Y-axes common (B contact)	4	-
1	2	20	7	X_24V	X-axis pulse output, external power inputterminal(D24V)		-
17	24	21	11	X_5V	X-axis pulse output, external power input terminal(DC5V)	\leftarrow	-
10	$\begin{array}{r} 1 \\ 23 \end{array}$	$\begin{aligned} & 22 \\ & 23 \end{aligned}$	1	X_GND	X-axis pulse output ground		\rightarrow
1	2	24	-	Y_24V	Y-axis pulse output, external power input terminal(DC24V)	\leftarrow	-
17	24	25	-	Y_5V	Y-axis pulse output, external power input terminal(DC5V)		-
10	$\begin{array}{r} 1 \\ 23 \end{array}$	26 27	-	Y_GND	Y-axis pulse output ground		\rightarrow

Chapter 2 Specification

21	$\begin{aligned} & 11 \\ & 33 \end{aligned}$	$\begin{aligned} & 32 \\ & 33 \\ & 34 \\ & 35 \end{aligned}$	16	INPUTCOM	Input contact common EMG X_STOP, X_OV-, X_OV+, X_ORG, X_STOP Y_STOP, Y_OV-, Y_OV+, Y_ORG, Y_STOP	4	\rightarrow
$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \end{aligned}$	-	10	PO_COM	Input contact Vcc Common (IfDC24V used for outer input power, letit connected to DC24V, if DC5V used, let it connected to DC5V)		-
9	30	-	-	MPG_A	Manual pulse generator phase A input		
16	8	-	-	MPG_AGND	Manual pulse generator phase A Common Ground		
8	29	-	-	MPG_B	Manual pulse generator phase B input	4	\rightarrow
7	7	-	-	MPG_BGND	Manual pulse generator phase B Common Ground	4	
6	-	-	6	FG	Frame Ground	4	\rightarrow
12 13 14 20 23	$\begin{aligned} & 12 \\ & 15 \\ & 16 \\ & 19 \\ & 34 \end{aligned}$	$\begin{aligned} & 28 \\ & 29 \\ & 30 \\ & 31 \\ & 36 \\ & 37 \end{aligned}$	5	Unused			

Chapter 2 Specification

2.4.2 Internal circuit

Internal circuit for connecting interface with the external device of the positioning nodul e is descri bed

Class	Internal circuit	Pin No.				Signal	
		$\begin{aligned} & \text { G3F- } \\ & \text { POPA } \end{aligned}$	G4F- POPB	G6F- POPA	G4F- POPA		
Pulse output terminal		1	2	20	7	X_24V	X-axis pulse output, external supplied p ower (DC 24V)
			24	21	11	X_5V	X-axis pulse output, external supplied power (DC 5V)
		2	26	1	2	X_FP	X-axis forward direction pulse output
		11	4	2	3	X_RP	X -axis reverse direction pulse output
		10	$\begin{gathered} 1 \\ 23 \end{gathered}$	$\begin{aligned} & 22 \\ & 23 \end{aligned}$	1	X_GND	X-axis pulse output ground
		1		24	-	Y_24V	Y-axis pulse output, external supplied power (DC 24V)
		17		25		Y_5V	Y-axis pulse output, external supplied power (DC5V)
	立 - 「	2		3		Y_FP	Y-axis forward direction pulse output
		11	3	4		Y_RP	Y-axis reverse direction pulse output
		10		$\begin{aligned} & 26 \\ & 27 \end{aligned}$		Y_GND	Y-axis pulse output Ground
Starting point input		24	18	5	9	X_ZOC	X-axis phase Z input_ Open Collector (DC 24V)
		25	28	6	4	X_ZL	X-axis phase Z input_Line Driver (DC5V)
		15	6	7	8	X_ZCOM	X-axis phase Z input Ground
		24		8	-	Y_ZOC	Y-axis phase Z input_Open Collector (DC 24V)
	\square	25		9		Y_ZL	Y-axis phase Z input_Line Driver (DC5V)
		15		10		Y_ZCOM	Y -axis phase Z input Ground

Chapter 2 Specification

Chapter 2 Specification

*1:If emergency stop signal is used in G3F-POPA, only independent X-axis(19) or Y-axis(19) shall be used.

Chapter 2 Specification

25 Designation and function of the parts

2) G4FPOPA

3)G4F-POPB 4)G6F-POPA

Chapter 2 Specification

2.6Connector's s pin arrangement

Connector's sin arrangement for connection with external device of positioning module is described

	Connector's pin arrangement
	External interface connector \quad RS-232C connector
$\begin{aligned} & \text { G3F- } \\ & \text { POPA } \end{aligned}$	Pin arrangement of X-axis \& Y-axis.(1) (2) (3) (4) (5) (6) (7) (8) (9) (17) (11) (17) (13) (1) (15) (12) (17) (17) (2) (21) (22) (23) (2) (25) (17) Connected with installed in computer
$\begin{aligned} & \text { G4F- } \\ & \text { POPA } \end{aligned}$	
$\begin{aligned} & \text { G4F- } \\ & \text { POPB } \end{aligned}$	(1) (2) (3) (4) (5) (6) (7) (8) (9) (1) (11) (1) (17) (11) (1.) (12) (1) (18) (1.) (22) (2) (22) (27) (2) (25) (2) (2) (2) (27) (3) (3) (3) (3) (3)
$\begin{aligned} & \text { G6F- } \\ & \text { POPA } \end{aligned}$	

Direct connection is unavailable between G6F-POPA positioning module and computer.
Use RS-232C port of GM6 CPU module or k200s cpu module for positioning module operation using S/W package,
and perform operation with S/W package after operation mode of CP U module is let positioned at STOP state.

Chapter 3 Functions

Chapter 3 Functions

3.1 Positioning control

Positioning control is classified into position control, speed control, speed/position switching control.

3.1.1 Position control

1) 1axis position control

Positioning of assigned axis is controlled from start point address (presently stopped position) to specified address (travel value).

(1) Control by absolute method (Absolute Coordinates)

A) Positioning is controlled from start point address to specified address (at positioning data).
B) Positioning control is executed as based on the address(origin point address) assigned at origin point return.
B) Travel direction is decided according to start point address \& specified address.

- start point address < specified address : position decided forward
start point address > specified address : position decided reverse
[Ex.]
D If start point address is 1000 and D specified address is 8000 , forward travel value is $7000(80001000)$.

\square Setting in SN package

Position data items	Step No.	Coordin ates	Overide	Operation method	Invalid Nald	Operation mode	Address	M code	Speed No.	$\begin{gathered} \text { Dvell } \\ (\times 10 \mathrm{~ms}) \end{gathered}$
Setting	0	Absolut	Enable	Conninuous	Vald	Single	800	0	0	0

Chapter 3 Functions

Program 3.1 Basic(setting of floating point set)
Remark
Control by absolute method (Absolute Coordinates) can be started at the stad that origin point has been decided.
If started at the state that origin point has not been decided, eroor 76 occurs. Available operation modes are single, repeated, and continuous operation.
(2) Control by incremental method (relative coordinates)
A) Positioning is controlled at start point address as much as target travel value.
B) Travel direction is decided according to travel value sign.

[Ex.] \triangleright If start point address is 5000 and \triangleright specified address is -7000 , position is decided at -2000 .

\square Setting in SN package

Position data items	Step No.	Coordin ates	Overide	Operation method	Invalid Nalid	Operation mode	Address	M code	Speed No.	Dwell $(\times 10 \mathrm{~ms})$
0	Relative	Enable	Continuous	Valid	Single	-700	0	0	0	

\square Program
Program is the same as program 3.1.

Chapter 3 Functions

[Ex.]
\triangle If start point address is $(1000,4000)$ and D specified address is $(10000,1000)$, the operation isasfollows.

\square Setting in SW package
Position data items
X-axis setting

Step No.	Coordin ates	Overide	Operation method	Invalid Nalid	Operation mode	Address	M code	Speed No.	Dvel $(\times 10 \mathrm{~ms})$
0	Absolut e	Disable	Continuous	Vald	Single	10000	0	0	0

Y -axis setting

| 0 | Absolut
 e | Disable | Coninuous | Valid | Single | 100 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | 0

Chapter 3 Functions

Program 3.2 Basic(setting of Inear interpolation start _ floating point set

Chapter 3 Functions

Remark

Take preautions for linear interpolation start(POS■_INT:rising edge \uparrow) at which 2-axes are simultaneously operated.
1)Operation-related subdata is operated as based on X-axis.
; position data(step, coordinates, override, operation method, invalid/valid, operation mode, position address, M code, speed No., dwell time)
; M code mode among parameter items
2)Classified into major axis and minor axis according to positioning address amount of X-axis \& Y-axis at interpolation positioning start. ; Speed data of minor axis is calculated as follows.

| Minor axis speed $\quad \frac{\text { Major axis speed X Minor axis distance }}{\text { Major axis distance }}$ |
| :--- | :--- |

\triangleright Tems
major axis : X-axis or Y-axis of whichever positioning address amount is larger in applicable operation step No.
minor axis : X -axis or Y -axis of whichever positioning address amount is smaller in applicable operation step No.
; Speed, acceleration time, deceleration time and bias speed of minor axis will be recalculated at this time.
3)Operating items based on setting value per axis are
;Backlash compensation, S/W upper limit, S/W lower limit, position passing time and zone setting area of parameter items. Available peration mode is single operation, repeated operation and auto-operation only.
4) If required time for moving a position address value to specified address exceeds $65,535 \mathrm{~ms}$, error 89 occurs.

Chapter 3 Functions

(2) Control by incremental method (Relative Coordinates)
A) Positioning controlled to the position which includes travel direction and travel value as aimed at start point address per axis.
B) Travel direction of each axis is decided according to travel value sign of the axis.

- It travel value sign is + (or no sign)	: position decided forward (address incremental direction)
$-\mid I t$ travel value sign is -	: position decided reverse (address decrement direction)

[Ex.]
D If statt address is $(1000,4000)$ and D target address is $(9000,-3000)$, the operation is as follows.

\triangleright Seting in SW package

Position data items	$\begin{aligned} & \text { Step } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \hline \text { Coordin } \\ & \text { ates } \\ & \hline \end{aligned}$	Overide	Operation method	Invalid /vald	$\begin{gathered} \text { Operation } \\ \text { mode } \end{gathered}$	Address	M code	Speed No.	$\begin{gathered} \text { Duel } \\ (\times 10 \mathrm{~ms}) \end{gathered}$
X-axis setting	0	Relative	Disable	Continuous	Vald	Single	10000	0	0	0
Y-axis setting	0	Realive	Disable	Continuous	Vald	Single	100	0	0	0

\triangleright Program
Program is the same ळ program 3.2.

Chapter 3 Functions

3.1.2 Speed control (constant operation mode)

- Speed is controlled as set until deceleration stop command is input after executed bypositioning start.
(Origin point undecided if operation is stopped bydeceleration stop command)
-Speed ontrol includes forward start and reverse start.

Model	Forward direction start	Reverse direction start
G6F-POPA	Set position address value positive (Ex. : 100, +1000)	Set position address value negative (Ex. : : 100,-1000)
G3F-POPA GAF-POPA GAF-POPB	1. If prior direction to constant operation start is forward, forward operation is continued, 2. If prior direction to constant operation start is reverse, forward separate or repeated positioning operation shall be performed at a constant speed. 3.As specified in $1 \& 2$ above for execution of starting point decision	1 If prior direction to constant operation start is reverse, reverse operation is continued, 2. If prior direction to constant operation start is forward, reverse separate or repeated positioning operation shall be performed at a constant speed. 3.As specified in $1 \& 2$ above for execution of starting point decision

If speed control is applied, the following items of positioning data have no influence on constant operation mode.

*1: Only for G4FPOPA.
If M code applied, use" With" mode only.
(If "Ater" mode used, M code " On" signal is not output.)

- Operation timing

[Ex.]
\triangleright Seting in SN package(G6F-POPA)

Direction setting	Step No.	Coordin ates	Overide	Operation method	Invalid Nalid	Operation mode	Address	M code	Speed No.	dwel $(\times 10 \mathrm{~ms})$
forward direction	0	Relative	Disable	Cortinuous	Vald	Constant	100	0	0	0
reverse direction	1	Relative	Disable	Continuous	Vald	Constant	$\cdot 100$	0	1	0

Chapter 3 Functions

Program 3.3 Deceleration stop(return to origin point)

Chapter 3 Functions

3.1.3 Speed/position switching control positioning constant operation)

If speed/position switching signal is input via positioning module outside while the axis set by positioning start controls speed, speed control is switched to position control to decide position as much as target travel value set.
Speed/position switching control is processed by outer input signal of "speed position switching input signal" in G6F-POPA and by "deceleration stop command" in G3F-POPA, G4F-POPA \& G4FPOPB.

- Position-decision constant operation is available as directed forward and reverse.

Direction setting	Step No.	Coordin ates	Overide	Operation method	Invald Nalid	Operation mode	Address	M code	Speed No.	Dwell $(\times 10 \mathrm{~ms})$
Forward direction	0	Relativ e	Disable	Continuous	Valid	Constant (position)	$100{ }^{1}$	0	0	0
Reverse direction	1	Relativ e	Disable	Continuous	Vald	Constant (postion)	$.100^{2}$	0	1	0

Items with no influence
\triangleright Direction forward or reverse is decided according to value sign of position address in positioning constant operation.
(At this time all are processed by absolute method without distinction of methods absolute or relative)
*1 (forward direction) : when position address value is +
*2 (reverse direction) : when position address value is -
Operation timing(G6F-POPA)

- Program

Program is the same as program 3.3.

Chapter 3 Functions

3.2 Operation mode

Operation mode is to form various configurations required to operate positioning data and to process position data speed with each operation step №.

- Type of operation mode is as follows.

Controlmethod	Operation mode	Others
Postion control	Single	
	Repeated	
	Auto	
	Continuous	-Interpolation function unavailable
Speed control	Constant	【SW upperllower limit detection unavailable
Speed control +postion control	Positioning constant operation	Changeable from speed control to position control by -deceleration stop function block[POS ζ _STP:rising edge \uparrow] in G3F-POPA, GAF-POPA, G4FPOPB and extemal input signal of "speed position switching input signal" in G6F-POPA Interpolation function unavailable

The following rules are between operation modes.

	$\begin{gathered} \text { Single } \\ \text { operation } \end{gathered}$	Repeated operation	Auto - operation	Conninuous operation	Constant operation	Postioning Constant operation
Single operation	Operation avalable	Operation avalable	Operation avalable	Operation avalable	Operation avalable	Operation avalable
Repeated operation	Operation avalable	Operation avalable	Operation avalable	Operation avalable	Operation avalable	Operation avalable
Auto-operation	Operation avalable	Operation avalable	Operation avalable	Operation unavailable	Operation unavalable	Operation unavalable
Continuous operation	Operation avalable	Operation avalable	Operation unavalable	Operation avalable	Operaion unavaiable	Operation unavalable
Constantoperation	Operation avalable	Operation avalable	Operation avalable	Operation avalable	Operation avalable	Operation avalable
Postioning Constantoperation	Operation avalable	Operation avalable	Operation avalable	Operation avalable	Operation avalable	Operation avalable

- Operation mode is set at position data of SNW package.
- Max. 300 postion data can be set per axis in the range of operation step No. $0 \sim 299$.

Position data

Setting rangelype

$\begin{aligned} & \hline \text { Sep } \\ & \text { No. } \end{aligned}$	Coodinat es	Overide	$\begin{aligned} & \text { Operation } \\ & \text { method } \end{aligned}$	$\begin{aligned} & \text { Invalidv } \\ & \text { ald } \end{aligned}$	$\begin{gathered} \hline \text { Operation } \\ \text { mode } \end{gathered}$	Address	M code	Speed 16.	$\begin{gathered} \text { Duell } \\ (\times 10 \mathrm{~ms}) \end{gathered}$
$\underset{\sim}{\sim} \underset{\sim}{0}$	$\begin{aligned} & \text { Absolute } \\ & \text { Relaive } \end{aligned}$	$\begin{aligned} & \text { Enable } \\ & \text { Disable } \end{aligned}$	Continuous Complete	Invald Vad	Single Repeated Auto Corinuous Constant Con.(pos.)	$\begin{aligned} & -16,744,47 \\ & \sim \\ & 16,74,477 \end{aligned}$	$\stackrel{0}{\sim}{ }_{255}^{0}$	$\begin{gathered} 0 \\ \tilde{127} \\ \end{gathered}$	$\begin{gathered} 0 \\ \tilde{9} 9 \end{gathered}$

- Postioning operation method by one positioning data per operation step or
by several positioning data via successive operation steps at a start command is decided according to operation mode user - defined at each positioning data.

Chapter 3 Functions

3.2.1 Separate operation

1) Positioning is complete upon positioning executed to the target position by one positioning start(POS $\zeta_{_}$AST :rising edge 1) and the dwell time elapsed.
2) Positioning complete in this operation mode can be used for the operation mode of the last positioning data in auto operation mo de and continuous operation mode.
3) Operation direction is decided according to position address value.
4) Operation pattern is of trapezoid with acceleration, constant, and deceleration stages according to setting speed and position data, however the following operation pattern may be produced in compliance with set value.
a) Normal operation pattern

Abnormal operation pattern

[Ex.]

\square Operation pattem

Number of program start commands	$\begin{aligned} & \text { Step } \\ & \text { No. } \end{aligned}$	Coordin ates	Overide	Operation method	invalidv ald	Operation moxe	Address	M code	Speed No.	$\begin{gathered} \text { Dvell } \\ (\times 10 \mathrm{~ms}) \end{gathered}$
1	0	Absolut e	Disable	Continous	Vald	Single	100	0	0	0
2	1	$\begin{gathered} \hline \text { Absolut } \\ e \end{gathered}$	Disable	Continous	Vald	Single	200	0	1	0
3	2	$\begin{gathered} \text { Absolut } \\ \mathrm{e} \end{gathered}$	Disable	Corninous	Vald	Single	300	0	0	0
4	3	$\begin{gathered} \text { Absolut } \\ e \end{gathered}$	Disable	Corninous	Vald	Single	400	0	1	0

Program 3.4 Single operation (return to origin point)

Chapter 3 Functions

3.2.2 Repeated operation

1) Positioning is complete upon positioning executed to the target position by one start command(POS $\zeta_{_} A S T$:rising edge \uparrow) and the dwell time elapsed.
2) The pattern of repeated operation mode is the same as single operation, however the next operation is decided by operation step No. which is set at change command of operation step No. previously executed after positioning is complete.
3) Thus, if change command of operation step No. is not previously executed, step No. " 0 " is assigned and then operated at the next start command. Accordingly it is very useful in the system where several operation steps are repeated.
4) Operation direction is decided according to position address value.
[Ex.1]]f operated only by positioning start [POŠAST:rising edge \uparrow]
\square Operation pattem

- Setting in SN package

Number of program Positioning start	Step No.	Coordin ates	Overide	Operation method	Invalid Nalid	Operation mode	Address	M code	Speed No.	Dwell $(\times 10 \mathrm{~ms})$
1,3	0	Absolut e	Disable	Coninuous	Vald	Separate	100	0	0	0
2,4	1	Absolut e	Disable	Coninuous	Vald	Repeated	200	0	1	0
	2	Absolut e	Disable	Continuous	Vald	Separate	300	0	2	0
	3	Absolut e	Disable	Continuous	Vald	Repeated	400	0	3	0

Operation step $2 \& 3$ are not operated.

\triangleright Program

Program is the same as program 3.4.

Chapter 3 Functions

[Ex.2] If operated by stat command[POŠ_AST:ising edge \uparrow] and operation step No. seting [POŠ_ SMC.irisingedge \uparrow]
\triangle Operation pattem

- Setting in SN package

Number of program Positioning start	Step No.	Coordin ates	Overide	Operation mehod	Invalid Nalid	Operation mode	Address	M code	Speed No.	Dvell (x 10 ms$)$
1	0	Absolut e	Disable	Cortinuous	Vald	Single	100	0	0	0
2	1	Absolut e	Disadle	Continuous	Vald	Repeated	200	0	1	0

3	2	Absolut e	Disable	Corininous	Vald	Single	300	0	2	0
4	3	Absolut e	Disable	Corrinuous	Vald	Repeated	400	0	3	0

Chapter 3 Functions

Program 3.5 Single operation (setting operation step No.)

Chapter 3 Functions

3.2.3 Auto.operation

1) Positioning is complete upon positioning executed to the target position by one start command(POS ζ _AST :rising edge \uparrow) and the dwell time elapsed. And the operation step (present operation step No. + 1) position is decided for operation in this mode without additional start command (present operation step No. +1). Accordingly, operation mode of the last operation step shall be set to single operation mode orrepeated operation mode. If not, error 66 occurs.
2) Several operation steps of auto-aperation mode can be successively executed.
3) Operation direction is decided according to position address value.
[Ex.]

- Operation pattem

- Program

Program is the same as program 3.4.

Chapter 3 Functions

3.2.4 Continuous operation

1) Positioning is complete upon positioning executed to the target position without stopping operation step set to continuous operation mode by one positioning start (POS $\zeta_{_} A S T$:rising edge \uparrow) and the dwell time elapsed. Accordingly, operation mode of the last operation step shall be set to single operation mode or repeated operation mode. If not, error 66 occurs.
2) Continuous operation command(Next Move) is available if next step position and speed are desired before the presently engaged operation step reaches the target position. However, continuous operation command(Next Move) can be executed only at constant speed.
3) Only the same direction is available for continuous operation mode, and operation direction is decided according to position address value.
[Ex.]
\checkmark Operation pattem

\triangleright Seting in SM package

Number of program Positioning start	$\begin{aligned} & \text { Step } \\ & \text { No. } \end{aligned}$	Coordin ates	Overide	Operation method	Invalidv alid	$\begin{gathered} \text { Operation } \\ \text { mode } \end{gathered}$	Address	M code	Speed No.	$\begin{gathered} \text { Dvell } \\ (\times 10 \mathrm{~ms}) \end{gathered}$
1	0 1	Absolut e Absolut e	Disable Disable	Conninuous Continuous	Vald Vald	Continuos Repeated	$\begin{aligned} & 1000 \\ & 2000 \end{aligned}$	0	0 1	0 0

\triangleright Program

program is the same as program 3.4.

Chapter 3 Functions

3.2.5 Constant operation

1) In constant operation mode, the operation at speed set without target position is continued by speed control operation. Since constant operation is not the positioning operation, it displays " 0 "for present position and is switched
2) over to undecided origin point state even if the origin point has been previously decided.
3) Accordingly, if the next operation step is at decided origin point state, returning to origin point shall be executed or eration after floating point set setting shall be executed.
4) If confronted by deceleration stop commandin constant operation, the correspondent step operation is regarded as complete leading to the next operation step of position data at restart.
5) If confronted by deceleration stop commandin acceleration stage, constant stage, deceleration stage of the constant operation, it stops as decelerated.
6) Operation direction is decided according to the prior position address.
(However, G6FPOPA is decided according to position address sign)
[Ex.]
\triangle Operation pattem

- Setting in SN package

Number of program Positioning start	Step No.	Coordinat es	Ovenide	Operation method	Invalidy alid	Operation mode	Address	M oode	Speed No.	Dvel $(\times 10 \mathrm{~ms})$
1	0	Absolute	Disable	Cortinuous	Vald	Constart	100	0	0	0
2	1	Absolute	Disable	Cortinuous	Vald	Constant	100	0	0	0

Remark

1 positioning start $->$ acceleration stage \rightarrow constant stage \rightarrow deceleration stop command \rightarrow deceleration stage $->$ positioning complete, origin point undecided \rightarrow origin point decided (origin point returning positioning start or floating point set setting command) \rightarrow operation step No. " 1 " assignment >2 start commands
\rightarrow In constant operation mode, dwell ime is not avaiable for G4FPPPA.

Chapter 3 Functions

Chapter 3 Functions

3.2.6 Positioning constant operation

1) Positioning of positioning constant operation is complete as switched from speed control operation to position control operation.
2) Speed control operation is swithed to position control operation by,
(1) External input signal of " speed position control switching input signal" and
(2) Deceleration stop command (POS ζ STP:risingedge \uparrow).

Class	By external input signal of "speed position control switching input signal' (POŠ SRD, ST5(0))	By deceleration stop command(POŠ STP:isisingedgê)
$\begin{aligned} & \text { G3F- } \\ & \text { POPA } \end{aligned}$		1. Switched from speed control to position control 2. Origin point decision Origin point is decided as based on the value set at
GAF . POPA GAF. POPB	-	Origin point return among positioning parameters in SW package 3. Positioning is complete upon positioning executed as swifted to target address set at position data and the dwell time elapsed
$\begin{aligned} & \text { GGF. } \\ & \text { POPA } \end{aligned}$	1. Switched from speed control to position control 2. Origin point decision ; Origin point is decided as based on the value set at origin point return among positioning parameters in SW package 3. Positioning is complete upon positioning executed as swifted to specified address set at position data and the dwell time elapsed	Operated with the same step No. as position data when re-started as processed with applicable step operation incomplete.

Remark

Extemal input signal of " speed position control suitching innut signal" is valid only in postioning constant operation.
Deceleration stop command(POS ζ_{-}STP) is available at acceleration stage of positioning constant operation, however speed position cont rol-switching signal input is available only at constant stage. Thus, error 45 occurs if speed position controlswitching signal is input duning acceleration.
If the position address is set smaller than positioning amount by deceleration inclination in po sitioning constant operation, positioning module re-calculates the deceleration indination for operation. Accordingly, stop can be followed as decclerated abuppty rather than deccleration indination set by parameters.
\rightarrow Operaion direction is decided acoording to address postion and target position address value prior to operation statt.
$[\mathrm{Ex}$] \triangleright Setting of origin point return in positioning parameters of SM package

Starting point return Direction Fooward/Reverse Correction HighLLow speeddressDwell time

- Setting of postioning data in SN package

Number of program Positioning start	$\begin{aligned} & \text { Step } \\ & \text { No. } \end{aligned}$	Coordin ates	Overide	Operaion method	Invalid/v ald	Operation moxe	Address	M code	Speed No.	$\begin{gathered} \text { Dvell } \\ (\times 10 \mathrm{~ms}) \end{gathered}$
1	0	$\begin{gathered} \text { Absolut } \\ \text { e } \end{gathered}$	Disable	Continuous	Vald	Constant(positi on)	10000	0	0	0
2	1	Absolut	Disable	Conninuous	Vald		12000	0	0	0
3	${ }^{2}$	$\begin{gathered} \text { Absolut } \\ \text { en } \end{gathered}$	Disable	continuous	valid	repeated	12000	0	0	0

liens with no influence

Chapter 3 Functions

\square Program
-G3F-POPA, G4F-POPA, G4FPOPB : same as program 3.4.
-G6F-POPA: same as program 3.1.
\triangleright Operation timing : refer to 3.1.3 for the detalis.

3.3 Positioning stop

Causes stopping the axis during positioning are described.

3.3.1 Stop command and stop causes

Stop command and stop causes are as follows, which are classified into stop per axis and simultaneous stop of all axes.

1) If stop command or stop cause per axis is engaged, only the axis in stop command" On" or stop cause is stopped. However, if stop command or stop cause for one axis is engaged during linear interpolation control execution, both axes under interpolation control are stopped.
2) it simultaneous stop command or stop cause for all axes is engaged, both axes are stopped at stop command" On" or the point of stop cause.

Stop causes		Postioning ${ }^{1}$	Oigin point return'2	$\begin{gathered} \text { Jog } \\ \text { operation } \end{gathered}$	Manual pulse generator operation	$\begin{aligned} & \text { Stop } \\ & \text {-axis } \end{aligned}$	Axis operation state ${ }^{3} 3$ atter stopped	M code "On" signal state
Byparameter setting ${ }^{+4}$	SW upper linit range exceeded	Prompt Stop				Peraxis	Eror state (erro25) Output pronibited	Unchanged
	SW lower limit range exceeded	Prompt stop				Peraxis	Eror state (erro24) Output pronibited	Unchanged
Bytunction block	Deceleration stop commard	Deceleration stop				Per axis	Asstopped	Unchanged
	Emergery stop Conmand	Prompt stop				All axes	Eror state (erro21) Output protibited	"Off
Byexternal signal	External upper limit " on"	Prompt stop				Per axis	Eror state (eroroz3) Output pronibited	Unchanged
	External lower limit " On"	Prompt stop				Peraxis	Error sate (error22) Outputprohibited	Unchanged
	Emergency stop "On"	Prompt stop				All axes	Eror state (errozo) Outputprobibited	"Off
Bysw Package	Deceleration stop command	Deceleration stop				Per axis	Asstopped	Unchanged
Byteaching module	Deceleration stop command	Deceleration stop				Peraxis	Asstopped	Unchanged
	Emergency stop command	Prompt stop				All axes	Error state (error21) Outputprohibited	"Off

Remark

${ }^{1} 1$ possioining means position contol, speed contol and speedvosition swithing control by psitioningdala.

*3 : If axis operation state atter stopped is output-prohibited, execute cancellation command(POS ζ_{2} OFF:rising edge \uparrow)of output-prohibition so to cancel output pohbibion and resse erox No.
*4: SW upperlowere inin by parameters is unavalaldel in constant topeation mode.

Chapter 3 Functions

3.3.2 Stop processing and priority

1) Stop processing

Deceleration stop command(POŠSTP:isisingedge \uparrow) is processed differently according to acceleration stage, constant stage and deceleration stage of operation pattem.

(1)At acceleration/constant stage

- Since postioning operation is not complete to target postion as set if stopped as decelerated by deceleration stop command,
(1) no positioning complete signal occurs,
(2) no position passing signal occurs, and
(3) M code signal of Atter mode among M code mods is not " On ". Atterthis, if start command is input at stop state,
let positioning distance of the present operation step that is not output is operated by absolute method, and the next operation step N N. is operated by relative method.

(2) Atdeceleation stage

- Eror occurs if deceleration stop command is input at deceleration stage, and positioning complete signa, position passing signal and M code signal occurs just like the normal stop.
- If confronted by deceleration command at deceleration stage during positioning, stop is followed atter positioning address reached.

2) Emergency stop, external input upperlower limit processing

- If emergency stop command or external input upperllower limitis input during positioning control, positioning control is stopped at output-prohibited state to display error.

3) Priority of stop processing

Priority of stop processing of positioning module is as follows.
Deceleration stop < Prompt stop

- Prompt stop is processed at the moment when prompt stop cause occurr at deceeration stage during positioning. However, if prompt stop time is longer than deceleration time, deceleration stop processing is continued even though prompt stop cause occurs during decceration stop processing.

- Prompt stop causes: (1)intemalexxemal emergency stop, (2)extemal input upperlower limit, (3)sw upperllower limit

Chapter 3 Functions

3.4 Restart after positioning stop

1) Restartater deceleration stop command(POS ζ_{2} STP:isingedge \uparrow)
(1) If deceleration stop command input at acceleration/constant stage

- Operation step N. in execution is performed if restated atter deceleration stop.
- Restart is available by changing M code signal from "On" to "Off" if With mode has been used among M code modes.
(2) I stop command input at deceleration stage
- The following step of the operation step No. in execution is performed if restarted ater decleration stop.
- M code "On" signal is not turned " On" if With mode has been used among M code modes, however M code " On" signal shall be" Offt to allow re-startif Atter mode has been used.

2) Ater internal emergency stop, external emergency stop, extemal input upperllower limit, s /w upperlower limit

- If intermal emergency stop, external emergency stop, external input upperlower limit and s / w upperllower limit is input, positioning module is at (1)output-prohibited state and (2) origin point undecided state.
- cancell (1)output-prohibited, redecide (2) origin point (origin point returning operation, floating poit set setting) and
- performrestart operation beginning from the operation step N No. " 0 ".

3.5Return to origin point (POŞ_ORG:rising edge \uparrow)

- To be executed to check the machine s origin point when powered.
- Origin point return parameters shall be set per axis for origin point return.
- Refer to 4.1, 4.6, \& 4.7 for origin point return parameters.
- If origin point position is decided by origin point return, origin point detection signal is not detected during positioning operation.

3.5.1 How to return to origin point

- By near zero point (near DOG)

Oiginn point return-processing methods by near zero point(near-DOG) are as follows.
(1) origin point detection atter near zero point Off
(2) origin point detection atter deceleration at near zero point On
(3) origin point detection by origin point and upperllower limit
(4) origin point detection by near zero point.

- Parameter items of S SN package which influence origin point return are as follows.
(1) origin point return-direction
(2) origin point compensation
(3) origin point return-speed high/low)
(4) origin point address
(5) dwell time for origin point return
-Refer to 4.7 for the details.

Chapter 3 Functions

3.5.2 Origin point detection after near zero point OFF

Starting point return-command (POŠ2 ORG:ising edge \uparrow) operation by approximate stating point and stating point signal is asfollows.
(1) Operated by origin point return at high speed as accelerated toward starting point returndirection as set.
(2) Operated by origin point return at low speed as decelerated if outer input of near zero point is engaged.
(3) Stopped if external signal of origin point signal is input atter near zero point signal is changed from" On" to "Off".

Chapter 3 Functions

Remark

Origin point is not decided by origin point signal if near zero point point is " 0 n ".
In other words, origin point is decided the moment when changed from "Off" to " Ort" after near zero point signal is changed from "Off to "On" (acceleration stage -> origin point retum at high peed) and then from" On" to "Off" (deceleration stage -> origin point retum at low speed).

2. Origin point is not decided even if origin point is input when origin point return-speed is executed from origin point returning at high speed to deccleration stage ater near zero point signal is changed from " Off" to "On", and then from" On" to "Off".

3. The operation is as follows if external upper limit(lower limit) is engaged while waiting for origin point input after near zero poin t signal is changed from " off to

3. If stating point's "ON" ime is short, it is hard for postioning module to identify.

Chapter 3 Functions

3.5.3 Origin point detection after deceleration at near zero point ON

Origin point returncommand operation by near zero point and origin point signal is as follows
(1) operated by orgin point return at high speed as accelerated toward origin point returndirection as set.
(2) operated by origin point return at low speed as decelerated if external near zero point signal is input at this moment.
(3) stopped with origin point decided if faced by external origin point signal regardless of "On" or "Off" signal of near zero point during origin point returnoperation at lowspeed.

Remark

1) If approximate starting point signal is once turned "On", starting point is promptly decided by starting point signal input regardless of approximate starting point sginal of" On" or "Off" during stating point reumropereaion at low speed via high speed and dececeeraion stage. In other words, stating point is not decided by stating point signa while stating point reumstrpeed is deceeleated.

2) If stating point signad s"Oil" ime is short, tis hadd for positiondectision module to identify.

Chapter 3 Functions

3.5.4 Origin point detection by origin point and upperllower limit

This method is available if external upperllower limit signal and near zero point signal are adhered closely to each other.

Remark

Chapter 3 Functions

3.5.5 Origin point detection by near zero point.

This method is used to decide origin point only by near zero point.

Remark

1. If near zero point's "On" time is longer than decceleation ime, the operation is as follows.

Chapter 3 Functions

3.6 Manual operation

Manual operation includes JOG operation, manual pulse generator operation, inching opertion, and position shitt prior to
Manualoperation.

3.6.1 JOG operation (POS§_JOG: level input)

1) JOG operation

- controls positioning by jog command[POŠ_JOG].
- monitors position address value if changed by postionning operation through JOG command.
- Information on JOG operation is displayed at 6^{h} and 7 p bits of output parameter ST2 in present operation state' S Bit information Read function block[POŠ_SRD]
\triangleright Gib bit of output parameter ST2 in present operation state' s Bit information Read function block: On: in JOG operation at low speed Off: in stopping of JOG operation at low speed
\triangleright Th bit of output parameter ST2 in present operation state' s Bit information Read function block:
On: in JOG operation at high speed Off: in stopping $₫ J O G$ operation at high speed
- used when operated without origin point decided.

2) Acceleration/deceleration processing and jog speed
(1) Acceleration/deceleration processing is controlled as based on the time set to acceleration time and deceleration time among parameter seting items in SN package.

- JOG operation at high speed: with acceleration/deceleration pattern.

JOG operation at low speed: without accelerationldeceleration pattern.

(2) If JOG speed is set exceeding the seting range, erroroccurs and operation is impossible.

Settingrange	JOG operation at high speed	$1 \sim 20,000(10 \sim 200,000 \mathrm{pps})$	(Setting unit:10pps)
	JOG operation at low speed	$1 \sim 10,000(10 \sim 100,000 \mathrm{pps})$	

Remark

Cation itens for JOG speed seting aee as oflows.

1) Jog at high speed shall be caectily seta babow.
bias speed $\leq J 0 G$ at high speed \leq speed limit

JOG at tow speed can be pepated regardess of bas speed and speed init.

Chapter 3 Functions

3) Programming example

Condition : To be repeatedly operated between random postion" 0 " and " 10,000 "

program 3.7 JOG operation
Remark

If JOG speed is too fast in program 3.7, error in position address value may occurs during repeated operation between position" 0 and " 10,000 ".

Chapter 3 Functions

3.6.2 Operation of manual pulse generator (POŞ__MPG:rising edge \uparrow)

1) Operation of manual pulse

- controls positioning by pulse input friom manual pulse generator.
- used for manual accurate positioning.

2) Operation of manual pulse generator
(1) If permission command of manual pulse generator operation (POS ζ _MPGising edge \uparrow)s executed, manual pulse operation is in permission state. From now on, positioning control is operated by pulse input from manual pulse generator.
(2) Ater permission command of manual pulse generator operation (POS§_MPGrising edge \uparrow)is executed, manual pulse operation is in prohibition state by the following operation(start command, origin point return command, interpolation operation, JOG operation, Inching operation)
(3) Operated regardless of statring point decided or undecided.
(4) Pulse input from manual pulse generator is incremental or decrement at present position.
(5) Shift direction is decided according to phase difference.

D Fowward postion decided: If phase A input pulse is anead of phase B input pulse
\triangleright Reverse position decided: If phase B input pulse is ahead of phase A input pulse


```
If phase Ainut puses s atead of ophase Birputpise, pasion acteses value s smeneret
Itplase B inpu puse is anead d phase A irputpuse
posion acdress value is derecmett
```


Program 3.8 Manual pulse generator

Chapter 3 Functions

3.6.3 Inching operation(POS $_{\zeta}$ _INC: $\mathbf{i n}$ ising edge \uparrow)

- One ofmanual operation methods used to process minute move as determinate operation.
- JOG command operation is hard to move to exact position because operation starts and stops according to the command, but via the inching command with travel value easily set as desired the target is easy to reach.

Thus, ater rapid move near to work position by JOG commandPOS ζ _JOG, perform operation by inching command for minute move to the exact work position to reach.

- Setting range is1 ~ 99 pulse, and shitt speed is set to 50pps.

Program 3.9 Inching operations

Chapter 3 Functions

3.6.4 Shift to prior position to manual operation (POS__RPT:rising edge \uparrow)

- A function used to return to prior position address to manual operation(JOG opeation, Inching operation, manual pulse
generator operation) when the position is changeed into manual operation.
- Shitt speed is set to $30 K$ Kps.

Program 3.10 Shitt to prior position to manual operation
Remark
If present position address value is " A " and position address value changed by manual JOG operation and Inching operation is " B " during operation, return to prior position of " A " to manual operation is performed by shift (POS ζ ORG:rising edge \uparrow)command to prior position to manual operation.

Chapter 3 Functions

3.7 Speed change in positioning operation

3.7.1 Speed change command(POS ζ _VCG:rising edge \uparrow)

- Speed change is allowed only at constant stage among operation patterns with available operation modes of single operation, repeated operation and autiooperation, which used als for JOG operation at high speed and origin point returf operation at highspeed.
(However, G4F-POPB \& G6F-POPA are available for constant operation mode.)
Setting range is $10 \sim 200,000 p p s($ seting unit : 10pps).

Remark

Take precautions, if the difference between present speed value used in oper ation and newly changed speed value by speed daroyefPOS Y_VCG:ising eclge $\$) is too large, separation may occur.
If reaching time to target position right after speed value is changed by the speed change is 0 ver $65,535 \mathrm{~ms}$, error 89 occurs. Also, if restarted ater removal of error causes at this time, operation step No. dives the operation step No . of presently operated step $\mathrm{No} .+1$ ¹

Chapter 3 Functions

3.7.2 Operation step No. change by continuous operation(POŠNM)

- Used only if operation mode is continuous operation andat constant stage among operation patterns.
- If continuous operation(POSE NM) command is used during operation, the operation is performed as shifted from presently operated step No. to the next operation step No.
Continuous operation command is performed differently according to Absolute Coordinates and Relative Coordinates in position data setting.

	- If used in Absolute Coordinates	- If used in Relative Coordinates
If continuous op. command not used		
If continuous op. command used		

Remark

- If decided position amount is too smaller than operation speed in continuous operation mode, error 106 occurs because calculation is unavalalable. Please set operation speed of the step which was set to continuous operation mode a litte lower.
- Operation mode which can use operation step No.change by continuous operation(POS ζ _NM) is continuous operation, and the next avalable operation modes for the operation step are single operation, repeated operation and continuous operation. If any other operation mode is used, error 36 occurs.

Chapter 3 Functions

Program 3.12 Operation step No. change by continuous operation (POSY NM)

Chapter 3 Functions

3.7.3 Speed change by speed overide(POŠ OR)

The override shall be set to allowable per applicable operation step at position data of SN package for application of speed override Error 60 may occur if operated with override prohibited in the applicable operation step.at this time

- Use only at constant staged operation pattern, if not, error 56 occurs.

Setting range is1 ~ 15 (seting unit: 10%). If speed is changed to other value than setting range, error 670 ocurs.
[Ex.] If speed data value is set to 2000, the speed is 20Kpps and if speed overide is set to $15(150 \%$), the speed is $20,000 \times 1.5=30,000$ (30Kpps).

If speed overide is to be continuously used, the operation shall be as based on the speed value as set at speed data.

- Take the following precautions for speed override application.

1) For higher speed

2) For lower speed

Remark

Calion shall be execrised for lower speed by speed overine

Eror 57 ccurs for the other pperaion modes and eroro 59 ccarrs ispeed overide is used when the operaion
Is not by satr command.

Program 3.13 Speed overide

Chapter 3 Functions

3.8 Upperllower stroke limit

Positioning module includes external input stroke limit (extermal input upper limit signal, external input lower limit signa) and SN stroke limit (SW upper limit, SW lower limit).

3.8.1 Outer input upperllower stroke limit

Outer stroke limit includes external input upper limit signal and external input lower limit signal via external input connector of positioning module.

- Stroke limit of positioning module is to be installed inside stroke imitistroke end of the drive device for positioning module to stop it prompty before reaching to stroke imitststroke end of the drive device. Error23if over top limit and error22 if below bottom limit may occur.

- Postioning operation is not available if positioning module is stopped out of controllable range.

Move positioning module inside the controllable range by manual operation(JOG operation, inching operation, manual pulse generator operation) is stopped by externd input stroke limit detection.
Outputprohibited can be cancelled and manual operation can be executed even if out of the stroke range because external input upperlower stroke limit error is detected by the edge at positioning module.

- Information on externa input upperllower stroke limit is displayed at 1 stand 2 zt bits of output parameter ST5 in presentoperation state' s Bit information Read function block[POŠ SRD].
\triangleright 1s bit of output parameter ST5 in present operation state' s Bit information Read function block :
On: external input upper stroke limit undetected Off: external input upper stroke limit detected
$\triangle 2 \times$ bit of output parameter ST5 in present operation state' s Bit information Read function block:
On: external input lower stroke imit undetected Off: extemal innut ;ower stroke limit detected

Remark

- Both upperllower limit signals are not detected if either upper or lower limit is just used as connected with the sensor in connection with external input upperlowere stoke mit.
Please connect the signal surely to B contact if not used.

Chapter 3 Functions

3.8.2 SW upperllower stroke limit

SWW upperllower stroke limit is for a function not to execute positioning if operated out of upperllower stroke limit setting range which is set at parameters of SN package.
Range check of upperllower stroke limit is performed at operation start and during operation.

- Function not to execute positioning by its applicable command if operated out ofthe setting range.
- Information on SN upperlower stroke limit is displayed at Oinand 1s bits of output parameter ST2 in present operation state' s Bit information Read function block[POŠ SRD].
\triangleright On bit of output parameter ST2 in present operation state' s Sitinformation Read function block:
On: external input upper stroke limit detected Off: external input upper stroke limit undetected
$\triangle 2 \times$ bit of output parameter ST2 in present operation state' s Sitinformation Read function block:
On: external input lower stroke limit detected Off: external input lower stroke limit undetected

Remark

- SW upperlower stoke inintis not defected a a stating point undecided.
- If output-prohibited occurs by upperllower imit eror, oigin point retum shal be reexecuted after moving to starting stroke area by a manual operation Ilike JOG operation because it is switched over to orign poontundecided state.

Chapter 3 Functions

3.9 Random-positioned address value setting to origin point and present position change

3.9.1 Random-positioned address value seting to origin point

- Random-positioned address value setting to origin point can be allowed through origin point returr-address items at SW package parameters.
Check of randompositioned address value of the set axis can be performed through present operation state' s code information Read function block(POSI-CRD, outputparameter CA) after fixed origin point setting or origin point return is executed.
Also, the position present can be identified at SNW package monitor after floating point set setting ororigin point return is executed.

3.9.2 Present position change(POŞ_PRE:rising edge \uparrow)

- Present position change is to change the present address value to random address value.

Program 3.14 Present position change

Chapter 3 Functions

3.10 Floating point set setting(POSI-HT)

- Used to set present position to origin point compulsorily without origin point returnoperation of the machine.
- The setting position at this time is the value set at origin point return address.

Remark

-The following caution shall be exercised for pogram with the origin point fixed because fxxed oigin point setingPOSI-FLT) decides compulsoily only orginn point of the present postion by origin point retum address.

1. Removeresest eror if occurred, cancell oupput-prohbited and,
2. Reset the feed origin point and then,
3. Change operation step No. to operate by operation step No.assignmentPOSI-SMC) for stating.

3.11 Teaching function

- A function to change positioning address value of positioning data' s step N No. set to positioning address by manual operation (JOG operation, manual pulse generatior operation).
- Teaching function is available only for stopped axis.
- Convenient for frequent application of position address value and speed value as changed.
- G6F-POPA has RAM teaching function and ROM teaching function.

G3F-POPA, G4FPOPA and G4F-POPB has only ROM teaching function.

3.11.1 RAM teaching function and ROM teaching function

1) RAM teaching function

Speed value and postion address value can be used as changed when positioning module is opeated as powered on,
while the values are lost if powered off.

- Only for G6F-POPA.

2) ROM teaching function

Speed value and position address value can be used as changed when postioning module is operated as powered on, in permanent presesvation of the values applied even if powered off..

Remark

- Be careulil that the number of ROM teaching is inited. (avalable number: 100,000)
- To incease the appiciaion number (wit teacting pepated step)

1) set 300 operation steps to repeated operation via software package and
2) change operation step No. (POSI-SMC) to the next operation step if the teaching count number reaches

99,000 as compared with 100,000 or $\operatorname{below}(99,000)$ in PLC program so to
3) use upto teaching times of $99000 \times 300=29700000$.

Chapter 3 Functions

3.11.2 Speed eaching(POŠ,_VLT:insing edge \uparrow)

A function to change speed value of the speed №. set at positioning operation step

Use speed teaching when speed value " $100(1 \mathrm{Kpps})$ " of speed
No. 0 is applied as changed to new value.
\triangle Program

Program 3.15Speed teaching

Chapter 3 Functions

3.11.3 Position teaching(POSそ_TEA:rising edge \uparrow)

- A function to change position address value of position data.

\triangle Setting position data											
Kespra	Wrat 0^{2}	प19\% ${ }^{2}$								[Use position teaching when position address value
$\left\|\begin{array}{c} 3 \mathrm{sop} \\ \mathrm{Ha} \end{array}\right\|$	$\begin{gathered} \text { Coord } \\ \text { insles } \end{gathered}$	$\begin{aligned} & \text { Over } \\ & \text { nide } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Op. } \\ \text { Wethos } \end{gathered}\right.$	$\begin{array}{\|l\|l\|} \hline \text { Incuia } \\ \text { Nalid } \end{array}$	On. Wof		4 Cabo	$\begin{gathered} \text { 5peet } \\ \mathrm{Na} . \end{gathered}$	$\left\|\begin{array}{c} \text { Dwsi } \\ (\mathrm{s} 10 \mathrm{~ms}) \end{array}\right\|$	늘	of position data 's operation step No. 0 though set
J	nc	da	cort	तहC	20t5	(100	0	D	1		
1	${ }^{\text {no }}$	15	tant	- 1 d	shes		d	1			to "100" is applied as changed. If position address
2	nc	ds	com	rald	tome	300	\%	2	1		
3	${ }^{\text {nct }}$	46	carl	-164	indas	4.0	19	3	4		
4	ho	ds	coce	1050	shest	580	8	4	9		value of operation step No. O is always to be
5	${ }^{\text {nco }}$	ds	cort	rald	shef	800	1	5	0		
$\frac{6}{7}$	h6	16	corl	rad	sind	N00	5	5	${ }^{4}$		changed, set operation mode to repeated and
7	hc	68	cont	व16	sind	90	9	7	0		changed, set operation mode to repeated and
$\frac{8}{4}$	nc	ds	cort	neld	singa	300	18	$\frac{6}{4}$	of		change position address value to position teaching
\%	he	${ }^{4}$	cosel_{5}	Ve6	sinda	100	1	${ }^{4}$	9		change position address value to position teaching
10		ds	cont	vald	Finct	1100	1	ID	d		
$\frac{11}{12}$	\%	ds	tome	vald	singa hinda	$\sqrt{1200}$	\%	11	1	*	(POS $\left.\mathrm{S}_{2} \mathrm{TEA}\right)$ prior to start

\square Program

Program 3.16 Postion teaching

3.12 Seting operation step No.(POSI-SMC:rising edge \uparrow)

This is used to change operation step number to execute, which is available only when stopped.
\checkmark Seting in SW package

Number of program Positioning start		Coordinate s	Ovenide	Operation method	Invalidv alid	Operation mode	Address	M oode	Speed N.	Dwell $(\times 10 \mathrm{~ms})$
1	0	Relative	Disable	Continuous	Vald	Single	100	0	0	0
2	1	Relative	Disable	Continuous	Vald	Repeated	200	0	1	0

Number change by setting operation step No.[POSS_SMC:rising edge \uparrow]: " 2 '

3	2	Relaive	Disable	Continuas	Vald	Auto	100	0	2	0
	3	Relaive	Disable	Continuas	Vald	Auto	2000	0	3	0
	4	Relaive	Disable	Continuas	Vald	Auto	3000	0	4	0
	5	Relaive	Disable	Continuas	Vald	Repeated	4000	0	5	0

Number change by setting operation step No.[POSS,_SMC:rising edge \uparrow] : " 6 "

$$
\begin{array}{|l|ll|l|l|l|l|l|l|l|l|}
\hline 4 & 6 & \text { Relaive } & \text { Disable } & \text { Corinuus } & \text { Vald } & \text { Repeated } & 10000 & 0 & 6 & 0 \\
\hline
\end{array}
$$

Afterthis, only operation step No. " 6 " is repeatedly operated if only continuous positioning start(POS-AST) is used without number change.
\triangleright Program

Program 3.17 setting operation step No.[

Chapter 3 Functions

3.13 Parameter change in program (POS - PRM: :ising edge \uparrow)

Some of parameters set in SN package can be changed by parameter change command(POSIPRM:isising edge \uparrow).

- Changeable items are as follows.

Items	Settingrange	Descripion
Acceleration time	1 ~ 999	Acceleration time changeable between $10 \sim 9990 \mathrm{~ms}$.
Deceleration time	1 ~ 999	Deceleration time changeable between $10 \sim 9990 \mathrm{~ms}$.
High speed of JOG	$1 \sim 20,00$	High speed of JOG changeable between $10 \sim 200,000 p p s$.
High speed of origin point return	1 ~ 20,000	High speed of origin point retum changeable between $10 \sim 200,000 p p s$.
Mcode mode	$0 \sim 2$	0 :With mode used 1:Atter mode used 2:M code mode not used

- Parameter changeable only when operation is being stopped.

Program 3.18 Parameter change

Chapter 3 Functions

Chapter 4 S/W Package

Chapter 4 SW package

- Details of SN package are described.
- Be careful that SN package is changed from POSITION to POSPACK with its terms modified also.

[Old package (POSITION)]

Chapter 4 S/W Package

4.1 Main manu bar

Control area of positiming files and communication ports to connect with positioning module and SW package.

4.1.1 File

1) Open

- Command to open a file prepared by SWW package.
- Extension cord of the file is" *PLS".

2) Save

- Command to save a file prepared by SN package.

3) Save another name

- Command to Save a file prepared by SN package in another name.

4) Print

- Command to print a file prepared by SN package with the following 5 items as selected.
(1) X-axis parameter
(2) Y-axis parameter
(3) X -xxis position data
(4) Y -axis position data
(5) Speed data

5) Close

Command to close SW package program.

4.1.2 View

1) Tools

- Command to display tools at SM package.

Chapter 4 S/W Package

2) State display

- Command to display the state bar at the left bottom of SW package
- GM6 | Gulse 2 | Slot 4 | \square |
| :--- | :--- | :--- | :--- |

4.1.3 Communication

1) Communication port

- Command to set serial communication port between computer and positioning module.

2) Communication items

- Command to select and send parameters, position data and speed data set in SW package to positioning module or to read positioning module data in S W package.

4.1.4 Model setting

1) On-line model setting

- Used for processing SN package data with positioning module equipped.
- Preoperation and monitoring of each axis are available only if set to On-line model.

2) Offline model setting - Used for processing SN package data without positioning module equipped.

4.1.5 Data setting

Data preparing area for operation of positioning module.

- Refer to Chapter 5 \& Chapte 6 for the details.

5 types of data are available for the setting.

1) X-axis parameter
2) Y-axis parameter
3) X-axis position data
4) Y-axis position data
5) Speed data

4.1.6 Help

Area to display the version of SW package.

4.2 Shortened icons

Commands in 4.1 are shown via the shortened icons for quick processing.

4.3 Pre-operation mode

Module sething(on-Iine)

Area for preoperation of positioning module through SN package.

4.3.1 Monitoring axis selection

- To select an axis desired to monitor by positioning module.
- (1) X axis and (2) Y -axis can be selected as available according to the module.
- If no axis is selected, monitoring can not be executed.

4.3.2 Monitoring start/stop

- Monitoring statts on the selected axis as specified in 4.3.1.
- Tostartmonitoring select the icon " Monitoring start whichwill be changed to " Monitoring stop", and to stop monitoring select" Monitoring stop" which will be changed to "Monitoring start"
4.3.3 Command selection_selection of the axis to preoperate
- To select an axis desired to preoperate or JOG-operate in SNW package.
- Any selected axis here can be pre-operated in 4.3.4 \& 4.3.5.
4.3.4 Preoperation by SW package

\triangle Click the icon to execute an applicable command.

4.3.5 Jog operation by SW package

\triangleright Click the icon to execute an applicable command, and click oncemore to stop the command.

Chapter 5 Positioning Parameter

Chapter 5 Positioning parameter

- Parameters to be set in SN package are described.
- Be careful that SN package is changed from POSITION to POSPACK with simultaneous control available if 2 axes used and its terms modified also.
- Parameters of SW package are structured as shown below. The parameter items shall be set per axis.

[New package(POSPACK)]

Send
Read
Olack
Cancel

: To write parameter setting value by positioningmodule
: To red parameters used in positioning module to S/W package
To monitor or save new parameter setting value as changed

Cancel Tocancel new parameter setting value and use previous value continuously

Chapter 5 Positioning Parameter

Related tems	Betore modified (POSITION)	$\begin{aligned} & \hline \text { Atter modified } \\ & \text { (POSPACK) } \end{aligned}$	Remaks
5.1	Bias speed	Bias speed	Refer to 5.1 .3 Unitchangepulselsec \Rightarrow x10pps
	Stroke upper limit	SW upper limit	Refer to 5.1.4
	Stroke lower limit	SWW lower limit	Refert to 5.1.4
5.4	No	None	Refer to 5.1.3
5.5	Jogging speed	JOG speed	
5.6	Return after origin point L/S detection	Origin point detection ater Near zero point Off	
	Return upon origin point L/S detection	Origin point detection atter deceleration at near zero point On	
	Return if no origin point US	Origin point detection by origin point and upperllower limit	
	Reum if no phase Z	Origin point detection by Near zero point	
5.8	ON position	ON start point	
	OFF position	ON end point	

Chapter 5 Positioning Parameter

5.1 Basic parameter

Basic parameters are described.

5.1.1 Acceleration/deceleration time

Applied to start point \& stop point of positioning operation, origin point returning high-speed operation and JOG high-speed operation, and also to continuous operation command(POS $\zeta_{2} \mathrm{NM}$:rising edge \uparrow), speed change command(POŠ_VCG:rising edge \uparrow) and speed override command(POŠ_OR:rising edge \uparrow) in positioning operation.

Remark

However, error may occur if deceleration stop command(POS $\zeta_{_}$STP) is used during accel er at ion/decel er ation st aged oper ation at continuous oper at ion command(POS $\zeta_{_} N M$, speed change conmand(POS_{2} VCG) and speed over ride($\left.\mathrm{POS}_{2} Z_{2} \mathrm{OR}\right)$ in positi oni ng oper at i on.
Acceleration/deceleration time shall be set in unit of axis at parameters of S/W package.
Setting range is $0 \sim 999$ (Unit: 10 ms) per axis.

1) Acceleration time : Time required to reach speed limit set at parameter from speed" 0 "(stop state).
∇ It means the time required to reach speed limit set at parameter from bias speed set if bias used.
2) Deceleration time : Time required to reach speed" 0 "'(stop state) from speed limit set at parameter
\triangle It means the time required to reach bias speed set from speed limit setat parameter if bias used.

- Tems

Speed limit :Max. speed when position is decided as allowed in parameter items of S/W package.
Setting speed: Speed data value actually operated by position data.
Actual acceleration time : Time required to reach speed value set to speed data from speed" 0 "(stop state).
Actual deceleration time : Time required to reach speed "0"(stop state) from speed value set to speed data.

Chapter 5 Positioning Parameter

5.1.2 Backlash compensation

- Backlash means the error that the machine doesn' toperate due to abrasion when rotation direction is changed in case motor shat is connected with gear and screws.
Backlash compensation when output shall be added to postionning amount if rotation direction is to be changed.
- In G3F-POPAGAF-PPPAG4F-POPB, itis available for positioning operation,
and in G6F-POPA, itis available for positioning operation, inching operation and JOG operation.
- Setting range is 0 ~ 99g(Unit: Pulse) per axis.

Remark

Origin point return shall be surely executed if backlash conpensation is ever set or changed.

- Since the original position may not be reached by backlashif the position is moved 1 m to right and then 1 m to 1 eft again, backlash compensation shall be added.

Backlash compensation is,
InG3F-POPAGAF-POPAGAFPOPB, moved at low speed for backlash compensation value atter postioning address
amountreaches targetpoint.

In G6F-POPA, moved to target point with backlash compensation value added to address value of positioning operation, inching operation and JOG operation.

Chapter 5 Positioning Parameter

5.1.3 Bias speed

- Stepping motor is used to reduce positioning time with startspeed setting at early operation stage to make
motor rotation smooth because torque may be unstable near at speed=0.
The setting speed at this case is bias speed
- Setting range is 0 ~ 20,000(Unit: 10pps) per axis.
- Bias speed is used for (1)positioning operation by start command,

> (2) origin point returnoperation,
(3) JOG operation and
(4) major axis of interpolation operation (unavailable for minor axis).

Remark

Be careful ! If bias speed is set high, whole operation time can be reduced profitably but if set too high, impact noise occurs at start and stop points leading to damage on the machine.

- Bias speed shall he set witin the following rage.
(If origin point return-speed is set lower than bias speed error 87 occurs, and if operation speed is set lower than bias speed at positioning error 86 occurs.)
1)Bias speed \leq positioning speed data

2) Baas speed \leq oigign point retum at low \leq oigign pointreum athigh
3) Bias speed $\leq J O G$ at high (JOG bousspeed opeation has no cornecion with bias speed.)

Chapter 5 Positioning Parameter

5.1.4 S/W upperllower stroke limit

; Also called as stroke upper(lower) limit.

- Stroke limit means movable range of the machine with its upperllower value set to SW upperllower stroke limit. If operated out of the setting range, positioning will not be executed.
Namely, if operated out of the setting range, positioning by its applicable execution command is not executed.

This is used to prevent separation from upper or lower limit due to positioning address value set incorrectly and abnormal operation due to error in user program. Limit switch for emergency stop needs installation near by stroke limit of the machine for this function.

- Range check of upperllower stroke limit is performed at operation start and during operation..
- If an error is detected by SW upperllower stroke limit value setting (SW stroke upper limit address range
exceeded : 25 , SW stroke lower limit addess range exceeded : 24), pulse output of positioning
module is prohibited.
Thus, cancell output-prohibited (POSL OFF:rising edge \uparrow) to detect the error and restart the operation.
- Setting range shall be set per axis

SW stroke upper limit address valuerange : 16,744,447 ~ 16,744,447
SN stroke lower limit address value range :-16,744,447 ~ 16,744,447 (Unit: Pulse).

5.1.5 Speed limits

- Max. speed of positioning operation available.
- Setting range is $0 \sim 20,000$ (Unit: 10pps).
- Speed data, origin point return-speed and JOG operation speed in positioning operation are influenced by speed limits. If the value is set larger than speed limits, error will be detected.
(1)If origin point return-speed is larger than speed limits : error 87
(2) If speed data for msitioning operation is larger than speed limits : error 86
(3)If JOG operation speed is larger than speed limits : error 86

5.1.6 Position passing time

Signal of position passing time is turned on after positioning complete in single operation, repeated operation, auto-operation, continuous operation, constant operation with positioning and origin point returning, and is turned off after kept on as long as set.
The moment positioning start command or starting point return command is executed during position passing signal On, the signal will be Off.
In continuous operation mode, position passing signal will be output whenever shift is complete to
the address set at operation step.
Setting range is $0 \sim 999$ (Unit: 10 ms).

Chapter 5 Positioning Parameter

In single operation mode.

- In auto-operation mode.

-In continuous operation mode.

5-7

Chapter 5 Positioning Parameter

5.2 Output direction

Output Dir.	
C A Type B Type	

Since input methods used for SERVO driver or stepping motor differ each other, such a pulse-out
direction of positioning module shall be selected as applicable.
Output direction types
Type A: Fowward pulse andreverse pulse are output trom different terminals respectively.

TypeB: Forward pulse and reverse pulse are output from one terminal, and detecion signals of
fowardireverse directions are output from different teminals respectively.

5.3 Rotation direction

Forward rotation : Rotation direction is set to the direction where present value of position address is on the increase.

Reverse rotation : Rotation direction is set to the direction where present value of position address is

5.4 M code mode

Chapter 5 Positioning Parameter

- M code mode which has been set at parameters are wholy applied to all position data of its applicable axis .
- M code No. can be set respectively per operation step No. of positioning data
- Mcode No. setting range: $0 \sim 255$
- M code can be used to check operation step No. presently executed and to perform supplementay work
(clamp \& drill rotation, tools exchange, etc.) by Read at output parameter" MCD" of present operation
state' s code Read function block POSS_{2} CRD: Ievel) in program.
$\rightarrow M$ code signal produced during operation can be reset by M code" Off" command(POS ζ MOF:rising edge \uparrow) .

Remark

- In G3F-POPA/G4FPOA/G4F-POPB, M code signal operates along with M code No.according to M code mode as set at parameters during positioning operation, but positioning operation can be executed by the next operation step No. regardless of M code signal " On/Off" .
-In G6F-POPA, the next operation step No. is not operated when M code signal is "On"even if positioning is complete, which will lead to error (errorNo. : 40). Thus, if M code signal is "On", M code signal shall be "Off by M code " Off" command(POŠ_MOF:rising edge \uparrow) for positioning operation of the next operation step №.
- M code mode is classified into With mode and Atter mode accoring to output timing of M code signal.

Chapter 5 Positioning Parameter

Setting in S/W package

Program

Program 5.1 M code mode

Chapter 5 Positioning Parameter

1)Wihmode

This is a mode outputting M code Onsignal and simultaneously producing out M code No. set at position data with start command(start: POŠAST, linear interpolation start: POŠ_ 1 LNT) of positioning operation
to oupput parameter "MCD" of present operation state s code Read function block(POS ζ_{2} CRD: level).

Chapter 5 Positioning Parameter

2) After mode

This is a mode outputting M code Onsignal and simultaneously producing out M code No. set at position data
to oupput parameter "MCD" of present operation state s code Read function block $\operatorname{POSS} \zeta_{工}$ CRD:
level) ater positioning is complete by positioning statt (statt: POŠ2 AST, linear interpolation stat: POŠ_INT).

Chapter 5 Positioning Parameter

5.5 JOG speed

JOG speed for JOG operation[POS ${ }^{2}$ JOG], a manual operation is available for JOG lowspeed operation and JOG high-speed operation.
$>$ Refer to 3.6.1 JOG operation for further information.

5.5.1 High-speed

\rightarrow JOG high-speed operation is of acceleration, constant and deceleration staged pattern.
Acceleration stage and deceleration stage are controlled by acceleration/deceleration time.
\rightarrow JOG high-speed setting range : $1 \sim$ 20,000(Unit: 10pps)
(Caution for high-speed setting: bias speed $\leq J O G$ high-speed \leq speed limits)

5.5.2 Low-speed

JOG low-speed operation has not acceleration/deceleration staged pattern but only constant staged pattern.

- JOG low-speed setting range : $1 \sim 10,000$ (Unit: 10pps)
(Caution for low-speed setting: Caution required since operation is performed regardless of bias speed and speed limits.)

5.6 Origin point retum-processing method

> Origin Return Method
> © after Near Zero signal 'On'
> C after Near Zero signal 'On' and 'Off'
> © by Near Zero signal and Limit signal
> \bigcirc by Near Zero signal only

4 starting point return-processing methods are available as restricted respectively
according to positioning modules.

Originpointreturn- processing method	GFPOPA	GFPOPA	GFPOPB	GFFOPA
Origin point detection atter Near zero point Off	Available	Available	Available	Available
Origin point detection atter deceleration nat near zero point On	Available	Available	Available	Available
Origin point detection by origin point and upperllower limit	Available	Unavailable	Available	Available
Origin point detection by Near zero point	Available	Unavailable	Available	Available

However, as for G3F-POPA O/S V3.0 or above, origin point return is available through
origin point detection by origin point and upper/lower limit and by near zero point.
Refer to 3.5 Return to origin point for the details on origin point return-processing methods.

Chapter 5 Positioning Parameter

5.7 Return to origin point

- Origin point return-tems which are influencing origin point return-command[POS _ORG] 2 processing are classified into the following 6 types.

5.7.1 Direction

- Origin point return-direction is classified into forward rotation and reverse rotation on the basis of 5.3 Rotation direction.

4.3 Rotation direction	Origin point retum- direction	Puseoutoperation of positioningmodule
Forward	Forward rotation	Foward origin point return execulted
	Reverserotation	Forward and reverse origin point return executed
Reverse	Foward rotation	Reverse origin point return executed
	Reverserotation	Reverse and fooward originpoint return executed

5.7.2 Compensation

- Compensation is used at origin pointdetection(input at phase Z) to adjust a little divergence of the
machine' s origin point(difference between setting value and actual travel value due to
mechanical error).
- If origin point compensation has been set, detect origin point and then move it as much
as set data (,+-) as origin point compensation when executing origin point returr-command
so to complete origin point retum operation.
Setting range of starting point compensation:-999 ~ 999 (Unit: Pulse)

Chapter 5 Positioning Parameter

5.7.3 Speed of the return to origin point

Speed of the return toorigin point by origin point return-command includes high-speed and low-speed.

Setting of origin point return-speed shall be as follows ;"speed limits > origin point return
high-speed >origin point return low-speed".

1) Origin point return high-speed

Constant staged-operation speed via acceleration stage by origin point return- command.
Setting range of origin point return high-speed : $1 \sim$ 20,000(Unit: 10pps)
2) Origin point return low-speed

Constant staged-operation speed via deceleration stage by origin point return- command.
Setting range of origin point return low-speed : $1 \sim$ 20,000(Unit: 10pps)

Remark

Origin point return low speed shal I be set as low as possible when or i gi n poi nt return-speed is to be set.
If the low speed is set too fast, detection of origin point signal may not be accurate.

5.7.4 Address

It is used to change the present address value to a setting value at origin point return address when origin point return is complete by origin point return-command,

Setting range of origin point return address: - $16,744,447 \sim 16,744,447$ (Unit: Pulse)

5.7.5 Dwell time

- Time required to keep precise stop accuracy of subo motor used for positioning Actually, the time required to remove remaining pulse of the variation counter right after positioning complete is the dwell time, and especially the dwell time at return to origin point is called as origin point returndwell time.
Setting range of origin point return-dwell time: $0 \sim 9999($ Unit: ms)

Chapter 5 Positioning Parameter

5．8 Zone setting

$\left[\begin{array}{ll|}\text { Zone Setup } & \\ \text { Range：－} 16,744,447 \sim+16,744,447 \text { pulse ］} \\ \text { Zone \＃1 } \begin{array}{l}\text { ON Begin } \\ \hline 0 \\ \text { Zone \＃2 } \\ \text { Z2 } \\ \hline 0 \\ \text { Zone \＃3 } \\ \hline 0 \\ \hline 0 \\ \hline\end{array} & \boxed{0} \\ \hline\end{array}\right.$
－Setting available in therange of position address where postioning module can move to with the following 3 types．
－Zone No．will be＂On＂when present position is passing through address value set to Zone．
\triangle Zone \＃1 ：2w bit o o oupput parameter ST3 in present operation state＇s Bit information Read
function block［POS 〔SRD］
\triangle Zone \＃2 ：3t bit of output parameter ST3 in present operation state＇s Bit information Read
function block［POS 〔SRD］
\triangle Zone \＃3：4ヶ bit of output parameter ST3 in present operation state＇s Bit information
Read function block［POŠSRD］
Thus，additional work can be executed using＂On＂information when position set to Zone area is being controlled．
Setting range of Zone：－16，744，447～16，744，447（Unit：Pulse）
－Zone setting shall be as follows．

Chapter 5 Positioning Parameter

Remark
"On start point"shall be set smaller than "On end point".

Program 5.2 Zone setting

Chapter 6 Position Data For Positioning

Chapter 6 Position data for positioning

- Position data to be set in SW package is described.
- Be careful that SN package is changed from POSITION to POSPACK with its terms modified also.

[New package(POSPACK]

Send	:To write values set at position data by positioning module
Read	:To read position data used in positioning module to S / W package
Chak	:To monitor or save new value set at position data as changed
Canel	: Tocancel new value set at position data and use previous value continuously

How to prepare

ltems	$\begin{aligned} & \text { Step } \\ & \text { No. } \end{aligned}$	Coordina tes	Override	$\begin{array}{\|c\|} \hline \text { Operatio } \\ n \\ \text { Method } \end{array}$	Invalid Operation	Address	M code	$\begin{aligned} & \text { Speed } \\ & \text { No. } \end{aligned}$	Dwell
Method	\cdot	Use the mouse to select applicable cell				Use the mouse to select applicable cell and to define the details directly.			
Details of cell	.		\square	land					

Terms modified

Related items	Before modified (POSITION)	After modified (POSPACK)
6.1	Step	
6.2	Method	Coordinates
6.4	Operation	Operation method
6.5	Skip	InvalidNalid
6.7	Position address	Position address(pulse)
6.9	Speed NO.	Speed No.
6.10	Dwell	Dwell time(x10 ms)

Chapter 6 Position Data For Positioning

6.1 Step No.

Serial No. of positioning data in setting range of $0 \sim 299$.

- Positioning operation of each step No. is decided according to " 6.5 Invalid/Nalid" setting

Remark

"If 6.5 Invalid/val id" setting is valid: applicable step Nb . executes positioring oper ation. "If 6.5 Invalid/valid" setting is invalic: appl i cable step No. is ski pped over until " 6.5 Invalid/ valid' setting is valid anong the following step nunbers and valid step Nb . if encountered executes positiori ng oper ation.

6.2 Coordinates

\rightarrow Coordinates of position data classified into Absolute Coordinates and Relative Coordinates.
6.2.1 Absolute Coordinates (control by absolute method)
A) Position ing is controlled from start address to targetaddress (setatpositioning data).
B)Postion ing control is executed as based on the address prigin point address) assigned at
origin point return.
C) Shift direction is decided according to start address \& target address.

- start address < target address : position decided fowad
- start address > target address : position decided reverse
[Ex.]
\triangle If origin point return address is 1000 and \triangleright target address is 8000 , fomard travel valueis $7000(8000-1000)$.
\checkmark Setting in SN package

Setting at parameters	Setting at position data									
Oigh heturn Mathad Diection \subset formard of Bachward										
	$\begin{aligned} & \text { Shep } \\ & \mathrm{Na} . \end{aligned}$	Courd inater	$\begin{aligned} & \text { Oyer } \\ & \text { ride } \end{aligned}$	$\stackrel{O p}{M}$	$\begin{array}{\|l} \text { Invalid } \\ \text { / Nallid } \end{array}$	Op. Made	Addiceas	M Coda	Speed No.	$\begin{gathered} \text { Devil } \\ \left(\times 10_{n a s}\right) \end{gathered}$
Low Speed wa 50	0	sbs	ds	cont	inusid	einge	0	0	0	0

\triangleright Results of positioning

Remark

Control by absolute method (Absolute Coordinates) can be stated at the state that origin point has been decided. If started at the state that ongin point has not been decided, eroor 76 occurs. Aadiable operation modes are separate,
repeated, auto and continuous operation.

Chapter 6 Position Data For Positioning

6.2.2 Relative Coordinates (c ontrol by incremental method) A) Positioning is controlled at start address as much as target travel value. B) Shift direction is decided according totravel value sign.

[Ex.]
\square Iforigin point retum address is 5000 and D target address is -7000 , position is decided at -2000.
\checkmark Setting in SN package

\square Results of positioning

6.3 Override

Override of position data means speed override classified into allowable and prohibited.
If speed override is used in program, override shall be set to allowable at position data per step No.

- Avalable only a t constant staged operation pattern. If used at others" error 56 " occurs.
- Available operation modes are separate operation, repeated operation and autiooperation.
- The speed will be with acceleration stage and deccleration stage if changed by speed overide.
- Settingrangeis1 ~ 15 (setting unit: 10\%).
[Ex.] If speed data value is set to 2000 , the speed is 20 Kpps and if speed override is set to $15(150 \%)$, the speed is $20,000 \times 1.5=30,000$ (30 Kpps).
- If speed override is to be continuously used, the operation shall be as based on the speed value as set at speed data.
- Refer to 0.7.3 for the details on Overide.

Chapter 6 Position Data For Positioning

6.4 Opertion method

\rightarrow Operation method of position data includes continuous and complete only available for G3F - POPA and G4F - POPA.
continuous means that positioning operation is executed by present operation step No. and then by the next operation step No. set to valid at " 6.5 Invalid/Nalid".
complete means that positioning operation is executed by present operation step No. and then not executed by the next operation step No. regardless of 6.5 Invalid/valid'.

Remark

If positioning of operation step No. set to complete operation method is complete, operation step No. shall be changed by operation step No.assignmentifOS_ SMC.ising edge \uparrow] proio to the next stat command[POŠ_ AST:ising edge $\uparrow]$.
II stat command is used without operation step No change, error 119 occurs.

6.5 Invaliddvalid

- Invalid/valid is used to decide whether or not positioning operation is to be executed per operation step No. of position data.
\rightarrow If set to invalid, positioning operation is executed not by the applicable operation step No. but by the next operation step No.
- If set to valid, positioning operation is executed by the applicable operation step No..

6.6 Operation mode

- Operation modes of position data are classified into position control, speed control and speed control + position control according to control methods.

Control method	Operation mode
Position control	Single operation Repeated operation
	Auto- operation
	Continuous operation
Speed control	Constant operation
Speed + position control	Positioning constant operation

Remark

- Be careful that changing methods from speed control to position control differ according to positioningmodules when positioningconstant operation is used. 1)/n G3F-POPA, GAF-POPA \& GAF-POPB, speed control is changed to postion control by deeelerationstop[POŠ_STPisising edge \uparrow] and 2)/n G6F-POPA, changed by outer input signal oft speed position swiching input signal".

Accordingly, deceleration stop[POS_ STP:rising edge \uparrow] is regarded as a stop command in G6FPOPA with origin point undeexided
Refer to 3.2 Operation mode for the details.

6.7 Position address(Pulse)

Setting area of travel value of position data by address value.
Setting range is $-16,744,447 \sim 16,744,447$ (setting unit: Pulse).
Position address value is changeable in program by position teaching[POS $\zeta_{_}$TEA:rising edge \uparrow].

Chapter 6 Position Data For Positioning

6.8 M code

- M code function is wholly applied to all axes by M code mode set at positioning parameter and can be used for the program by number setting per operation step No. in the setting range.
- Setting range is $0 \sim 255$.

Remark

- How to suse M code in procgan

2) OnOIf state of M code operation can be checked by present operation stae' s bit information Read[Th bit of POS ζ SRD' s output parameter ST3].

- Refer to 5.4 for the detalls.

6.9 Speed No.

- It means the number of speed data set at speed data available per operation step No..

Settingrangeis 0 ~ 127.

- Speed data value of speed No. is changeable in program by speed teaching[POSY_VLT:rising edge \uparrow].

6.10 Dwell time(X 10 ms)

- assigned prior to the next positioning operation after one positioning operation is complete.
- Setting range is 0 ~ 999 (setting unit: X10ms). If setting dwell time value is 50 , actual dwell time is $50 \times 10 \mathrm{~ms}(500 \mathrm{~ms}$).
- In particular, if SERVO motor is used it is setting data of standing - by time until stable stop state is reached since actual SERVO motor may not have reached or may have exceeded the target position even though positioning module is at stop state.
- Operation state of the applicable axis of positioning module is kept "On" during dwell time operation, and will be "Off" with positioning complete signal "On"if dwell time elapsed.

Chapter 6 Position Data For Positioning

[Old package (POSITION)]
Speed data decides operation speed of position data with 128 setting types. Thus, 128 speed numbers as assigned can be used by setting speed at speed data.

- Setting range of speed data i $0 \sim 20,000$ (seting unit: X10pps).

If setting speed value is 5,000 , actual speed data is $5,000 \times 10 \mathrm{Opps}(50 \mathrm{Kpps})$.
-Speed data value of speed No. is changeable in program by speed teaching function block[POS亡_VLT:rising edge \uparrow].

Remark

Calion for speed dada seting
bias speed \leq speed data \leq speed inits

Chapter 7 Function Blocks

Chapter 7 Function Blocks

Function Blocks for positioning modules used in GMWIN are described.
Type of Function Blocks is as follows.

No	Class	G3F-POPA	G4F-POPA	G4F-POPB	G6F-POPA	Description	Remaks
1	For module infomation	POSP_CRD	POSP_CRD	POSB_CRD	POSP_CRD	Present operation state' s code information Read	7.2.1
2		POSP_SRD	POSP_SRD	POSB_SRD	POSP_SRD	Present operation state s bit information Read	7.2.2
3	$\begin{aligned} & \text { Autio- } \\ & \text { Operation } \end{aligned}$	POSP_AST	POSP_AST	POSB_AST	POSP_AST	Start	7.3.1
$\begin{aligned} & 4 \\ & 5 \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline \text { POSP_INT } \\ \text { POSP_ORG } \\ \hline \end{array}$	POSP_ORG	$\begin{aligned} & \hline \text { POSB_INT } \\ & \text { POSB_ORG } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { POSP_INT } \\ \text { POSP_ORG } \\ \hline \end{array}$	Linear interpolation start Origin point return operation	$\begin{aligned} & 7.3 .2 \\ & \text { 7.3.3 } \\ & \hline \end{aligned}$
6	$\begin{aligned} & \text { Manval } \\ & \text { Operaion } \end{aligned}$	POSP_INC	POSP_INC	POSB_INC	POSP_INC	Inching operation	7.4.1
7		POSP_JOG	POSP_JOG	POSB_JOG	POSP_JOG	JOG operation	7.4.2
8		POSP_RTP	POSP_RTP	POSB_RTP	POSP_RTP	Return to prior position to manual operation	7.4.3
9		POSP_MPG	.	POSB_MPG		Manual pulse generator operation allowable	7.4.4
10	Teading	POSP_TEA	POSP_TEA	POSB_TEA	POSP_TEA	Position teaching	7.5.1
11		POSP_VLT	POSP_VLT	POSB_VLT	POSP_VLT	Speed teaching	7.5.2
12	$\begin{gathered} \text { Sub } \\ \text { Operation } \end{gathered}$	POSP_MOF	POSP_MOF	POSB_MOF	POSP_MOF	M code off	7.6.1
13		POSP_VCG	POSP_VCG	POSB_VCG	POSP_VCG	Speed change	7.6.2
14		POSP_MM	POSP_NM	POPB_NM	POSP_NM	Continuous operation	7.6.3
15		POSP_OR	POSP_OR	POPB_OR	POSP_OR	Speed override	7.6.4
16		POSP_SMC	POSP_SMC	POPB_SMC	POSP_SMC	Setting operation step No.	7.6.5
17		POSP_STP*	POSP_STP*	POSB STP	POSP STP	Deceleration stop(*:only in V1.0)	7.6.6
18		POSP_TMP	POSP_TMP				
19	Eror	POSP_EMG	POSP_EMG	POSB_EMG	POSP_EMG	Internal emergency stop	7.7.1
20		POSP_OFF	POSP_OFF	POSB_OFF	POSP_OFF	Output-prohibited cancellation	7.7.2
21		POSP_RES	POSP_RES	POSB_RES	POSP_RES	Error reset	7.7.3
22	Others	POSP_FLT	POSP_FLT	POSB_FLT	POSP_FLT	Floating point set setting	7.8.1
23		POSP_PRE	POSP_PRE	POSB_PRE	POSP_PRE	Present position preset	7.8.2
24		-	-	-	POSP_PRM	Parameter change	7.8.3

7.1 Function Block registration for positioning module in GMWIN

Function Block can be registered as specified below while GMWIN is being executed.
Function Block registration is available only when the project is at open state.

- Col ant nad (Δ) to di cnl ava the cerepen hel own

■ For GWWN 3.1 or above (Ex. of G3F-POPA)

Chapter 7 Function Blocks

7.2 Function Block for module information Read

7.2.1 Code information Read at present operation state

(StausCodeRead G3F-POPA/G4F-POPA/G6F-POPA:POSP_CRD, G4F-POPB:POSB_CRD)
Present position address, operation speed, M code value and operation data No. of the setting axis can be read for monitoring or using as conditions in user program.

Function Block type	Class	Parame er	$\begin{aligned} & \text { Data } \\ & \text { type } \end{aligned}$	Description
	Input	REQ	BOOL	Request reaca of Function Block execution Function block executed if " $0 \rightarrow 1$ " (I evel det ect i on) with connect ed condi ti on to thi s area as conposed duri ing programexecuti on.
		BASE	USINT	Base position No. Seting area of base No. postioning module is equipped on Seting range :GM1 seeies(0~ 31), GM2 seres($0 \sim 7$), GM334 seeies($(0 \sim 3)$, GM6 series((0)
		SLOT	USINT	Slot postion No. Setting area of slot No. posiooning module is equipped on. Seting range: $0 \sim 7$
		AXIS	USINT	Assignment aea of axis to use If " 0 ", X-2xis operates If " 1 ",,- -axis operates
	Output	DONE	BOOL	State displaying area of FunctionBlock execation complete If Function Block execution complete without error, "1" is output as kept until the next execution starts. If error occurs, "O" is ouput.
		STAT	USINT	Error-state displaying area If error occurs during Function Block execution, error No. is displayed.
		CA	DINT	Present position address displayed.
		CV	UINT	Present operation speed displayed.
		MCD	USINT	Present M code value displayed.
		CDN	UINT	Present operaion data No. displayed.

Chapter 7 Function Blocks

72.2 Bit information Read atpresent operation state

(Status Bit Read G3FPOPA / G4F-POPA / G6FPOPA:POSP_SRD, G4F-POPB:POSB_SRD)
Present operation state of the setting axis can be read for detailed monitoring or using as conditions in user program.

Function Block type	Class	Paramet er	Data type	Description
$-\left[\begin{array}{lr} \text { POŠ_SRD } \\ - \text { REO } & \text { DONE } \\ - \text { BASE } & \text { STAT } \\ \text { SLOT } & \text { ST1 } \\ \text { AXIS } & \text { ST2 } \\ & \text { ST3 } \\ & \\ & \text { ST4 } \end{array}-\right.$	Input	REQ	BOOL	Request area of Function Block execation Function Block executed if " $0 \rightarrow 1$ "(I evel detection) with connected condition to this area as conposed during programexecution.
		BASE	USINT	```Base posion No. Seting area of base No. postioning module is equipped on Seting range :GM1 senies(0~ 31), GM2 sereies(0~ 7), GM314 series(0~ 3), GM6 series(0)```
		SLOT	USINT	Slot postion No. Seting area of slot No. postioning module is equipped on. Setting range: $0 \sim 7$
		AXIS	USINT	Assignment aea of axis to use If " 0 ", X-xxis operates If " 1 ", Y -2xis operates
	Output	DONE	BOOL	State displaying aeea of Funcion Block execution complete If Function Block execution complete without error, " 1 " is output as kept until the next execution stats. If error occurs, "0" is output.
		STAT	USINT	Eror-state displaying area If error occurs during Function Block execution, erro No. is displayed.
		ST1	$\begin{aligned} & \hline \text { BOOL } \\ & \text { [ARRAY } \end{aligned}$	
		ST2	BOOL [ARRAY]	
		ST3	$\begin{aligned} & \mathrm{BOOL} \\ & \text { [ARRAY] } \\ & \hline \end{aligned}$	
		ST4	BOOL [ARRAY]	
		ST5	$\begin{aligned} & \text { BOOL } \\ & \text { [ARRAY } \\ & \hline \end{aligned}$	
		ST6	BOOL [ARRAY]	

Chapter 7 Function Blocks

Remark

1) Contents of output parameters ST1 ~ ST6 in present operation state' s bit Read function block are important information surely to apply in program

BitNo.	ST1	ST2	ST3
[0]	In dwel\|(Bit:On)	Upper limit detectee((Bit:On)	Unused
[1]	In deceleration(Bi:On)	Lower limit detected (Bit:On)	Foward (Bit:Off),Reverse(Bit:On)
[2]	In constant(Bit:On)	Emergency stop detected (BitOn)	ZONE\#1(Bit:On)
[3]	In acceleration(Bit:On)	Pulse outprohibited(Bit:On)	ZONE\#2(Bit:On)
$\begin{aligned} & {[4]} \\ & {[5]} \\ & \hline \end{aligned}$	At stop state(Bit:On) In reuming to origin poin(Bit:On)	Inching complete(Bit:On) Postion teaching complete(Bit:On)	ZONEH3(Bi:On) Repeated operaion complete (Bit:On)
[6]	In positioning(Bit:On)	In JOG lowspeed operation(3i:On)	Positioning operation complete(BitOn)
[7]	In interpolaion operation(not for G4F-POPA)	In JOG high speed operation(Sition)	M code On(BitOn)
Bitlo.	ST4	ST5 (terminal signa)	ST6
[0]	In oigin point compensation(3it:On)	Speed position control svitching (only for G6F-POPA)	Unused
[1]	In backlash compensation(Bit:On)(not for G6F POPA)	Extemal upper limit signa(Bit:Off)	Eror
[2]	In next move(Bit:On)	Extemal lower limit signa(Bit:Of)	Postion passing
[3]	In speed overiding(BitOn)	Extemal near zero point signal.(BitOn)	In operation(Busy)
[4]	Unused	Extemal origin point signal.(Bit:On)	Positioning complete
[5]	In stopping as decelerated \& stop complete(Biton)	Unused	Oigin point return complete
[6]	Speed teaching complete(Bit:On) (valid only in GF POPAGAF POPA V1.0)	Unused	Oigign point undecided
[7]	Speed change completet (BitOn) (valid only in G3FPOPAGAF POPA V1.0)	Extemal emergency stop signal(Sit Off)	Unused

Chapter 7 Function Blocks

7.3 Function Block for auto- operation

7.3.1 Start

(Auto Start G3F-POPA / G4FPOPA / G6F-POPA:POSP_AST, G4FPOPB:POSB_AST)
Output parameter ACT will be " 1 " if one positioning is complete by operation start command of positioning module.

Function Block type	Class	Paramet er	$\begin{aligned} & \text { Data } \\ & \text { type } \end{aligned}$	Description
$\begin{cases}- \text { ROSQ } & \text { PNNF } \\ - \text { BASE } & \text { STAT } \\ \text { SLOT } & \text { ACT } \\ -\operatorname{AXIS} & \\ \hline\end{cases}$	Input	REQ	BOOL	Request area of Function Block execution at ining edge Function Block executed if " $0 \rightarrow 1$ "(rising edge) with connected condition to this area as composed during programexecution.
		BASE	USINT	$\begin{aligned} & \hline \text { Base position No. } \\ & \text { Seting area of base No. positioning module is equipped on } \\ & \text { Seting range :GM1 series(0~31), GM2 seeres(}(\sim 7) \text {, GM334 series(}(0 \sim 3) \text {, GM6 series }(0) \\ & \hline \end{aligned}$
		SLOT	USINT	Slot postion No. Seting area of slot No. positoning module is equipped on. Setting range: $0 \sim 7$
		AXIS	USINT	Assignment aea of axis to use If " 0 ", X-axis operates If " 1 ",Y-axis operates
	Output	DONE	BOOL	State displaying area of Funcion Block execution complete If Function Block execution complete without error, "1" is output, and if output parameter ACT is " 1 " with intemal processing of Funcion Block complete,", 0 " is output.
		STAT	USINT	Eror--state displaying area If eror occurs duning Function Block execution, eror No. is displayed.
		ACT	BOOL	Operation axis displaying area Positioning module changes output parameter DONE from"1" to "0" with "1" output after processing Function Block command.

Remark

1) Relation between output parameters, DONE and $A C T$
2) Caution for Function Blocks of auto-operation command used in program
(1) Available only when operation is at stop state.(Busy-Off state)
(2) Available operation modes are single operation, repeated operation, auto-operation, continuous operation, constant operation and positioning constant operation.
a) If auto-operation is used, continuous operation, constant operation and positioning constant operation are not available for the succeeding operation step No. to auto-operation.
b) If continuous operation is used, auto-operation, constant operation and positioning constant operation are not available for the succeeding operaton step No. to continuous operation.

Chapter 7 Function Blocks

7.3.2 Linear interpolation start

(Linear Interpolaion G3FPOPA / G6F-POPA:POSP_INT, G4FPOPB:POSB_INT)
Command for linear interpolation operation in positioning module for 2axes.

Function Block type	Class	Paramet er	Data type	Description

Remark

1) Caution for function blocks of linear interpolation operation command used in program
(1) Available only when operation is at stop state.(Busy-Off state)
(2) Available operation modes are interpolation operation, repeated operation and auto-operation.

Chapter 7 Function Blocks

7.3.3 Start to return to origin point

(Onign G3FPOPA / G4F-POPA / G6FPOPA:POSP_ORG, G4FPOPB:POSB_ORG)

Operation command to find the machine s origin point by origin point return-processing methods with direction, compensation, speed (high/low), address and dwell time set at origin point retur-parameters of each axis. If
complete signal of origin point return is turned On, origin point retur-operation of the machine is complete.

Function Block type	Class	Paramet er	$\begin{aligned} & \hline \text { Data } \\ & \text { type } \\ & \hline \end{aligned}$	Description
	Input	REQ	BOOL	Request area of Function Block execution at it sing edge Function Block executed if " $0 \rightarrow 1$ " (rising edge) with connected condition to this area as conposed during program execution.
		BASE	USINT	$\begin{aligned} & \text { Base position No. } \\ & \text { Seting area o base No. positioning module is equipped on } \\ & \text { Seting range :GM1 series(0~ 31), GM2 seeres(}(\sim 7) \text {, GM334 series(}(0 \sim 3) \text {, GM6 series }(0) \\ & \hline \end{aligned}$
		SLOT	USINT	$\begin{aligned} & \hline \text { Slot position No. } \\ & \text { Seting area of stot No. positioning module is equiped on. } \\ & \text { Setting range: } 0 \sim 7 \\ & \hline \end{aligned}$
		AXIS	USINT	Assignment area of axis to use If " 0 ", X-xxis operates If " 1 ", Y-axis operates
	Output	DONE	BOOL	State displaying area of Funcion Block execution complete If Function Block execution complete without error," "1" is output, and if output parameter ACT is " 1 " with intemal processing of Function Block complete," 0 " is output.
		STAT	USINT	Eror-state displaying area If eror occurs during Function Block execution, eror No. is displayed.
		ACT	BOOL	Operation axis displaying area Positioning module changes output parameter DONE from "1" to "0" with "1" output after processing Function Block command.

7.4 Function Block for manual operation

7.4.1 Inching operation

(Inching		G3FPOPA / G4F-POPA / G6F-POPA:POSP INC, G4F-POPB:POSB INC)		
Function Block type	Class	Paramet er	$\begin{aligned} & \text { Data } \\ & \text { type } \end{aligned}$	Description
	Input	REQ	BOOL	Request area of Function Block execuion at ising edge Function Block executed if " $0 \rightarrow 1$ " (rising edge) with connected condition to this area as conposed during programexecution.
		BASE	USINT	Base position No. Seting area of base No. positioning module is equipped on Seting range :GM1 series(0~31), GM2 series($0 \sim 7$), GM344 series($(0 \sim 3)$, GM6 series((0)
		SLOT	USINT	Slot postion No. Seting area of slot No. postioning module is equipped on. Setting range: $0 \sim 7$
		AXIS	USINT	Assignment aea of axis to use If " 0 ", X - -xxs operates If "1", Y-axis operates
		ROT	BOOL	Direcion assignment of inching operation If " 0 ", forward operation
		$\begin{aligned} & \hline \mathrm{INCH} \\ & \text { AMT } \\ & \hline \end{aligned}$	USINT	Travel value seting area in inching operaion Seting range : $1 \sim 99$ (UnitPulse)
	Output	DONE	BOOL	State displaying area of Funcion Block execution complete If Funcion Block execution complete without error, "1" is output, and if output parameter ACT is " 1 " with intemal processing of Funcion Block complete," 0 " is output.
		STAT	USINT	Error-state displaying area If error occurs during Function Block execution, eror No. is displayed.
		ACT	BOOL	Operation axis displaying area Positioning module changes output parameter DONE from " 1 " to "0" with "1" output after processing Function Block command.

Chapter 7 Function Blocks

7.4.2 JOG operation

(JOG G3F-POPA / G4FPOPA / G6FPOPA:POSP_JOG, G4FPOPB:POSB_JOG)
As a manual operation function for test, it is used to check system operation, wiring state and teaching position address, whose speed is classified into high and low as required.
Pulse is output by setting value if connection condition of input parameter REQ is ON, and is stopped if OFF.

Function Block type	Class	Paramet er	$\begin{aligned} & \text { Data } \\ & \text { type } \end{aligned}$	Description
$\left\{\begin{array}{cc} \text { POŠ_JOG } \\ - \text { REQ } & \text { DONE } \\ - \text { BASE } & \text { SATA } \\ \text { SLOT } & \\ - \text { AXIS } & \\ - \text { ROT } & \\ \text { HLL } & \\ \hline \end{array}\right.$	Input	REQ	BOOL	Request area $₫$ Function Block execution Function Block executed if " $0 \rightarrow 1$ "(Ievel detection) with connected condition to this area as conposed during programexecution.
		BASE	USINT	$\begin{aligned} & \hline \text { Base position No. } \\ & \text { Seting area of base No. positioning module is equipped on } \\ & \text { Seting range :GM1 seeies(0~ 31), GM2 series(}(\sim 7) \text {, GM334 series(}(0 \sim 3) \text {, GM6 seres(}(0) \\ & \hline \end{aligned}$
		SLOT	USINT	$\begin{aligned} & \text { Slot postion No. } \\ & \text { Seting area of slot No. posioioning module is equipped on. } \\ & \text { Setting range: } 0 \sim 7 \\ & \hline \end{aligned}$
		AXIS	USINT	Assignment aea of axis to use If " 0 ", X-2xis operates If "1", Y-2xis operates
		ROT	BOOL	Direction assignment of $J O G$ operation If "0", forward operation
		HL	BOOL	Speed assignment of JOG operation If" 0 ", Iowspeed operation (profile without accelerationdleceleration) If "1", high-speed operation (rorofle with accelerationdecceleraion)
	Output	DONE	BOOL	State displaying area of Funcion Block execution complete If Function Block execution complete without error, " 1 " is output as kep t until the next execution starts. If error occurs," "0" is output with operation stopped.
		STAT	USINT	Eror-state displaying area If error occurs duning Function Block execution, error No. is displayed.

Remark
In Function Blocks for JOG start command, input parameter REQ is operated via the level. It means JOG operation state If connection condition of REQ is On, and JOG output stopped If Off.

Chapter 7 Function Blocks

7.4.3 Return to prior position to manual operation

(Retum To Postion G3F-POPAGAFPOPPA/ G6FPOPA:POSP_RTP, GAF-POPB:POSB_RTP)
Command used to return to prior position to manual operation when the position has been changed by manual operation after positioning.

- Manual operation means inching operation, JOG operation or manual pulse generator operation.

Function Block type	Class	Paramet er	$\begin{aligned} & \text { Data } \\ & \text { type } \end{aligned}$	Description
$\left\{\begin{array}{cc} \text { POŠ_RTP } \\ \text { REQ } & \text { DONE } \\ - \text { BAEE } & \text { STAT } \\ - \text { SOOT } & \text { ACTT } \\ - \text { AXS } & \end{array}\right]$	Input	REQ	BOOL	Request dea of funcion Block exection at tising elve Function Block executed if " $0 \rightarrow \mathfrak{1}$ "(rising edge) with connected condition to thi s area as connosed during programexecution.
		BASE	USINT	Base posion No. Setting area of base No. positioning module is equipped on Seting range :GM1 seeres(0~31), GM2 seeies(0 ~ 7), GM334 series(0~ 3), GM6 series(0)
		SLOT	USINT	Slot postion No. Seting area of sot No. positioning moode is is equiped on. Seting arane: 0 ~ 7
		AXIS	USINT	Assigmenta aea of axis to use If "0", X-xxis operates If " 1 ", Y -axis operates
	Output	DONE	BOOL	State displaying area of Funcion Block execution complete If Function Block execution complete without error, "1" is output, and if output parameter ACT is " 1 " with intemal processing of Function Block complete," 0 " is ouput.
		STAT	USINT	Eror-state displaying area If error occurs during Funcion Block execution, error No. is displayed.
		ACT	B0OL	Operation axis displaying area Positioning module changes output parameter DONE from " 1 " to "0" with " 1 " output atter processing Function Block command.

7.4.4 Operation approval of manual pulse generator

(Manual Pulse Generator G3FPOPA :POSP_MPG, G4F-POPB:POSB_MPG)
This is used to command position-decision module to be in preparation state of operation performed with outer-equipped manual pulse generator(MPG).

Function Block type	Class	Paramet er	$\begin{aligned} & \text { Data } \\ & \text { type } \end{aligned}$	Description
$\left\{\begin{array}{ll} \text { POSŠ_MPG } \\ \text { REO } & \text { DONE } \\ \text { BASE } & \text { SATA } \\ \text { SLOT } & \\ -A X I S & \\ \hline \end{array}\right]$	Input	REQ	BOOL	Request area of Function Block execution at rising edge Function Block executed if " $0 \rightarrow \mathbb{1}$ "(rising edge) with connected condition to thi s area as composed during programexecution.
		BASE	USINT	Base posion No. Seting area of base No. postioning module is equipped on Seting range :GM1 series(0~ 31), GM2 series(0~ 7), GM314 series(0~ 3), GM6 series((0)
		SLOT	USINT	Slot postion No. Seting area of slot No. postioning module is equipped on. Seting range: $0 \sim 7$
		AXIS	USINT	Assignment area of axis to use If "0", X-axis operates If "1", Y-axis operates
	Output	DONE	BOOL	State displaying area of Funcion Block exection complete If Function Block execution complete without error, " 1 " is output as kept until the next execution stats. If error occurs, "0" is oupput with operation stopped
		STAT	USINT	Eror-state displaying area If eroro occurs during Function Block execution, erro No. is displayed.

Chapter 7 Function Blocks

7.5 Teaching Function Block

7.5.1 Position Teaching

(Teaching G3FPOPA/ G4F-POPA/G6F-POPA:POSP_TEA, G4FPOPB:POSB_TEA)
This is used for user to set random address value to specific operation step No.

Function Block type	Class	Paramet er	Data type	Description

Remark

Noteil I haut paameter MOOE Can be used ony in G6FPOPA.

- In G3FPPPAA ard GAF-PPPA, Position Teaching conmmand is avalable ony y a o oigin poinit decided.
- When Position Teaching Function Block has been executed, the operation step No. set at input parameter ST_SET shall be the same as the rext toperaion step No. to be perfommed.
If input parameter ST_SET setting value differs from the operation step No. to be performed, the operation step No. shall be changed to be ideniciad by poeazion step No. charge command(POSS_S_SMC) Funcion Block proi to the next peraion.
- Diffeeneses beween RAM Posion Teading \& ROM Position Teacting
- In RAM Position Teaching, address value is not saved at position data, and the operation if CPU module is powered Offlon will be execated by pior a dcliess value.
- In ROM Position Teaching, address value is saved at position data, and the operation even if CPU module is powered Off/On will be maitinad.

Chapter 7 Function Blocks

7.5.2 Speed Teaching

> (Velocity G3FPOPA / G4FPOPA / G6FPOPA:POSP_VLT, G4F-POPB:POSB_VLT)

This is used for user to set random speed value to specific speed data No.

Function Block type	Class	Paramet er	Data type	Description

Remark

[Note1] Input parameter MODE can be used only in G6F-POPA.

Chapter 7 Function Blocks

7.6 Auxiliary operation

7.6.1 M code off

(M Code Off G3F-POPAIG4F-POPAGG6F-POPA:POSP_MOF, G4F-POPB:POSB_MOF)
This is used to turn M code signal Off when the signal is O n if M code has been set to With or After mode at parameters of each axis.

Function Block type	Class	Paramet er	Data type	Description

7.6.2 Speed change

(Velocity Change G3F-POPA I GAFPPPA / G6FPOPA:POSP_ VCG, GAF-POPB:POSB_VCG
It can be used to change operation speed at constant speed during operation.

Function Block type	Class	Paramet er	Data type	Description

Chapter 7 Function Blocks

Remark

1) Caution for Function Blocks of speed change command used in program
(1) Available only at constant speed during operation.(Busy-On state)
(2) Available operation modes are single operation, repeated operation and auto-operation, with JOG high-speed and origin point return high-speed also usable.
However, available for constart operation mode in G4F-POPB \& G6F-POPA

7.6.3 Continuous operation

(Next Move G3FPOPA/GAFPOPA/G6FPOPA:POSP_NM, GAFPPPB:POSB_NM)
This is used for continuous operation from present operation step No. to the next operation step No. at a random point of time without stop if continuous operation mode is applied.

Function Block type	Class	Paramet er	Data type	Description

Remark

1) Caution for Function Blocks of continuous operation command used in program
(1) Available only at constant speed during operation.(Busy-On state)
(2) Available only for continuous operation mode.
(3) Continuous command operation by absolute method differs from that by relative method in position data setting.

Chapter 7 Function Blocks

7.6.4 Speed override

(Override G3F-POPA / G4FPOPA / G6FPOPA:POSP_OR, G4F-POPB:POSB_OR)
This is used for user to execute operation with speed value as changed at constant speed.

Function Block type	Class	Paramet er	$\begin{aligned} & \text { Data } \\ & \text { type } \end{aligned}$	Description
$\left\{\begin{array}{ll} -\quad \text { POŠ_OR } \\ - \text { REQ } & \text { DONE } \\ - \text { BASE } & \text { STAT } \\ - \text { SLOT } & \text { ACT } \\ - \text { AXIS } & \\ \text { OVR } & \\ \hline \end{array}\right]$	Input	REQ	BOOL	Request area of Function Block execution at rising edge Function Block executed if " $0 \rightarrow 1$ "(rising edge) with connected condition to this area as composed during programexecution.
		BASE	USINT	
		SLOT	USINT	$\begin{aligned} & \hline \text { Slot postion No. } \\ & \text { Setting area of slot No. positioning module is equipped on. } \\ & \text { Setting range: } 0 \sim 7 \\ & \hline \end{aligned}$
		AXIS	USINT	Assignment area of axis to use If " " 0 ", X-axis operates If "1", Y-axis operates
		OVR	USINT	Seting area of present operation speed to new value Seting range:1~15 (Unit: 10\%) Ex.) If setting value is 12 , operation speed value ater changed = operation speed value before changed $\times 120 \%$
	output	DONE	BOOL	State displaying area of Funcion Block execction complete If Function Block execution complete without eror, "1" is output, and if output parameter ACT is " 1 "with intemal processing of Function Block complete," 0 " is output.
		STAT ACT	USINT	Eror-state displaying area If error occurs during Function Block execuion, error No. is displayed. Operation axis displaying area Positioning module changes output parameter DONE from " 1 " to " 0 " with "1" output atter processing Function Block command.

Remark

1) Caution for Function Blocks of speed override command used in program
(1) Available only at constant speedduring operation.(Busy-On state)

7.6.5 Assignment of operation step No.

(Set Move Data NumberChange G3FPOPAIGAFPOPAG6F-POPA:POSP_SMC, GAFPOPB:POSB_SMC)
It is used to change operation step No. to be performed by the next command.

Function Block ype	Class	Paramet er	$\begin{aligned} & \text { Data } \\ & \text { type } \end{aligned}$	Description
	Input	REQ	BOOL	Request area of Function Block execation at rising edge Function Block executed if " $0 \rightarrow 1$ "(rising edge) with connected condition to this area as composed during programexecution.
		BASE	USINT	Base position No. \quad Seting area o base No. positioning module is equipped on Setting range :GM1 series($0 \sim 31$), GM2 seeies (~ 7), GM334 series $(0 \sim 3)$, GM6 series (0)
		SLOT	USINT	$\begin{aligned} & \hline \text { Slot position No. } \\ & \text { Seting area of slot No. positioning modue is equipped on. } \\ & \text { Setting range: } 0 \sim 7 \\ & \hline \end{aligned}$
		AXIS	USINT	Assignment aee of axis to use If " " ", X-xxis operates If "1", Y-axis operates
		$\begin{aligned} & \hline \text { ST_S } \\ & \text { ET } \\ & \hline \end{aligned}$	UINT	Seting area of operation step No. to be peformed by stat command Seting range: $0 \sim 20$
	Output	DONE	BOOL	State displaying area of Funcion Block execution complete If Function Block execution complete without tor, "1" is output, and if output parameter $A C T$ is " 1 " with intemal processing of Function Block complete," 0 " is output.
		STAT	USINT	Eror-state displaying area If eroro occurs during Function Block execution, error No. is displayed.
		ACT	BOOL	Operation axis displaying area Positioning module changes output parameter DONE from " 1 " to "0" with "1" output after processing Function Block command.

Chapter 7 Function Blocks

Remark

1) Caution for function blocks of operation step No. change command used in program
(1) Available only at operation stop state.(Busy-Off state)
(2) Operation step No. is changeable by function block of succeeding operation step No. change command to repeated operation in G3F-POPA, G4F-POPA \& G4F-POPB, but not changeable in S/W package.

7.6.6 Deceleration stop

(Temporary G3F-POPA / G4FPOPA:POSP_TMP)
(Stop G3FPOPA / G4F-POPA / G6FPOPA :POSP_STP, G4FPOPB:POSB_STP)
It is used to temporarily stop operation of positioning module as decelerated.

Function Block ype	Class	Paramet er	$\begin{aligned} & \text { Data } \\ & \text { type } \end{aligned}$	Description
$\begin{cases}\text { POSS_STP } \\ \text { REQ } & \text { DONE } \\ \text { BASE } & \text { STAT } \\ \text { SLOT } & \text { STAT } \\ \text { AXIS } & \end{cases}$	Input	REQ	BOOL	Request area of Function Block execution at rising edge Function Block executed if " $0 \rightarrow 1$ " (rising edge) with connected condition to this area as conposed during programexecution.
		BASE	USINT	Base postion No. Seting area of base No. postioning module is equipped on Seting range :GM1 seeies(0~31), GM2 series($0 \sim 7$), GM334 series($(0 \sim 3)$, GM6 series((0)
		SLOT	USINT	Slot postion No. Seting area of slot No. positioning module is equiped on. Setting range: $0 \sim 7$
$\begin{cases}{\left[\begin{array}{cc} \text { POS"_TMP } \\ \text { REQ } & \text { DONE } \\ \text { BASE } & \text { STAT } \\ \text { SLIT } & \text { STAT } \\ \text { AXIS } & \\ \hline \end{array}\right]}\end{cases}$		AXIS	USINT	Assignment area of axis to use If "0", X-axis operates If "1", Y-axis operates
	Output	DONE	BOOL	State displaying area of Function Block exection complete If Function Block execution complete without error, "1" is output, and if ouput parameter ACT is " 1 " with intemal processing of Funcion Block complete," 0 " is output.
		$\begin{array}{r} \hline \text { STAT } \\ \quad X \\ \hline \end{array}$	USINT	X-axis eroor informaioon displayed
		$\begin{array}{r} \hline \text { STAT } \\ \quad \text { Y } \\ \text { ACT } \end{array}$	USINT BOOL	Y-axis error information displayed Operation axis displaying area Positioning module changes output parameter DONE from"1" to "0" with "1" output after processing Function Block command.

Remark

1) Caution for Function Blocks of stop command used in program
(1) Availlle at operation stop state during acceleration, oonstant and deceleration.(Busy-Off state)
(2) Function Block POSP_STP of G3FPOPA and G4F-POPA can be used only in ROM V1.0.

Chapter 7 Function Blocks

7.7 Function Block for error processing

7.7.1 Internal emergency stop

(Emergency G3F-POPA /G4FPPPA/ G6FPOPA:POSP_EMG, G4FPOPPB:POSB_EMG
It is used to promptly stop operation in case of emergency.
Since switched over to output-prohibited and origin point-undecided state if once
stopped, cancel output-prohibited and re-decide origin point to re-start.

Function Block type	Class	Paramet er	Data type	Description

7.7.2 Cancellation of output prohibition

(Pulse Out Inhibit,Off G3FPOPAIG4FPPPA/G6FPOPAPOSP_OFF, GAFPOPB:POSB_OFF
Command to cancel pulse-out prohibited state by external emergency stop, upper/lower limit detection, etc.

Function Block type	Class	Paramet er	Data type	Description

Chapter 7 Function Blocks

7.7.3 Error reset

(Reset G3FPOPA / G4FPOPA / G6F-POPA:POSP_RES, G4FPOPB:POSB_RS日
It is used to reset error if occurred during operation or by exceeding parameter setting range.

Function Block type	Class	Paramet er	$\begin{aligned} & \text { Data } \\ & \text { type } \end{aligned}$	Description
$\left[\begin{array}{cc} \text { POSŞ_RES } \\ \text { REQ } & \text { DONE } \\ \text { BASE } & \text { STAT } \\ \text { SLOT } & \\ \text { AXIS } & \\ \hline \end{array}\right]$	Input	REQ	BOOL	Request area of Function Block execution at ising edge Function Block executed if " $0 \rightarrow 1$ " (rising edge) with connected condition to this area as conposed during programexecution.
		BASE	USINT	Base postion No. Seting area of base No. postioning module is equipped on Seting range :GM1 seeies(0~31), GM2 series($0 \sim 7$), GM334 series($(0 \sim 3)$, GM6 series((0)
		SLOT	USINT	Slot postion No. Seting area of slot No. postioning module is equipped on. Setting range: $0 \sim 7$
		AXIS	USINT	Assignment area of axis to use If " 0 ", X-axis operates If "1", Y-axis operates
	Output	DONE	BOOL	State displaying area of Function Block exection complete If Function Block execution complete without error, "1" is output as kept until the next execution stats. If error occurs, "0" is oupput with operation stopped
		STAT	USINT	Erro--state displaying area If error occurs during Funcion Block execution, error No. is displayed.

Chapter 7 Function Blocks

7.8 Other Function Bblock

7.8.1 Floating point set setting

(Floating, Point Set G3F-POPA/ G4FPOPA/ G6F-POPA:POSP FLT, G4F-POPB:POSB FLT)
It is a command used to set present position to origin point compulsorily without origin point return-operation. The assigned address value to origin point return address will be the present position.

Function Block type	Class	Paramet er	$\begin{aligned} & \text { Data } \\ & \text { type } \end{aligned}$	Description
$\left\{\begin{array}{ll} \text { POSS_RLT } \\ \text { REQ } & \text { DONE } \\ \text { BASE } & \text { STAT } \\ \text { SLOT } & \text { ACT } \\ \text { AXIS } & \\ \hline \end{array}\right]$	Input	REQ	BOOL	Request area of Function Block execuion at rising edge Function Block executed if " $0 \rightarrow 1$ "(rising edge) with connected condition to this area as composed during program execution.
		BASE	USINT	$\begin{aligned} & \text { Base position No. } \\ & \text { Seting area of base No. positioning module is equipped on } \\ & \text { Seting range :GM1 seeies(0~ 31), GM2 seeres(}(\sim 7), G M 314 \text { series(}(0 \sim 3), G M 6 \text { series }(0) \\ & \hline \end{aligned}$
		SLOT	USINT	Slot postion No. Seting area of slot No. posiooning module is equipped on. Setting range: $0 \sim 7$
		AXIS	USINT	Assignment area of axis to use If " 0 ", X-axis operates If " 1 ", 7 -axis operates
	Output	DONE STAT	\|BOOL USINT	State displaying area of Funcion Block execution complete If Funcion Block execution complete without error, "1" is output, and if ouput parameter ACT is " 1 " with intemal processing of Function Block complete," 0 " is output. Eror-state displaying area If error occurs during Function Block execution, error No. is displayed.
		ACT	BOOL	Operation axis displaying area Positioning module changes output parameter DONE from"1" to "0" with "1" output after processing Function Block command.

Remark

1) Caution for Function Blocks of floating point set setting command used is program
(1) Avialable only at operation stop state.(Busy-Off state)

7.8.2 Present position Preset

(Preset G3FPOPA / G4FPOPA / G6F-POPA:POSP_PRE, G4FPOPB:POSB_PRE)
It is a command used to change present position to random position.

Function Block type	Class	Paramet er	$\begin{aligned} & \text { Data } \\ & \text { type } \end{aligned}$	Description
	Input	REQ	BOOL	Request area of Function Block execution at ising edge Function Block executed if " $0 \rightarrow 1$ "(rising edge) with connected condition to this area as conposed during programexecution.
		BASE	USINT	
		SLOT AXIS	USINT USINT	Slot postion No. Seting area of slot No. posiooning module is equipped on. Setting range: $0 \sim 7$ Assignment area of axis to use If " 0 ", X-2xis operates If "1", Y-axis operates
		$\begin{aligned} & \text { PRES } \\ & \text { ET } \\ & \hline \end{aligned}$	DINT	Area used to change present position Setting range : $-16,74,447 \sim 16,74,447$
	Output	DONE	BOOL	State displaying area of Funcion Block execution complete If Function Block execution complete without eror, "1" is output, and if oupput parameter ACT is " 1 " with intemal processing of Function Block complete," " " is ouput.
		STAT	USINT	Eror-stated displaying area If eror occurs duning Function Block execution, eror No. is displayed.
		ACT	BOOL	Operation axis displaying area Positioning module changes output parameter DONE from "1" to "0" with "1" output after processing Function Block command.

Remark

1) Caution for Function Block of preset command used in program
(1) Available only at operation stop state.(Busy-Off state)

Chapter 7 Function Blocks

7.8.3 Parameter change

(Parameter Wite G3F-PDPA / GAFPOPA / G6FPPPA:POSP_PRM, GAF-POPB:POSB PRM
Command used to change acceleration time, deceleration time, JOG high-speed, origin point return high-
speed and M code mode at parameters during operation.

Function Block type	Class	Paramet er	Data type	Description

Remark

1) Caution for Function Block of parameter change used in program
(1) Available only at operation stop state.(Busy-Of state)

Chapter 7 Function Blocks

7.9 Error codes in Function Block

Error type displayed on output parameter STAT and actions to take against will be described.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Err. oode} \& \multirow[b]{2}{*}{Description} \& \multicolumn{4}{|c|}{Pulseouttype} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Positioning \\
module \\
operation \\
status
\end{tabular}} \& \multirow[b]{2}{*}{Actions} \\
\hline \& \& \[
\begin{aligned}
\& \text { GFF } \\
\& \text { POPA }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { GFF. } \\
\& \text { POPA }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { GAF- } \\
\& \text { POPB }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { GGF } \\
\& \text { POPA }
\end{aligned}
\] \& \& \\
\hline 0 \& In normal operation \& 0 \& 0 \& 0 \& 0 \& \& \\
\hline 1 \& Base position No. exceeded oversetting range \& 0 \& 0 \& 0 \& 0 \& \& Set base position within setting range \\
\hline 2 \& HW error on applicable base \& 0 \& 0 \& 0 \& 0 \& \& Request base AS \\
\hline 3 \& Slot position No . exceeded over setting range \& 0 \& 0 \& 0 \& 0 \& \& Set slot position within setting range \\
\hline 4 \& Applicable slot not equipped \& 0 \& 0 \& 0 \& 0 \& \& Install positioning module on the applicable slot \\
\hline 5 \& Different module name of applicable slot \& 0 \& 0 \& 0 \& 0 \& \& Install positioning module on the applicable slot \\
\hline 6 \& Setting axis No. exceeded over setting range \& 0 \& 0 \& 0 \& 0 \& \& Set correct axis No. of positioning module \\
\hline 7 \& Command given with CPU module at STOP state \& 0 \& 0 \& 0 \& 0 \& \& Change CPU module states from STOP to RUN \\
\hline 8 \& Commorused RAMerror \& 0 \& 0 \& 0 \& 0 \& \& A/S request \\
\hline 9 \& Function Block command unavailable to execute due to module in/at operation/stop \& 0 \& 0 \& 0 \& 0 \& \& Set correct command execution conditions \\
\hline 10 \& New command Function Block executed at the state that pior command is not complete \& 0 \& 0 \& 0 \& 0 \& \& \begin{tabular}{l}
Program change to execute new command after \\
prior command is complete
\end{tabular} \\
\hline 11 \& Setting aux. input value exceeded overthe range \& 0 \& 0 \& 0 \& 0 \& \& To be in setting range \\
\hline 13 \& Stop related command or emergency stop input while Function Blockis executed \& \& \& \& \& \& \begin{tabular}{l}
1. Restetro \\
2. Cancolouputracoibited
\end{tabular} \\
\hline 14 \& Continuous operation or speed overide command inut at other states than constant stage in autooperation \& 0 \& 0 \& 0 \& 0 \& \& Continuous operation or speed override is available only at constant stage \\
\hline 15 \& Command given with module origin point undecided \& 0 \& 0 \& 0 \& 0 \& \& Start command after origin point decided \\
\hline \[
\begin{aligned}
\& 17 \\
\& 18 \\
\& \hline
\end{aligned}
\] \& H/Weroro pposibining modike Wathologetro \& \[
\begin{aligned}
\& 0 \\
\& 0 \\
\& \hline
\end{aligned}
\] \& 0
0 \& 0
0 \& 0
0 \& \& \\
\hline 19 \& mermenoy inetroe erio \& 0 \& 0 \& 0 \& 0 \& \& Cance error ipureed Ofion \\
\hline 20 \& Exernal emecrencssiopiput \& 0 \& 0 \& 0 \& 0 \& \begin{tabular}{l}
Output- \\
pochibied, \\
Start.point \\
undecinded
\end{tabular} \& \begin{tabular}{l}
1 Renorocasse de exemal energency stop \\
2 Canod apat-prochitied \\
3. Ppeate ater oign poritrececicided
\end{tabular} \\
\hline 21 \& Itemal emergenos stoiput \& 0 \& 0 \& 0 \& 0 \& \[
\begin{aligned}
\& \text { Output- } \\
\& \text { pucibiked, } \\
\& \text { Start.point } \\
\& \text { undecided } \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{l}
1 Remoe casse of iternd energenorystop \\
2 Canod atatut-pochitited \\
3. Operate alter rigin poirtrececiced
\end{tabular} \\
\hline 22 \& \begin{tabular}{l}
Exemallowerlinitsygd inout \\
Exemalupperinitsygd input
\end{tabular} \& \begin{tabular}{l}
\[
0
\] \\
0
\end{tabular} \& \begin{tabular}{l}
\[
0
\] \\
0
\end{tabular} \& \begin{tabular}{l}
\[
0
\] \\
0
\end{tabular} \& 0

0 \& \[
$$
\begin{aligned}
& \text { Output- } \\
& \text { poribitied, } \\
& \text { Start.point } \\
& \text { undecided } \\
& \text { Output- } \\
& \text { puchibied, } \\
& \text { Start.point } \\
& \text { undecided } \\
& \hline
\end{aligned}
$$

\] \& | 1 Renorecase de eror |
| :--- |
| 2 Pefiom JOG peadorn tonad upper int |
| 3 Operate ater oing poritrececided |
| 1 Renorecase detor |
| 2 Peftrm JOG opection toward bue int |
| 3 Operate ater oign poritrececided |

\hline 24 \& \& 0 \& 0 \& 0 \& 0 \& | Output- |
| :--- |
| porbitied, |
| Start.point |
| undecidad | \& | 1. Change s/w lower limit address range set at parmeres |
| :--- |
| 2. Operateafer oign poitrededided |

\hline 25 \& Presert \& 0 \& 0 \& 0 \& 0 \& \[
$$
\begin{aligned}
& \text { Output- } \\
& \text { pocibitied, } \\
& \text { Start.point } \\
& \text { undecided } \\
& \hline
\end{aligned}
$$

\] \& | 1. Change s/w upper limit address range set at parmextes |
| :--- |
| 2. Opeateaterougn poritededided |

\hline 36 \& Next operation mode is incorrect in auto-operation or continuous perafinmmoce \& 0 \& 0 \& 0 \& 0 \& No operation at stopstate \& Donotereute netocoeraion step durng poaraion.

\hline 37 \& Interpolation operation command input in continuous, constant, and posioring corstatitoperaionnmide \& 0 \& 0 \& 0 \& 0 \& Uncranged \& | Interpolation operation is available only at single, |
| :--- |
| reperad, |
| andabmmodes |

\hline
\end{tabular}

Chapter 7 Function Blocks

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 40
45 \& \begin{tabular}{l}
Satocommand unaadabe aM ocke ON sade \\
Speed/position control switching unavailable in acceleration of positioning anssatitperaion mode
\end{tabular} \& \(x\)

x \& x

x \& x

x \& 0

0 \& \begin{tabular}{l}
Noopeation

Present

operation state

uncramed

 \&

1. Tum MaxdeOfand

2. stat pecaion

Chancespeedposion comriobsuiding fom amederaiontoonstatt
\end{tabular}

\hline \[
$$
\begin{gathered}
46 \\
\text { (atee1) }
\end{gathered}
$$

\] \& EOM stop or positioning stop command input in constant, positioning anstatitpearionmode \& X \& Δ \& X \& X \& | Present |
| :--- |
| peradon sade |
| unclanged | \&

\hline 47 \& \& X \& 0 \& x \& x \& | Present |
| :--- |
| aparaionsste |
| undaraged | \&

\hline 48 \& Stop command input while return(RTP) command to prior position to manul peraimis serecuted \& 0 \& 0 \& 0 \& 0 \& | Present |
| :--- |
| gpeaion sade |
| undranged | \& | |
| :--- |
| processed as an error if return command to prior pacion |
| tomanual oneramis exeruted. |

\hline 49 \& stop command input during dwell time processing or origin point ampersaion \& 0 \& 0 \& 0 \& 0 \& | Present |
| :--- |
| greationssale unchanged | \& Pocyan draxerenected becalsestrucommad is unavabbe duringdvel inne processingorcrigin ponitcompersestón

\hline 56 \& Continuous operationNM), trans. operation($O R$), speed change command input at other states than constant stage during operation by statommand \& 0 \& 0 \& 0 \& 0 \& | Present |
| :--- |
| operaion sade |
| undaraged | \& Pioyan dargeneecled becarse oxrinuus quarionMW, tares qearain(ORS, speed dange command reany adakle atconstart saxe

\hline 57 \& Continuous operation(NM) or trans. operation (OR) command input in constant or positioning constant operation mode. Or speed change command input in continuous, constant or positioning constant operation mode \& 0 \& 0 \& 0 \& 0 \& | Present |
| :--- |
| geration sade |
| undramed | \& | 1 Eror resest |
| :--- |
| 2. Continuous operation(NM) \& trans. operation(OR) unavailable in constant, positioning constant operafornme |
| 3.Speedchange unavailable in continuous, constant andpositiong onssatt peadionmode |
| 4. Monflypryam |

\hline 58 \& Continuous operation(NM) command input in other operation modes than confinuous oparionnmode \& 0 \& 0 \& 0 \& 0 \& | Present |
| :--- |
| gacaion sate |
| undaryed | \& | 1. Eroreseet |
| :--- |
| 2. Continuous operation(NM) is available only in arrinusus peation mode |
| 3. Motiy poyram (paraion mode) |

\hline 59 \& Override and continuous operation command unavailable in other states thaninoperámby statommad \& 0 \& 0 \& 0 \& 0 \& | Present |
| :--- |
| aperabon sade |
| undaroged | \& 1 Eroresest

\hline ∞ \& Override command input in operation step-executed set to overridepobhtied \& 0 \& 0 \& 0 \& 0 \& Present peration sade unclarged \& | 1. Eroreest |
| :--- |
| 2. Charge to aerinde abvalle sta |

\hline 61 \& Continuous operation(NM) command unavailable in continuous operation whose drexion is tobe chanod \& 0 \& 0 \& 0 \& 0 \& | Present |
| :--- |
| aperabon sade |
| undaraged | \& 1 Eroresest

\hline 66 \& | No retcoperion data to operexe astat command |
| :--- |
| Data No. range exceeded at Position Teaching and Speed Teaching armand | \& 0 \& 0 \& 0 \& 0 \& Nopoeraim \& | 1. Eroresest |
| :--- |
| 2. OperionstepnoChange |

\hline 67 \& \& 0 \& 0 \& 0 \& 0 \& | Present |
| :--- |
| peradion sade |
| uncharyed | \& | 1. Eroresest |
| :--- |
| 2. To be in setting range |

\hline 68 \& \& 0 \& 0 \& 0 \& 0 \& №pocraion \& 1 Tobe inicting stingarace

\hline 69 \& Setting position address exceeded over s/w upper limit or s/w lower limit rangeatpesearposionn pesestormand \& 0 \& 0 \& 0 \& 0 \& | Output- |
| :--- |
| pochibiced, |
| Start.point |
| undeded | \& | 1. Eroresest |
| :--- |
| 2. Move to operation available area by JOG or menuloperefion andthen pertomrestat |

\hline 70 \& Position data setting value of positioning constant operation mode is too small \& X \& X \& X \& 0 \& Noppeadion \& 1 Chancestinguale of pssion dxa a ssped

\hline 76 \& | Start command of Absolute Coordinates operation data unavailable at oiginn point |
| :--- |
| undecided state | \& 0 \& 0 \& 0 \& 0 \& Noposeram \& Satatereroign pointceciced

\hline π \& Posion Teachingammadinputaoiginpinitusceicesdstate \& 0 \& 0 \& 0 \& x \& | Available after |
| :--- |
| start. point |
| kexiked | \& | 1. Eroresed |
| :--- |
| 2. Position Teaching command executed after origin point decided |

\hline 78 \& Teadingmode vale inndas assigred \& X \& X \& X \& 0 \& №pocaion \& To be in setting range

\hline ∞ \& \& 0 \& 0 \& 0 \& 0 \& No oceation \& Clamesespedvalues

\hline
\end{tabular}

Chapter 7 Function Blocks

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 87 \& \begin{tabular}{l}
Origin point return speed exceeded over allowable range(bias speet-speod inis), \\
Origin point return low-speed set higher than origin point return high speed
\end{tabular} \& 0 \& 0 \& 0 \& 0 \& No oparaion \& Chargespeedvades \\
\hline 88 \& Minor axis speed calculated by linear interpolation exceeded over alonade rame \& 0 \& X \& 0 \& 0 \& No oparaion \& Chancespedvaluegerated bymina axis \\
\hline 89 \& \& 0 \& 0 \& 0 \& 0 \& No operation if detected before querion \& Stap pereminidetectedduringoerían \\
\hline 9 \& Command inutatututrohitied state \& 0 \& 0 \& 0 \& 0 \& Nooperaion \& Canol atupurdibed and pectomiestat \\
\hline 97 \& Commad inut ding pecerion(Bus) \& 0 \& 0 \& 0 \& 0 \& \begin{tabular}{l}
Present \\
qperaionstade \\
undaroged
\end{tabular} \& Add protection circuit against execution of the other ammandsdring cearion in poyan \\
\hline \begin{tabular}{l}
98 \\
99
\end{tabular} \& \begin{tabular}{l}
Start, origin point return or interpolation operation command input at PLCstop state \\

\end{tabular} \& 0

\times \& 0 \& 0

\times \& x

0 \& \begin{tabular}{l}
Nopperaion

Nooperaion

 \&

Change CPU module state from STOP to RUN and petomirestat

Execute inching command while operation of the other axis isastap
\end{tabular}

\hline 106 \& \& 0 \& 0 \& 0 \& 0 \& Nooceraion \&

\hline $$
\begin{gathered}
116 \\
\text { (nte2) }
\end{gathered}
$$ \& \& 0 \& X \& 0 \& 0 \& \&

\hline $$
\begin{gathered}
117 \\
\text { (nbe 1) }
\end{gathered}
$$ \& Operation unavailable because operation speed is higher than amactarimoncexecerion indinaion \& X \& Δ \& X \& X \& \&

\hline 119 \& Start command input from position data set to Complete without number daçe \& 0 \& 0 \& X \& X \& \&

\hline
\end{tabular}

Note 1) Valid only in G4F-POPA, V1.0
Note 2 G3F-POPA, V1. 1 or later

Chapter 7 Function Blocks

Chapter 7 Function Blocks

Function Blocks for positioning modules used in GMWIN are described.
Type of Function Blocks is as follows.

No	Class	G3F-POPA	G4F-POPA	G4F-POPB	G6F-POPA	Description	Remaks
1	For module infomation	POSP_CRD	POSP_CRD	POSB_CRD	POSP_CRD	Present operation state' s code information Read	7.2.1
2		POSP_SRD	POSP_SRD	POSB_SRD	POSP_SRD	Present operation state s bit information Read	7.2.2
3	$\begin{aligned} & \text { Autio- } \\ & \text { Operation } \end{aligned}$	POSP_AST	POSP_AST	POSB_AST	POSP_AST	Start	7.3.1
$\begin{aligned} & 4 \\ & 5 \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline \text { POSP_INT } \\ \text { POSP_ORG } \\ \hline \end{array}$	POSP_ORG	$\begin{aligned} & \hline \text { POSB_INT } \\ & \text { POSB_ORG } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { POSP_INT } \\ \text { POSP_ORG } \\ \hline \end{array}$	Linear interpolation start Origin point return operation	$\begin{aligned} & 7.3 .2 \\ & \text { 7.3.3 } \\ & \hline \end{aligned}$
6	$\begin{aligned} & \text { Manval } \\ & \text { Operaion } \end{aligned}$	POSP_INC	POSP_INC	POSB_INC	POSP_INC	Inching operation	7.4.1
7		POSP_JOG	POSP_JOG	POSB_JOG	POSP_JOG	JOG operation	7.4.2
8		POSP_RTP	POSP_RTP	POSB_RTP	POSP_RTP	Return to prior position to manual operation	7.4.3
9		POSP_MPG	.	POSB_MPG		Manual pulse generator operation allowable	7.4.4
10	Teading	POSP_TEA	POSP_TEA	POSB_TEA	POSP_TEA	Position teaching	7.5.1
11		POSP_VLT	POSP_VLT	POSB_VLT	POSP_VLT	Speed teaching	7.5.2
12	$\begin{gathered} \text { Sub } \\ \text { Operation } \end{gathered}$	POSP_MOF	POSP_MOF	POSB_MOF	POSP_MOF	M code off	7.6.1
13		POSP_VCG	POSP_VCG	POSB_VCG	POSP_VCG	Speed change	7.6.2
14		POSP_MM	POSP_NM	POPB_NM	POSP_NM	Continuous operation	7.6.3
15		POSP_OR	POSP_OR	POPB_OR	POSP_OR	Speed override	7.6.4
16		POSP_SMC	POSP_SMC	POPB_SMC	POSP_SMC	Setting operation step No.	7.6.5
17		POSP_STP*	POSP_STP*	POSB STP	POSP STP	Deceleration stop(*:only in V1.0)	7.6.6
18		POSP_TMP	POSP_TMP				
19	Eror	POSP_EMG	POSP_EMG	POSB_EMG	POSP_EMG	Internal emergency stop	7.7.1
20		POSP_OFF	POSP_OFF	POSB_OFF	POSP_OFF	Output-prohibited cancellation	7.7.2
21		POSP_RES	POSP_RES	POSB_RES	POSP_RES	Error reset	7.7.3
22	Others	POSP_FLT	POSP_FLT	POSB_FLT	POSP_FLT	Floating point set setting	7.8.1
23		POSP_PRE	POSP_PRE	POSB_PRE	POSP_PRE	Present position preset	7.8.2
24		-	-	-	POSP_PRM	Parameter change	7.8.3

7.1 Function Block registration for positioning module in GMWIN

Function Block can be registered as specified below while GMWIN is being executed.
Function Block registration is available only when the project is at open state.

- Col ant nad (Δ) to di cnl ava the cerepen hel own

■ For GWWN 3.1 or above (Ex. of G3F-POPA)

Chapter 7 Function Blocks

7.2 Function Block for module information Read

7.2.1 Code information Read at present operation state

(StausCodeRead G3F-POPA/G4F-POPA/G6F-POPA:POSP_CRD, G4F-POPB:POSB_CRD)
Present position address, operation speed, M code value and operation data No. of the setting axis can be read for monitoring or using as conditions in user program.

Function Block type	Class	Parame er	$\begin{aligned} & \text { Data } \\ & \text { type } \end{aligned}$	Description
	Input	REQ	BOOL	Request reaca of Function Block execution Function block executed if " $0 \rightarrow 1$ " (I evel det ect i on) with connect ed condi ti on to thi s area as conposed duri ing programexecuti on.
		BASE	USINT	Base position No. Seting area of base No. postioning module is equipped on Seting range :GM1 seeies(0~ 31), GM2 seres($0 \sim 7$), GM334 seeies($(0 \sim 3)$, GM6 series((0)
		SLOT	USINT	Slot postion No. Setting area of slot No. posiooning module is equipped on. Seting range: $0 \sim 7$
		AXIS	USINT	Assignment aea of axis to use If " 0 ", X-2xis operates If " 1 ",,- -axis operates
	Output	DONE	BOOL	State displaying area of FunctionBlock execation complete If Function Block execution complete without error, "1" is output as kept until the next execution starts. If error occurs, "O" is ouput.
		STAT	USINT	Error-state displaying area If error occurs during Function Block execution, error No. is displayed.
		CA	DINT	Present position address displayed.
		CV	UINT	Present operation speed displayed.
		MCD	USINT	Present M code value displayed.
		CDN	UINT	Present operaion data No. displayed.

Chapter 7 Function Blocks

72.2 Bit information Read atpresent operation state

(Status Bit Read G3FPOPA / G4F-POPA / G6FPOPA:POSP_SRD, G4F-POPB:POSB_SRD)
Present operation state of the setting axis can be read for detailed monitoring or using as conditions in user program.

Function Block type	Class	Paramet er	Data type	Description
$-\left[\begin{array}{lr} \text { POŠ_SRD } \\ - \text { REO } & \text { DONE } \\ - \text { BASE } & \text { STAT } \\ \text { SLOT } & \text { ST1 } \\ \text { AXIS } & \text { ST2 } \\ & \text { ST3 } \\ & \\ & \text { ST4 } \end{array}-\right.$	Input	REQ	BOOL	Request area of Function Block execation Function Block executed if " $0 \rightarrow 1$ "(I evel detection) with connected condition to this area as conposed during programexecution.
		BASE	USINT	```Base posion No. Seting area of base No. postioning module is equipped on Seting range :GM1 senies(0~ 31), GM2 sereies(0~ 7), GM314 series(0~ 3), GM6 series(0)```
		SLOT	USINT	Slot postion No. Seting area of slot No. postioning module is equipped on. Setting range: $0 \sim 7$
		AXIS	USINT	Assignment aea of axis to use If " 0 ", X-xxis operates If " 1 ", Y -2xis operates
	Output	DONE	BOOL	State displaying aeea of Funcion Block execution complete If Function Block execution complete without error, " 1 " is output as kept until the next execution stats. If error occurs, "0" is output.
		STAT	USINT	Eror-state displaying area If error occurs during Function Block execution, erro No. is displayed.
		ST1	$\begin{aligned} & \hline \text { BOOL } \\ & \text { [ARRAY } \end{aligned}$	
		ST2	BOOL [ARRAY]	
		ST3	$\begin{aligned} & \mathrm{BOOL} \\ & \text { [ARRAY] } \\ & \hline \end{aligned}$	
		ST4	BOOL [ARRAY]	
		ST5	$\begin{aligned} & \text { BOOL } \\ & \text { [ARRAY } \\ & \hline \end{aligned}$	
		ST6	BOOL [ARRAY]	

Chapter 7 Function Blocks

Remark

1) Contents of output parameters ST1 ~ ST6 in present operation state' s bit Read function block are important information surely to apply in program

BitNo.	ST1	ST2	ST3
[0]	In dwel\|(Bit:On)	Upper limit detectee((Bit:On)	Unused
[1]	In deceleration(Bi:On)	Lower limit detected (Bit:On)	Foward (Bit:Off),Reverse(Bit:On)
[2]	In constant(Bit:On)	Emergency stop detected (BitOn)	ZONE\#1(Bit:On)
[3]	In acceleration(Bit:On)	Pulse outprohibited(Bit:On)	ZONE\#2(Bit:On)
$\begin{aligned} & {[4]} \\ & {[5]} \\ & \hline \end{aligned}$	At stop state(Bit:On) In reuming to origin poin(Bit:On)	Inching complete(Bit:On) Postion teaching complete(Bit:On)	ZONEH3(Bi:On) Repeated operaion complete (Bit:On)
[6]	In positioning(Bit:On)	In JOG lowspeed operation(3i:On)	Positioning operation complete(BitOn)
[7]	In interpolaion operation(not for G4F-POPA)	In JOG high speed operation(Sition)	M code On(BitOn)
Bitlo.	ST4	ST5 (terminal signa)	ST6
[0]	In oigin point compensation(3it:On)	Speed position control svitching (only for G6F-POPA)	Unused
[1]	In backlash compensation(Bit:On)(not for G6F POPA)	Extemal upper limit signa(Bit:Off)	Eror
[2]	In next move(Bit:On)	Extemal lower limit signa(Bit:Of)	Postion passing
[3]	In speed overiding(BitOn)	Extemal near zero point signal.(BitOn)	In operation(Busy)
[4]	Unused	Extemal origin point signal.(Bit:On)	Positioning complete
[5]	In stopping as decelerated \& stop complete(Biton)	Unused	Oigin point return complete
[6]	Speed teaching complete(Bit:On) (valid only in GF POPAGAF POPA V1.0)	Unused	Oigign point undecided
[7]	Speed change completet (BitOn) (valid only in G3FPOPAGAF POPA V1.0)	Extemal emergency stop signal(Sit Off)	Unused

Chapter 7 Function Blocks

7.3 Function Block for auto- operation

7.3.1 Start

(Auto Start G3F-POPA / G4FPOPA / G6F-POPA:POSP_AST, G4FPOPB:POSB_AST)
Output parameter ACT will be " 1 " if one positioning is complete by operation start command of positioning module.

Function Block type	Class	Paramet er	$\begin{aligned} & \text { Data } \\ & \text { type } \end{aligned}$	Description
$\left\{\begin{array}{ll} \text { POSK" AST } \\ \text { REQ } & \text { DNNF } \\ \text { BASE } & \text { SATT } \\ \text { SLOT } & \text { ACT } \\ \text { AXIS } & \\ \hline \end{array}\right]$	Input	REQ	BOOL	Request area of Function Block execution at rising edge Function Block executed if " $0 \rightarrow 1$ "(rising edge) with connected condition to this area as conposed during programexecution.
		BASE	USINT	Base position No. Seting area of base No. postionning module is equipped on Setting range :GM1 seies($(0 \sim 31)$, GM2 serees $(0 \sim 77$, GM314 series($(0 \sim 3)$, GM6 series((0)
		SLOT	USINT	Slot postion No. Seting area of sot No. postioning module is equipped on. Setting range: $0 \sim 7$
		AXIS	USINT	Assignment area of axis to use If " 0 ", X-xxis operates If " 1 ", Y-axis operates
	Output	DONE	BOOL	State displaying area of Funcion Block execution complete If Function Block execution complete without error, " 1 " is output, and if output parameter ACT is " 1 " with intemal processing of Funcion Block complete, " 0 " is output.
		STAT	USINT	Eror-state displaying area If error occurs during Function Block execution, error No. is displayed.
		ACT	BOOL	Operation axis displaying area Positioning module changes output parameter DONE from " 1 " to " 0 " with "1" output after processing Function Block command.

Remark

1)Relation between output parameters, DONE and ACT

2) Caution for Function Blocks of auto-operation command used in program
(1) Available only when operation is at stop state.(Busy-Off state)
(2) Available operation modes are single operation, repeated operation, auto-operation, continuous operation, constant operation and positioning constant operation.
a) If auto-operation is used, continuous operation, constant operation and positioning constant operation are not available for the succeeding operation step No. to auto-operation.
b) If continuous operation is used, auto-operation, constant operation and positioning constant operation are not available for the succeeding operation step No. to continuous operation.

Chapter 7 Function Blocks

7.3.2 Linear interpolation start

(Linear Interpolaion G3FPOPA / G6F-POPA:POSP_INT, G4FPOPB:POSB_INT)
Command for linear interpolation operation in positioning module for 2axes.

Function Block type	Class	Paramet er	Data type	Description

Remark

1) Caution for function blocks of linear interpolation operation command used in program
(1) Available only when operation is at stop state.(Busy-Off state)
(2) Available operation modes are interpolation operation, repeated operation and auto-operation.

Chapter 7 Function Blocks

7.3.3 Start to return to origin point

(Onign G3FPOPA / G4F-POPA / G6FPOPA:POSP_ORG, G4FPOPB:POSB_ORG)

Operation command to find the machine s origin point by origin point return-processing methods with direction, compensation, speed (high/low), address and dwell time set at origin point retur-parameters of each axis. If
complete signal of origin point return is turned On, origin point retur-operation of the machine is complete.

Function Block type	Class	Paramet er	$\begin{aligned} & \hline \text { Data } \\ & \text { type } \\ & \hline \end{aligned}$	Description
$\begin{cases}\left.-\begin{array}{ll} \text { POSS_ORG } \\ \text { REO } & \text { DONE } \\ \text { BASE } & \text { SATT } \\ \text { SLOT } & \text { ACTT } \end{array}\right\} \text { AXIS } & \\ \hline\end{cases}$	Input	REQ	BOOL	Request area of Function Block execution at ising edge Function Block executed if " $0 \rightarrow 1$ "(rising edge) with connected condition to this area as conposed during programexecution.
		BASE	USINT	$\begin{aligned} & \text { Base position No. } \\ & \text { Seting area of base No. positioning module is equipped on } \\ & \text { Seting range :GM1 series(} 0 \sim 31 \text {, GM2 seies(}(\sim 7) \text {, GM34 series }(0 \sim 3) \text {, GM6 senies }(0) \\ & \hline \end{aligned}$
		SLOT	USINT	$\begin{aligned} & \hline \text { Slot position No. } \\ & \text { Seting area of slot No. positioning module is equiped on. } \\ & \text { Setting range: } 0 \sim 7 \\ & \hline \end{aligned}$
		AXIS	USINT	Assignment area of axis to use If " 0 ", X-xxis operates If " 1 ", Y-axis operates
	Output	DONE	BOOL	State displaying area of Funcion Block execution complete If Function Block execution complete without error," "1" is output, and if oupput parameter ACT is "1" with intemal processing of Function Block complete," "0" is output.
		STAT	USINT	Eror-state displaying area If eroro occurs duning Function Block execution, error No. is displayed.
		ACT	BOOL	Operation axis displaying area Positioning module changes output parameter DONE from "1" to "0" with "1" output after processing Function Block command.

7.4 Function Block for manual operation

7.4.1 Inching operation

(Inching		G3FPOPA / G4F-POPA / G6F-POPA:POSP INC, G4F-POPB:POSB INC)		
Function Block type	Class	Paramet er	$\begin{aligned} & \text { Data } \\ & \text { type } \end{aligned}$	Description
	Input	REQ	BOOL	Request area of Function Block execuion at ising edge Function Block executed if " $0 \rightarrow 1$ " (rising edge) with connected condition to this area as conposed during programexecution.
		BASE	USINT	Base position No. Seting area of base No. positioning module is equipped on Seting range :GM1 series(0~31), GM2 series($0 \sim 7$), GM344 series($(0 \sim 3)$, GM6 series((0)
		SLOT	USINT	Slot postion No. Seting area of slot No. postioning module is equipped on. Setting range: $0 \sim 7$
		AXIS	USINT	Assignment aea of axis to use If " 0 ", X - -xxs operates If "1", Y-axis operates
		ROT	BOOL	Direcion assignment of inching operation If " 0 ", forward operation
		$\begin{aligned} & \hline \mathrm{INCH} \\ & \text { AMT } \\ & \hline \end{aligned}$	USINT	Travel value seting area in inching operaion Seting range : $1 \sim 99$ (UnitPulse)
	Output	DONE	BOOL	State displaying area of Funcion Block execution complete If Funcion Block execution complete without error, "1" is output, and if output parameter ACT is " 1 " with intemal processing of Funcion Block complete," 0 " is output.
		STAT	USINT	Error-state displaying area If error occurs during Function Block execution, eror No. is displayed.
		ACT	BOOL	Operation axis displaying area Positioning module changes output parameter DONE from " 1 " to "0" with "1" output after processing Function Block command.

Chapter 7 Function Blocks

7.4.2 JOG operation

(JOG G3F-POPA / G4FPOPA / G6FPOPA:POSP_JOG, G4FPOPB:POSB_JOG)
As a manual operation function for test, it is used to check system operation, wiring state and teaching position address, whose speed is classified into high and low as required.
Pulse is output by setting value if connection condition of input parameter REQ is ON, and is stopped if OFF.

Function Block type	Class	Paramet er	$\begin{aligned} & \text { Data } \\ & \text { type } \end{aligned}$	Description
$\left\{\begin{array}{cc} \text { POŠ_JOG } \\ - \text { REQ } & \text { DONE } \\ - \text { BASE } & \text { SATA } \\ \text { SLOT } & \\ - \text { AXIS } & \\ - \text { ROT } & \\ \text { HLL } & \\ \hline \end{array}\right.$	Input	REQ	BOOL	Request area $₫$ Function Block execution Function Block executed if " $0 \rightarrow 1$ "(Ievel detection) with connected condition to this area as conposed during programexecution.
		BASE	USINT	$\begin{aligned} & \hline \text { Base position No. } \\ & \text { Seting area of base No. positioning module is equipped on } \\ & \text { Seting range :GM1 seeies(0~ 31), GM2 series(}(\sim 7) \text {, GM334 series(}(0 \sim 3) \text {, GM6 seres(}(0) \\ & \hline \end{aligned}$
		SLOT	USINT	$\begin{aligned} & \text { Slot postion No. } \\ & \text { Seting area of slot No. posioioning module is equipped on. } \\ & \text { Setting range: } 0 \sim 7 \\ & \hline \end{aligned}$
		AXIS	USINT	Assignment aea of axis to use If " 0 ", X-2xis operates If "1", Y-2xis operates
		ROT	BOOL	Direction assignment of $J O G$ operation If "0", forward operation
		HL	BOOL	Speed assignment of JOG operation If" 0 ", Iowspeed operation (profile without accelerationdleceleration) If "1", high-speed operation (rorofle with accelerationdecceleraion)
	Output	DONE	BOOL	State displaying area of Funcion Block execution complete If Function Block execution complete without error, " 1 " is output as kep t until the next execution starts. If error occurs," "0" is output with operation stopped.
		STAT	USINT	Eror-state displaying area If error occurs duning Function Block execution, error No. is displayed.

Remark
In Function Blocks for JOG start command, input parameter REQ is operated via the level. It means JOG operation state If connection condition of REQ is On, and JOG output stopped If Off.

Chapter 7 Function Blocks

7.4.3 Return to prior position to manual operation

(Retum To Postion G3F-POPAGAFPOPPA/ G6FPOPA:POSP_RTP, GAF-POPB:POSB_RTP)
Command used to return to prior position to manual operation when the position has been changed by manual operation after positioning.

- Manual operation means inching operation, JOG operation or manual pulse generator operation.

Function Block type	Class	Paramet er	$\begin{aligned} & \text { Data } \\ & \text { type } \end{aligned}$	Description
$\left\{\begin{array}{cc} \text { POŠ_RTP } \\ \text { REQ } & \text { DONE } \\ - \text { BAEE } & \text { STAT } \\ - \text { SOOT } & \text { ACTT } \\ - \text { AXS } & \end{array}\right]$	Input	REQ	BOOL	Request dea of funcion Block exection at tising elve Function Block executed if " $0 \rightarrow \mathfrak{1}$ "(rising edge) with connected condition to thi s area as connosed during programexecution.
		BASE	USINT	Base posion No. Setting area of base No. positioning module is equipped on Seting range :GM1 seeres(0~31), GM2 seeies(0 ~ 7), GM334 series(0~ 3), GM6 series(0)
		SLOT	USINT	Slot postion No. Seting area of sot No. positioning moode is is equiped on. Seting arane: 0 ~ 7
		AXIS	USINT	Assigmenta aea of axis to use If "0", X-xxis operates If " 1 ", Y -axis operates
	Output	DONE	BOOL	State displaying area of Funcion Block execution complete If Function Block execution complete without error, "1" is output, and if output parameter ACT is " 1 " with intemal processing of Function Block complete," 0 " is ouput.
		STAT	USINT	Eror-state displaying area If error occurs during Funcion Block execution, error No. is displayed.
		ACT	B0OL	Operation axis displaying area Positioning module changes output parameter DONE from " 1 " to "0" with " 1 " output atter processing Function Block command.

7.4.4 Operation approval of manual pulse generator

(Manual Pulse Generator G3FPOPA :POSP_MPG, G4F-POPB:POSB_MPG)
This is used to command position-decision module to be in preparation state of operation performed with outer-equipped manual pulse generator(MPG).

Function Block type	Class	Paramet er	$\begin{aligned} & \text { Data } \\ & \text { type } \end{aligned}$	Description
$\left\{\begin{array}{ll} \text { POSŠ_MPG } \\ \text { REO } & \text { DONE } \\ \text { BASE } & \text { SATA } \\ \text { SLOT } & \\ -A X I S & \\ \hline \end{array}\right]$	Input	REQ	BOOL	Request area of Function Block execution at rising edge Function Block executed if " $0 \rightarrow \mathbb{1}$ "(rising edge) with connected condition to thi s area as composed during programexecution.
		BASE	USINT	Base posion No. Seting area of base No. postioning module is equipped on Seting range :GM1 series(0~ 31), GM2 series(0~ 7), GM314 series(0~ 3), GM6 series((0)
		SLOT	USINT	Slot postion No. Seting area of slot No. postioning module is equipped on. Seting range: $0 \sim 7$
		AXIS	USINT	Assignment area of axis to use If "0", X-axis operates If "1", Y-axis operates
	Output	DONE	BOOL	State displaying area of Funcion Block exection complete If Function Block execution complete without error, " 1 " is output as kept until the next execution stats. If error occurs, "0" is oupput with operation stopped
		STAT	USINT	Eror-state displaying area If eroro occurs during Function Block execution, erro No. is displayed.

Chapter 7 Function Blocks

7.5 Teaching Function Block

7.5.1 Position Teaching

(Teaching G3FPOPA/ G4F-POPA/G6F-POPA:POSP_TEA, G4FPOPB:POSB_TEA)
This is used for user to set random address value to specific operation step No.

Function Block type	Class	Paramet er	Data type	Description

Remark

Noteil I hat paameter MOOE Can be used ony in G6FPOPA.

- in G3FPOPA and GAF-POPA, Position Teaching cormmand is avalable only a o oigin ponit decided.
- When Position Teaching Function Block has been executed, the operation step No. set at input parameter ST_SET shall be the same as the next operaion step No. to be perfommed.
If input parameter ST_SET setting value differs from the operation step No. to be performed, the operation step No. shall be changed to be denicical by popeation Step No. darage commandPOSŠ_SMC) Function Block pior to the next peraion.
- Diffeeneses beween RAM Posion Teading \& ROM Position Teacting
- In RAM Position Teaching, address value is not saved at position data, and the operation if CPU module is powered Offlon will be execated by pior a dcliess value.
- In ROM Position Teaching, address value is saved at position data, and the operation even if CPU module is powered Off/On will be maitinad.

Chapter 7 Function Blocks

7.5.2 Speed Teaching

> (Velocity G3FPOPA / G4FPOPA / G6FPOPA:POSP_VLT, G4F-POPB:POSB_VLT)

This is used for user to set random speed value to specific speed data No.

Function Block type	Class	Paramet er	Data type	Description

Remark

[Note1] Input parameter MODE can be used only in G6F-POPA.

Chapter 7 Function Blocks

7.6 Auxiliary operation

7.6.1 M code off

(M Code Off G3F-POPAIG4F-POPAGG6F-POPA:POSP_MOF, G4F-POPB:POSB_MOF)
This is used to turn M code signal Off when the signal is O n if M code has been set to With or After mode at parameters of each axis.

Function Block type	Class	Paramet er	Data type	Description

7.6.2 Speed change

(Velocity Change G3F-POPA I GAFPPPA / G6FPOPA:POSP_ VCG, GAF-POPB:POSB_VCG
It can be used to change operation speed at constant speed during operation.

Function Block type	Class	Paramet er	Data type	Description

Chapter 7 Function Blocks

Remark

1) Caution for Function Blocks of speed change command used in program
(1) Available only at constant speed during operation.(Busy-On state)
(2) Available operation modes are single operation, repeated operation and auto-operation, with JOG high-speed and origin point return high-speed also usable.
However, available for constart operation mode in G4F-POPB \& G6F-POPA

7.6.3 Continuous operation

(Next Move G3FPOPA/GAFPOPA/G6FPOPA:POSP_NM, GAFPPPB:POSB_NM)
This is used for continuous operation from present operation step No. to the next operation step No. at a random point of time without stop if continuous operation mode is applied.

Function Block type	Class	Paramet er	Data type	Description

Remark

1) Caution for Function Blocks of continuous operation command used in program
(1) Available only at constant speed during operation.(Busy-On state)
(2) Available only for continuous operation mode.
(3) Continuous command operation by absolute method differs from that by relative method in position data setting.

Chapter 7 Function Blocks

7.6.4 Speed override

(Override G3F-POPA / G4FPOPA / G6FPOPA:POSP_OR, G4F-POPB:POSB_OR)
This is used for user to execute operation with speed value as changed at constant speed.

Function Block type	Class	Paramet er	$\begin{aligned} & \text { Data } \\ & \text { type } \end{aligned}$	Description
$\left\{\begin{array}{ll} -\quad \text { POŠ_OR } \\ - \text { REQ } & \text { DONE } \\ - \text { BASE } & \text { STAT } \\ - \text { SLOT } & \text { ACT } \\ - \text { AXIS } & \\ \text { OVR } & \\ \hline \end{array}\right]$	Input	REQ	BOOL	Request area of Function Block execution at rising edge Function Block executed if " $0 \rightarrow 1$ "(rising edge) with connected condition to this area as composed during programexecution.
		BASE	USINT	
		SLOT	USINT	$\begin{aligned} & \hline \text { Slot postion No. } \\ & \text { Setting area of slot No. positioning module is equipped on. } \\ & \text { Setting range: } 0 \sim 7 \\ & \hline \end{aligned}$
		AXIS	USINT	Assignment area of axis to use If " " 0 ", X-axis operates If "1", Y-axis operates
		OVR	USINT	Seting area of present operation speed to new value Seting range:1~15 (Unit: 10\%) Ex.) If setting value is 12 , operation speed value ater changed = operation speed value before changed $\times 120 \%$
	output	DONE	BOOL	State displaying area of Funcion Block execction complete If Function Block execution complete without eror, "1" is output, and if output parameter ACT is " 1 "with intemal processing of Function Block complete," 0 " is output.
		STAT ACT	USINT	Eror-state displaying area If error occurs during Function Block execuion, error No. is displayed. Operation axis displaying area Positioning module changes output parameter DONE from " 1 " to " 0 " with "1" output atter processing Function Block command.

Remark

1) Caution for Function Blocks of speed override command used in program
(1) Available only at constant speedduring operation.(Busy-On state)

7.6.5 Assignment of operation step No.

(Set Move Data NumberChange G3FPOPAIGAFPOPAG6F-POPA:POSP_SMC, GAFPOPB:POSB_SMC)
It is used to change operation step No. to be performed by the next command.

Function Block ype	Class	Paramet er	$\begin{aligned} & \text { Data } \\ & \text { type } \end{aligned}$	Description
	Input	REQ	BOOL	Request area of Function Block execation at rising edge Function Block executed if " $0 \rightarrow 1$ "(rising edge) with connected condition to this area as composed during programexecution.
		BASE	USINT	Base position No. \quad Seting area o base No. positioning module is equipped on Setting range :GM1 series($0 \sim 31$), GM2 seeies (~ 7), GM334 series $(0 \sim 3)$, GM6 series (0)
		SLOT	USINT	$\begin{aligned} & \hline \text { Slot position No. } \\ & \text { Seting area of slot No. positioning modue is equipped on. } \\ & \text { Setting range: } 0 \sim 7 \\ & \hline \end{aligned}$
		AXIS	USINT	Assignment aee of axis to use If " " ", X-xxis operates If "1", Y-axis operates
		$\begin{aligned} & \hline \text { ST_S } \\ & \text { ET } \\ & \hline \end{aligned}$	UINT	Seting area of operation step No. to be peformed by stat command Seting range: $0 \sim 20$
	Output	DONE	BOOL	State displaying area of Funcion Block execution complete If Function Block execution complete without tor, "1" is output, and if output parameter $A C T$ is " 1 " with intemal processing of Function Block complete," 0 " is output.
		STAT	USINT	Eror-state displaying area If eroro occurs during Function Block execution, error No. is displayed.
		ACT	BOOL	Operation axis displaying area Positioning module changes output parameter DONE from " 1 " to "0" with "1" output after processing Function Block command.

Chapter 7 Function Blocks

Remark

1) Caution for function blocks of operation step No. change command used in program
(1) Available only at operation stop state.(Busy-Off state)
(2) Operation step No. is changeable by function block of succeeding operation step No. change command to repeated operation in G3F-POPA, G4F-POPA \& G4F-POPB, but not changeable in S/W package.

7.6.6 Deceleration stop

(Temporary G3F-POPA / G4FPOPA:POSP_TMP)
(Stop G3FPOPA / G4F-POPA / G6FPOPA :POSP_STP, G4FPOPB:POSB_STP)
It is used to temporarily stop operation of positioning module as decelerated.

Function Block ype	Class	Paramet er	$\begin{aligned} & \text { Data } \\ & \text { type } \end{aligned}$	Description
$\begin{cases}\text { POSS_STP } \\ \text { REQ } & \text { DONE } \\ \text { BASE } & \text { STAT } \\ \text { SLOT } & \text { STAT } \\ \text { AXIS } & \end{cases}$	Input	REQ	BOOL	Request area of Function Block execution at rising edge Function Block executed if " $0 \rightarrow 1$ " (rising edge) with connected condition to this area as conposed during programexecution.
		BASE	USINT	Base postion No. Seting area of base No. postioning module is equipped on Seting range :GM1 seeies(0~31), GM2 series($0 \sim 7$), GM334 series($(0 \sim 3)$, GM6 series((0)
		SLOT	USINT	Slot postion No. Seting area of slot No. positioning module is equiped on. Setting range: $0 \sim 7$
$\begin{cases}{\left[\begin{array}{cc} \text { POS"_TMP } \\ \text { REQ } & \text { DONE } \\ \text { BASE } & \text { STAT } \\ \text { SLIT } & \text { STAT } \\ \text { AXIS } & \\ \hline \end{array}\right]}\end{cases}$		AXIS	USINT	Assignment area of axis to use If "0", X-axis operates If "1", Y-axis operates
	Output	DONE	BOOL	State displaying area of Function Block exection complete If Function Block execution complete without error, "1" is output, and if ouput parameter ACT is " 1 " with intemal processing of Funcion Block complete," 0 " is output.
		$\begin{array}{r} \hline \text { STAT } \\ \quad X \\ \hline \end{array}$	USINT	X-axis eroor informaioon displayed
		$\begin{array}{r} \hline \text { STAT } \\ \quad \text { Y } \\ \text { ACT } \end{array}$	USINT BOOL	Y-axis error information displayed Operation axis displaying area Positioning module changes output parameter DONE from"1" to "0" with "1" output after processing Function Block command.

Remark

1) Caution for Function Blocks of stop command used in program
(1) Availlle at operation stop state during acceleration, oonstant and deceleration.(Busy-Off state)
(2) Function Block POSP_STP of G3FPOPA and G4F-POPA can be used only in ROM V1.0.

Chapter 7 Function Blocks

7.7 Function Block for error processing

7.7.1 Internal emergency stop

(Emergency G3F-POPA /G4FPPPA/ G6FPOPA:POSP_EMG, G4FPOPPB:POSB_EMG
It is used to promptly stop operation in case of emergency.
Since switched over to output-prohibited and origin point-undecided state if once
stopped, cancel output-prohibited and re-decide origin point to re-start.

Function Block type	Class	Paramet er	Data type	Description

7.7.2 Cancellation of output prohibition

(Pulse Out Inhibit,Off G3FPOPAIG4FPPPA/G6FPOPAPOSP_OFF, GAFPOPB:POSB_OFF
Command to cancel pulse-out prohibited state by external emergency stop, upper/lower limit detection, etc.

Function Block type	Class	Paramet er	Data type	Description

Chapter 7 Function Blocks

7.7.3 Error reset

(Reset G3FPOPA / G4FPOPA / G6F-POPA:POSP_RES, G4FPOPB:POSB_RS日
It is used to reset error if occurred during operation or by exceeding parameter setting range.

Function Block type	Class	Paramet er	$\begin{aligned} & \text { Data } \\ & \text { type } \end{aligned}$	Description
$\left[\begin{array}{cc} \text { POSŞ_RES } \\ \text { REQ } & \text { DONE } \\ \text { BASE } & \text { STAT } \\ \text { SLOT } & \\ \text { AXIS } & \\ \hline \end{array}\right]$	Input	REQ	BOOL	Request area of Function Block execution at ising edge Function Block executed if " $0 \rightarrow 1$ " (rising edge) with connected condition to this area as conposed during programexecution.
		BASE	USINT	Base postion No. Seting area of base No. postioning module is equipped on Seting range :GM1 seeies(0~31), GM2 series($0 \sim 7$), GM334 series($(0 \sim 3)$, GM6 series((0)
		SLOT	USINT	Slot postion No. Seting area of slot No. postioning module is equipped on. Setting range: $0 \sim 7$
		AXIS	USINT	Assignment area of axis to use If " 0 ", X-axis operates If "1", Y-axis operates
	Output	DONE	BOOL	State displaying area of Function Block exection complete If Function Block execution complete without error, "1" is output as kept until the next execution stats. If error occurs, "0" is oupput with operation stopped
		STAT	USINT	Erro--state displaying area If error occurs during Funcion Block execution, error No. is displayed.

Chapter 7 Function Blocks

7.8 Other Function Bblock

7.8.1 Floating point set setting

(Floating, Point Set G3F-POPA/ G4FPOPA/ G6F-POPA:POSP FLT, G4F-POPB:POSB FLT)
It is a command used to set present position to origin point compulsorily without origin point return-operation. The assigned address value to origin point return address will be the present position.

Function Block type	Class	Paramet er	$\begin{aligned} & \text { Data } \\ & \text { type } \end{aligned}$	Description
$\left\{\begin{array}{ll} \text { POSS_RLT } \\ \text { REQ } & \text { DONE } \\ \text { BASE } & \text { STAT } \\ \text { SLOT } & \text { ACT } \\ \text { AXIS } & \\ \hline \end{array}\right]$	Input	REQ	BOOL	Request area of Function Block execuion at rising edge Function Block executed if " $0 \rightarrow 1$ "(rising edge) with connected condition to this area as composed during program execution.
		BASE	USINT	$\begin{aligned} & \text { Base position No. } \\ & \text { Seting area of base No. positioning module is equipped on } \\ & \text { Seting range :GM1 seeies(0~ 31), GM2 seeres(}(\sim 7), G M 314 \text { series(}(0 \sim 3), G M 6 \text { series }(0) \\ & \hline \end{aligned}$
		SLOT	USINT	Slot postion No. Seting area of slot No. posiooning module is equipped on. Setting range: $0 \sim 7$
		AXIS	USINT	Assignment area of axis to use If " 0 ", X-axis operates If " 1 ", 7 -axis operates
	Output	DONE STAT	\|BOOL USINT	State displaying area of Funcion Block execution complete If Funcion Block execution complete without error, "1" is output, and if ouput parameter ACT is " 1 " with intemal processing of Function Block complete," 0 " is output. Eror-state displaying area If error occurs during Function Block execution, error No. is displayed.
		ACT	BOOL	Operation axis displaying area Positioning module changes output parameter DONE from"1" to "0" with "1" output after processing Function Block command.

Remark

1) Caution for Function Blocks of floating point set setting command used is program
(1) Avialable only at operation stop state.(Busy-Off state)

7.8.2 Present position Preset

(Preset G3FPOPA / G4FPOPA / G6F-POPA:POSP_PRE, G4FPOPB:POSB_PRE)
It is a command used to change present position to random position.

Function Block type	Class	Paramet er	$\begin{aligned} & \text { Data } \\ & \text { type } \end{aligned}$	Description
	Input	REQ	BOOL	Request area of Function Block execution at ising edge Function Block executed if " $0 \rightarrow 1$ "(rising edge) with connected condition to this area as conposed during programexecution.
		BASE	USINT	
		SLOT AXIS	USINT USINT	Slot postion No. Seting area of slot No. posiooning module is equipped on. Setting range: $0 \sim 7$ Assignment area of axis to use If " 0 ", X-2xis operates If "1", Y-axis operates
		$\begin{aligned} & \text { PRES } \\ & \text { ET } \\ & \hline \end{aligned}$	DINT	Area used to change present position Setting range : $-16,74,447 \sim 16,74,447$
	Output	DONE	BOOL	State displaying area of Funcion Block execution complete If Function Block execution complete without eror, "1" is output, and if oupput parameter ACT is " 1 " with intemal processing of Function Block complete," " " is ouput.
		STAT	USINT	Eror-stated displaying area If eror occurs duning Function Block execution, eror No. is displayed.
		ACT	BOOL	Operation axis displaying area Positioning module changes output parameter DONE from "1" to "0" with "1" output after processing Function Block command.

Remark

1) Caution for Function Block of preset command used in program
(1) Available only at operation stop state.(Busy-Off state)

Chapter 7 Function Blocks

7.8.3 Parameter change

(Parameter Wite G3F-PDPA / GAFPOPA / G6FPPPA:POSP_PRM, GAF-POPB:POSB PRM
Command used to change acceleration time, deceleration time, JOG high-speed, origin point return high-
speed and M code mode at parameters during operation.

Function Block type	Class	Paramet er	Data type	Description

Remark

1) Caution for Function Block of parameter change used in program
(1) Available only at operation stop state.(Busy-Of state)

Chapter 7 Function Blocks

7.9 Error codes in Function Block

Error type displayed on output parameter STAT and actions to take against will be described.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Err. oode} \& \multirow[b]{2}{*}{Description} \& \multicolumn{4}{|c|}{Pulseouttype} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Positioning \\
module \\
operation \\
status
\end{tabular}} \& \multirow[b]{2}{*}{Actions} \\
\hline \& \& \[
\begin{aligned}
\& \text { GFF } \\
\& \text { POPA }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { GFF. } \\
\& \text { POPA }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { GAF- } \\
\& \text { POPB }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { GGF } \\
\& \text { POPA }
\end{aligned}
\] \& \& \\
\hline 0 \& In normal operation \& 0 \& 0 \& 0 \& 0 \& \& \\
\hline 1 \& Base position No. exceeded oversetting range \& 0 \& 0 \& 0 \& 0 \& \& Set base position within setting range \\
\hline 2 \& HW error on applicable base \& 0 \& 0 \& 0 \& 0 \& \& Request base AS \\
\hline 3 \& Slot position No . exceeded over setting range \& 0 \& 0 \& 0 \& 0 \& \& Set slot position within setting range \\
\hline 4 \& Applicable slot not equipped \& 0 \& 0 \& 0 \& 0 \& \& Install positioning module on the applicable slot \\
\hline 5 \& Different module name of applicable slot \& 0 \& 0 \& 0 \& 0 \& \& Install positioning module on the applicable slot \\
\hline 6 \& Setting axis No. exceeded over setting range \& 0 \& 0 \& 0 \& 0 \& \& Set correct axis No. of positioning module \\
\hline 7 \& Command given with CPU module at STOP state \& 0 \& 0 \& 0 \& 0 \& \& Change CPU module states from STOP to RUN \\
\hline 8 \& Commorused RAMerror \& 0 \& 0 \& 0 \& 0 \& \& A/S request \\
\hline 9 \& Function Block command unavailable to execute due to module in/at operation/stop \& 0 \& 0 \& 0 \& 0 \& \& Set correct command execution conditions \\
\hline 10 \& New command Function Block executed at the state that pior command is not complete \& 0 \& 0 \& 0 \& 0 \& \& \begin{tabular}{l}
Program change to execute new command after \\
prior command is complete
\end{tabular} \\
\hline 11 \& Setting aux. input value exceeded overthe range \& 0 \& 0 \& 0 \& 0 \& \& To be in setting range \\
\hline 13 \& Stop related command or emergency stop input while Function Blockis executed \& \& \& \& \& \& \begin{tabular}{l}
1. Restetro \\
2. Cancolouputracoibited
\end{tabular} \\
\hline 14 \& Continuous operation or speed overide command inut at other states than constant stage in autooperation \& 0 \& 0 \& 0 \& 0 \& \& Continuous operation or speed override is available only at constant stage \\
\hline 15 \& Command given with module origin point undecided \& 0 \& 0 \& 0 \& 0 \& \& Start command after origin point decided \\
\hline \[
\begin{aligned}
\& 17 \\
\& 18 \\
\& \hline
\end{aligned}
\] \& H/Weroro pposibining modike Wathologetro \& \[
\begin{aligned}
\& 0 \\
\& 0 \\
\& \hline
\end{aligned}
\] \& 0
0 \& 0
0 \& 0
0 \& \& \\
\hline 19 \& mermenoy inetroe erio \& 0 \& 0 \& 0 \& 0 \& \& Cance error ipureed Ofion \\
\hline 20 \& Exernal emecrencssiopiput \& 0 \& 0 \& 0 \& 0 \& \begin{tabular}{l}
Output- \\
pochibied, \\
Start.point \\
undecinded
\end{tabular} \& \begin{tabular}{l}
1 Renorocasse de exemal energency stop \\
2 Canod apat-prochitied \\
3. Ppeate ater oign poritrececicided
\end{tabular} \\
\hline 21 \& Itemal emergenos stoiput \& 0 \& 0 \& 0 \& 0 \& \[
\begin{aligned}
\& \text { Output- } \\
\& \text { pucibiked, } \\
\& \text { Start.point } \\
\& \text { undecided } \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{l}
1 Remoe casse of iternd energenorystop \\
2 Canod atatut-pochitited \\
3. Operate alter rigin poirtrececiced
\end{tabular} \\
\hline 22 \& \begin{tabular}{l}
Exemallowerlinitsygd inout \\
Exemalupperinitsygd input
\end{tabular} \& \begin{tabular}{l}
\[
0
\] \\
0
\end{tabular} \& \begin{tabular}{l}
\[
0
\] \\
0
\end{tabular} \& \begin{tabular}{l}
\[
0
\] \\
0
\end{tabular} \& 0

0 \& \[
$$
\begin{aligned}
& \text { Output- } \\
& \text { poribitied, } \\
& \text { Start.point } \\
& \text { undecided } \\
& \text { Output- } \\
& \text { puchibied, } \\
& \text { Start.point } \\
& \text { undecided } \\
& \hline
\end{aligned}
$$

\] \& | 1 Renorecase de eror |
| :--- |
| 2 Pefiom JOG peadorn tonad upper int |
| 3 Operate ater oing poritrececided |
| 1 Renorecase detor |
| 2 Peftrm JOG opection toward bue int |
| 3 Operate ater oign poritrececided |

\hline 24 \& \& 0 \& 0 \& 0 \& 0 \& | Output- |
| :--- |
| porbitied, |
| Start.point |
| undecidad | \& | 1. Change s/w lower limit address range set at parmeres |
| :--- |
| 2. Operateafer oign poitrededided |

\hline 25 \& Presert \& 0 \& 0 \& 0 \& 0 \& \[
$$
\begin{aligned}
& \text { Output- } \\
& \text { pocibitied, } \\
& \text { Start.point } \\
& \text { undecided } \\
& \hline
\end{aligned}
$$

\] \& | 1. Change s/w upper limit address range set at parmextes |
| :--- |
| 2. Opeateaterougn poritededided |

\hline 36 \& Next operation mode is incorrect in auto-operation or continuous perafinmmoce \& 0 \& 0 \& 0 \& 0 \& No operation at stopstate \& Donotereute netocoeraion step durng poaraion.

\hline 37 \& Interpolation operation command input in continuous, constant, and posioring corstatitoperaionnmide \& 0 \& 0 \& 0 \& 0 \& Uncranged \& | Interpolation operation is available only at single, |
| :--- |
| reperad, |
| andabmmodes |

\hline
\end{tabular}

Chapter 7 Function Blocks

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 40
45 \& \begin{tabular}{l}
Satocommand unaadabe aM ocke ON sade \\
Speed/position control switching unavailable in acceleration of positioning anssatitperaion mode
\end{tabular} \& \(x\)

x \& x

x \& x

x \& 0

0 \& \begin{tabular}{l}
Noopeation

Present

operation state

uncramed

 \&

1. Tum MaxdeOfand

2. stat pecaion

Chancespeedposion comriobsuiding fom amederaiontoonstatt
\end{tabular}

\hline \[
$$
\begin{gathered}
46 \\
\text { (atee1) }
\end{gathered}
$$

\] \& EOM stop or positioning stop command input in constant, positioning anstatitpearionmode \& X \& Δ \& X \& X \& | Present |
| :--- |
| peradon sade |
| unclanged | \&

\hline 47 \& \& X \& 0 \& x \& x \& | Present |
| :--- |
| aparaionsste |
| undaraged | \&

\hline 48 \& Stop command input while return(RTP) command to prior position to manul peraimis serecuted \& 0 \& 0 \& 0 \& 0 \& | Present |
| :--- |
| gpeaion sade |
| undranged | \& | |
| :--- |
| processed as an error if return command to prior pacion |
| tomanual oneramis exeruted. |

\hline 49 \& stop command input during dwell time processing or origin point ampersaion \& 0 \& 0 \& 0 \& 0 \& | Present |
| :--- |
| greationssale unchanged | \& Pocyan draxerenected becalsestrucommad is unavabbe duringdvel inne processingorcrigin ponitcompersestón

\hline 56 \& Continuous operationNM), trans. operation($O R$), speed change command input at other states than constant stage during operation by statommand \& 0 \& 0 \& 0 \& 0 \& | Present |
| :--- |
| operaion sade |
| undaraged | \& Pioyan dargeneecled becarse oxrinuus quarionMW, tares qearain(ORS, speed dange command reany adakle atconstart saxe

\hline 57 \& Continuous operation(NM) or trans. operation (OR) command input in constant or positioning constant operation mode. Or speed change command input in continuous, constant or positioning constant operation mode \& 0 \& 0 \& 0 \& 0 \& | Present |
| :--- |
| geration sade |
| undramed | \& | 1 Eror resest |
| :--- |
| 2. Continuous operation(NM) \& trans. operation(OR) unavailable in constant, positioning constant operafornme |
| 3.Speedchange unavailable in continuous, constant andpositiong onssatt peadionmode |
| 4. Monflypryam |

\hline 58 \& Continuous operation(NM) command input in other operation modes than confinuous oparionnmode \& 0 \& 0 \& 0 \& 0 \& | Present |
| :--- |
| gacaion sate |
| undaryed | \& | 1. Eroreseet |
| :--- |
| 2. Continuous operation(NM) is available only in arrinusus peation mode |
| 3. Motiy poyram (paraion mode) |

\hline 59 \& Override and continuous operation command unavailable in other states thaninoperámby statommad \& 0 \& 0 \& 0 \& 0 \& | Present |
| :--- |
| aperabon sade |
| undaroged | \& 1 Eroresest

\hline ∞ \& Override command input in operation step-executed set to overridepobhtied \& 0 \& 0 \& 0 \& 0 \& Present peration sade unclarged \& | 1. Eroreest |
| :--- |
| 2. Charge to aerinde abvalle sta |

\hline 61 \& Continuous operation(NM) command unavailable in continuous operation whose drexion is tobe chanod \& 0 \& 0 \& 0 \& 0 \& | Present |
| :--- |
| aperabon sade |
| undaraged | \& 1 Eroresest

\hline 66 \& | No retcoperion data to operexe astat command |
| :--- |
| Data No. range exceeded at Position Teaching and Speed Teaching armand | \& 0 \& 0 \& 0 \& 0 \& Nopoeraim \& | 1. Eroresest |
| :--- |
| 2. OperionstepnoChange |

\hline 67 \& \& 0 \& 0 \& 0 \& 0 \& | Present |
| :--- |
| peradion sade |
| uncharyed | \& | 1. Eroresest |
| :--- |
| 2. To be in setting range |

\hline 68 \& \& 0 \& 0 \& 0 \& 0 \& №pocraion \& 1 Tobe inicting stingarace

\hline 69 \& Setting position address exceeded over s/w upper limit or s/w lower limit rangeatpesearposionn pesestormand \& 0 \& 0 \& 0 \& 0 \& | Output- |
| :--- |
| pochibiced, |
| Start.point |
| undeded | \& | 1. Eroresest |
| :--- |
| 2. Move to operation available area by JOG or menuloperefion andthen pertomrestat |

\hline 70 \& Position data setting value of positioning constant operation mode is too small \& X \& X \& X \& 0 \& Noppeadion \& 1 Chancestinguale of pssion dxa a ssped

\hline 76 \& | Start command of Absolute Coordinates operation data unavailable at oiginn point |
| :--- |
| undecided state | \& 0 \& 0 \& 0 \& 0 \& Noposeram \& Satatereroign pointceciced

\hline π \& Posion Teachingammadinputaoiginpinitusceicesdstate \& 0 \& 0 \& 0 \& x \& | Available after |
| :--- |
| start. point |
| kexiked | \& | 1. Eroresed |
| :--- |
| 2. Position Teaching command executed after origin point decided |

\hline 78 \& Teadingmode vale inndas assigred \& X \& X \& X \& 0 \& №pocaion \& To be in setting range

\hline ∞ \& \& 0 \& 0 \& 0 \& 0 \& No oceation \& Clamesespedvalues

\hline
\end{tabular}

Chapter 7 Function Blocks

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 87 \& \begin{tabular}{l}
Origin point return speed exceeded over allowable range(bias speet-speod inis), \\
Origin point return low-speed set higher than origin point return high speed
\end{tabular} \& 0 \& 0 \& 0 \& 0 \& No oparaion \& Chargespeedvades \\
\hline 88 \& Minor axis speed calculated by linear interpolation exceeded over alonade rame \& 0 \& X \& 0 \& 0 \& No oparaion \& Chancespedvaluegerated bymina axis \\
\hline 89 \& \& 0 \& 0 \& 0 \& 0 \& No operation if detected before querion \& Stap pereminidetectedduringoerían \\
\hline 9 \& Command inutatututrohitied state \& 0 \& 0 \& 0 \& 0 \& Nooperaion \& Canol atupurdibed and pectomiestat \\
\hline 97 \& Commad inut ding pecerion(Bus) \& 0 \& 0 \& 0 \& 0 \& \begin{tabular}{l}
Present \\
qperaionstade \\
undaroged
\end{tabular} \& Add protection circuit against execution of the other ammandsdring cearion in poyan \\
\hline \begin{tabular}{l}
98 \\
99
\end{tabular} \& \begin{tabular}{l}
Start, origin point return or interpolation operation command input at PLCstop state \\

\end{tabular} \& 0

\times \& 0 \& 0

\times \& x

0 \& \begin{tabular}{l}
Nopperaion

Nooperaion

 \&

Change CPU module state from STOP to RUN and petomirestat

Execute inching command while operation of the other axis isastap
\end{tabular}

\hline 106 \& \& 0 \& 0 \& 0 \& 0 \& Nooceraion \&

\hline $$
\begin{gathered}
116 \\
\text { (nte2) }
\end{gathered}
$$ \& \& 0 \& X \& 0 \& 0 \& \&

\hline $$
\begin{gathered}
117 \\
\text { (nbe 1) }
\end{gathered}
$$ \& Operation unavailable because operation speed is higher than amactarimoncexecerion indinaion \& X \& Δ \& X \& X \& \&

\hline 119 \& Start command input from position data set to Complete without number daçe \& 0 \& 0 \& X \& X \& \&

\hline
\end{tabular}

Note 1) Valid only in G4F-POPA, V1.0
Note 2 G3F-POPA, V1. 1 or later

Chapter 8Program

Chapter 8 Program

8.1 Prior to program introduction

-Function Blocks above shall be surely applied to all programs to refer to output parameters of operation state's code information Read[POS\CRD] and present operation state's bit information Read[POSI_SRD] for detailed information on positioning module operation.

- Especially, 6 types of output parameters of operation state's code information Read[POS』_CRD] provide operation information of positioning module to be surely used as protection circuits against error when the respective Function Blocks are to be applied.

Chapter 8Program

		[5]	Rep eated operation complete (Bit:On)	
		[6]	Positioning start complete (Bit:On)	
			M code On (Bit:On) In origin point compensation (Bit:On)	
		[1]	In backlash compensation (Bit:On) *G6F-POPA unused	
		[2]	In continuous operation(Next Move) (Bit:On)	
		[3]	In speed overriding (Bit:On)	
	ST	[4]	Unused	
		[5]	At deceleration stop and Stop complete (Bit:On)	
		[6]	Speed teaching complete (Bit:On) * Valid only in G3F-POPAGG4F-POPA V1.0	
		[7]	Speed change complete(Bit:On) * Valid only in G3F-POPAG4F-POPA V1.0	
		[0]	Speed position control switching *Only G6F-POPA used	
		[1]	External upper limit signal (Bit:Off)	
		[2]	External lower limit signal (Bit:Off)	
		[3]	External near zero point signal (Bit:On)	Information displaying area on input
		[4]	External origin point signal (Bit:On)	
		[5]	Unused	
		[6]	Unused	
		[7]	External emergency stop signal (Bit:Off)	
		[0]	Umused	
		[1]	Error	
		[2]	Position passing	
		[3]	In operation(Busy)	
		[4]	Positioning complete	
		[5]	Origin point return complete	
		[6]	Origin point undecided	
		[7]	Unused	

8- 2

Chapter 8 Program

8.2 Basic program

Refer to Chapter 3\&5 for the details on basic program.

No.	Designation of program	Related page
1	Basic (floating point set setting)	3.2
2	Basic (linear inter polation positioning start floating point set setting)	3.4
3	Deceleration stop(origin point return)	3.7
4	Single operation(origin point return)	3.11
5	Single operation(operation stepNo. assignment)	3.13
6	Constant operation(operation step No. assignment)	3.17
7	JOG operation	3.28
8	Manual pulse generator	3.29
9	Inching operation	3.30
10	Shift to prior position to manual operation	3.31
11	Speed change	3.32
12	Operation step No. change by continuous operation	3.34
13	Speed override	3.36
14	Present position change	3.39
15	Speed Teaching	3.41
16	Position Teaching	3.42
17	Settingoperationstep No.	3.43
18	Parameter change	3.44
19	Mcode mode	$5-10$
20	Zone setting	$5-16$

8.3 Application program

8.3.1 Positioning of single operation, repeated operation, auto-operation \& continuous operation

1) Setting in SW package

2) Operation pattern

Remark

- In continuous opeazion mode, an operaion patem with diececion suidching cant te used in G3FPPOPA \& GAF-POPA.

Accordingly, program shall be surely changed to autooperation instead of continuous operation in G3FPPPA \& GAF-POPA.

- Succeeding operation mode to auttooperation is only separate, repeated or auteoperation as available.
- Succeeding operation mode to continuous operation is only separate, repeated or continuous operation as avaiable.

Chapter 8 Program

3) Programming example

8.3.2 Positioning with M code (G6F-POPA)
4) Setting in SM package

5) Operation pattern

Remark

- M code signal is changed to the applicable M code No.in continuous operation mode without stop whenever operation step numbers are changed, and the operation is to be continued.
- In autooperation mode, M code "On" signal if tumed On shall be Off by M coce Off command to operate the following operation step N N .

Chapter 8 Program

3) Programming example

8-7

Chapter 8Program

8.3.3 2-axes linear interpolation operation

1) Setting in SW package

2) Operation pattern

Chapter 8Program

3) Programming example

Chapter 8 Program

8.3.4 Position Teaching with MMI

1) Setting in S/W package

2) Inputooutput parameters used
(1) To transmit position address value to CPU module with \%MW100 at MMI:\%MW100
(2) To change position address values: \%MO (position changed at MMI)
(3) To start Position Teaching: \%M1(start command of MMI)
3) Programming example

Chapter 9 Buffer Memory And I/O Signals

Chapter 9 Buffer Memory and I/O signals

9.1 Buffer Memory

9.1.1 Contents of Buffer Memory

Buffer Memory (common-used RAM) is used to save positioning module and communication data between PLC and CPU.

1) Buffer Memory of G4F-POPA (K300S, 1-axis)

9-1

Chapter 9 Buffer Memory And I/O Signals

2) Buffer Memory of G3F-POPA/G4F-POPB/G6F-POPA (X-axis)

9-2

Chapter 9 Inner Memory And I/O signals

9.1.2Buffer Memory state

1) External upper/lower limit signal
(1) It is turned On if stroke upper/lower limit is exceeded over.
(2) Pulse output-prohibited state expected.
(3) Turned Off during position adjustment by manual operation (JOG operation) after pulse-out prohibited state is cancelled.
2) Emergency stop
(1) Turned On if stopped by external or internal emergency stop signal since then, leading to pulse-out prohibited state.
(2) Pulse-out prohibited state and all errors are cancelled by cancellation command of pulse-out prohibition.
3) JOG operation

Turned On during JOG low/high operation.
4) In compensation operation

Turned On during backlash compensation and origin point compensation.
5) Zone \#1, 2, 3

Turned On respectively if into Zone \#1, 2, 3 set to parameters.
6) Present M code value
(1) Present M code value($0 \sim 255$) set to position data is displayed.
(2) M code value of G4F-POPA is displayed on bit 8~F and that of G3F-POPA,G4F-POPB \& G6F-POPA is displayed on bit $0 \sim 7$ respectively.
(However, G3F-POPA is United O/S V3.0 or above)
(3) If value of buffer memory address 0 is 15 in G4F-POPA, the value to be monitored will be h0F00 or 3840 as displayed.

Chapter 9 Inner Memory And I/O signals

7) Error data

Error serious on internal CPU of positioning module which is unavailable to use.
8) Error code

Error trivial on positioning module. Refer to troubleshooting list of error codes.

9) Present speed

Speed value presently operated is displyed.

10) Present operation data No.

Operation data No.(operation step No.) presently operated is displayed.

Chapter 9 Inner Memory And I/O signals

11) Present position address

Position address $(-16,744,447 \sim+16,744,447)$ presently operated is displayed.

\triangleright Results of program execution(in case of G6F-POPA's buffer memory)

Remark

Since addresses $0 \sim 5$ (X-axis) and 50~55(Y-axis) of positioning module' s buffer memory are the area exclusively for Read, Read of positioning module status shall be performed by GET command.

Chapter 9 Inner Memory And I/O Signals

9.1.3 Command of Commorused RAM (BufferMemory)and data

2) Next Move command

(1) Command used in continuous operation mode for operation with the operation speed of the next operation data No. as changed.($1:$ On, $0:$ Off)
(2) Command available only at constant speed.
3) Manual pulse generator operation allowable
(1) Approval command of operation by external manual pulse generator.(1 : allowable, $0:$ prohibited)
(2) Available only in G4F-POPB \& G3F-POPA.
(3) Approval command of manual puse generator operation is automatically Off at positioning start and interpolation positioning start
4) Parameter transmission command
(1) Command used to transmit acceleration time, deceleration time, M code mode, JOG high-speed, origin point return high-speed parameters.(1:On, $0:$ Off)
(2) Used to Write parameter value to change on address 17~21 (X-axis) and 67~71(Y-axis) and turn On the parameter transmission command.
(3) Available only in G6F-POPA.
(4) Valid only until powered off because the changed parameters by parameter transmission command are saved in RAM.

Chapter 9 Inner Memory And I/O Signals

5) JOG low-speed/high -speed

Used to decide the speed low or high for JOG operation. (1: high, $0:$ low $)$
6) JOG/Inching (forward/reverse)

Used to decide the rotation direction forward or reverse for JOG operation or inching operation. (1 : reverse, 0 : forward)
7) Present value preset

As a changing command of present position address, it is used to Write position address value to change on address $9 \& 10(\mathrm{X}$-axis) and $59 \& 60(\mathrm{Y}$-axis) and turn present value preset command On.

8) Position teaching operation step No.

Position No.(step No.) setting data for Position teaching.
Position teaching (position address change) is performed by Position teaching command with position addresses, 9 \& 10 (X-axis) and $59 \& 60$ (Y-axis).

9) Operation step No.

Operation step No. value for operation start, which can be used along with change command of operation data No.

10) Preset position address

Used to change present position address if Preset command of present value is executed, and to change position address of operation step No. assigned at Position teaching operation step No. if Position teaching command is executed.

Chapter 9 Inner Memory And I/O Signals

11) Override value(\%)

Speed in \% in case that override operation is desired with speed changed at the rate, $10 \sim 150 \%$ of operation speed of setting speed data. The setting range is $1 \sim 15(10 \sim 150 \%)$.
12) Inching value

Shifting distance if inching command is executed. The setting range is $1 \sim 99$.

13) Variable speed value
(1) Speed value when operation speed is desired to change to random set speed during positioning operation.
(2) Speed change command and variable speed value shall be processed under the same conditions during constant operation.

14) Speed teaching speed data No.

Speed data No. to change at Speed teaching command with setting range of 0~127.

Chapter 9 Inner Memory And I/O Signals

15) Speed teaching speed value
(1) Speed value to change at speed teaching command.
(2) In case of execution of speed teaching command, speed teaching command, speed teaching speed data No. and speed teaching speed value shall be processed under the same conditions

16) Teaching mode
(1) Teaching mode setting is available only in G6F-POPA
(2) If 0 is set to the assigned address of buffer memory, RAM teaching mode will be set and If 1 is set to, ROM teaching mode will be set.
(3) In case position teaching or speed teaching is expected to be frequently executed, the teaching can be performed infinitely If RAM teaching mode is set

X : add. 17, 18
Y : add. 67, 68

17) Acceleration/deceleration time
(1) Used satisfactorily to change acceleration or deceleration time by external input.
(2) Available only in G6F-POPA with setting range of $0 \sim 999(\times 10 \mathrm{~ms})$.

18) M code mode
(1) To be set to change M code modes. Available only in G6F-POPA.
(2) In case of After Mode, M code and M code On signal are output simultaneously with positioning complete signal.
(3) Error occurs if start command is executed with M code On.
(4) Execution of start command is available after M code is cancelled.
(5) In case of auto-operation mode, M code once generated is standing by until M code is cancelled and then executes the next step operation if M code On signal is Off.

Chapter 9 Inner Memory And I/O Signals

19) JOG high -speed value

It is used to change operation speed in JOG high-speed operation. Available only in G6F-POPA.

20) High-speed value of origin point return

It is used to change operation speed at origin point return command.
Available only in G6F-POPA.

Remark

1. Addresses $6 \sim 21$ (X-axis) and $56 \sim 71$ (Y-axis) are Read/Write areas of positioning module's buffer memory, where to perform Write and Read through PUT/GET command.
2. Be careful, if Write/Read of other data than set address of positioning module's buffer memory is performed through PUT/GET command, the operation of positioning module may be abnormal.

Chapter 9 Inner Memory And I/O Signals

9.2 IV signal

9.2.1 Contents of I/O signal

In case positioning module is applied to MASTER-K 200S, 300S \& 1000S CPU module, Input Signal and Output Signal are used for data exchange with PLC CPU. The contents and functions are as described below.
See below If $1 / O$ Word No. of positioning module equals " n ".
The contents of I/O signals of G6F-POPA, G4F-POPB \& G3F-POPA are identically 2-axes, 64 points.

1) I/O signal of G4F-POPA (32 points)

Signal direction:PLCCPU ヶPositioning module		Signal direction : PLCCPU \rightarrow Positioning module	
P area No(linut)	Staus signa	P aea No(apit)	Com. signal(P contact command)
POO(n)0	Error	POO($\mathrm{n}+1$) 0	Emergency stop
P00(n)1	In operation	POO($\mathrm{n}+1$) 1	Operation data No. change
P00(n)2	Positioning complete	POO($\mathrm{n}+1$)2	Floating point set
P00(n)3	Origin Point returnomplate	POOn $n+1$) 3	Outuutprohibited cancellation
POO(n)4	Origin point undecided state	POO($\mathrm{n}+1)^{4}$	Speed override
P00(n)5	Pulse-outprohibited state	POO($\mathrm{n}+1$) 5	Error reset
P00(n)6	M code On	POO($\mathrm{n}+1$) 6	Mcode Off
POO(n)7	Command complete	POO($\mathrm{n}+1$) 7	Deceleration stop
P00(n)8	Decel. stopping complete	POO($\mathrm{n}+1$) 8	Unused
P00(n)9	In constantoperation	POO($\mathrm{n}+1$) 9	Positioning start
POO(n)A	In origin point retum	POO($\mathrm{n}+1$) A	Origin Point return operation
POO(n)B	In positioning	POO($n+1$) B	Speed change
POO(n)C	Unused	POO($n+1$) C	JOG start
POO(n)D	Position Teaching complete	POO($n+1$) D	Position Teaching
POO(n)E	Speed Teaching complete	POO($n+1$) E	Speed Teaching
P00(n)F	Inching complete	POO($\mathrm{n}+1$) F	Inching start

Chapter 9 Inner Memory And I/O Signals

2) I / O signal of G3F-POPA/G4F-POPB/G6F-POPA (64 points)

Axis	Signal direction:PLCCPU \leftarrow Positioning module		Signal direction: PLCCPU \rightarrow Positioning module	
	P area No(inout)	Status signal	P area No(ouput)	Com. signa(P contact command)
$\begin{aligned} & \text { X- } \\ & \text { axis } \end{aligned}$	P00(n)0	Error	POO(n+2)0	Emergency stop
	P00(n)1	In operation	P00(n+2)1	Operation data No. Change
	P00(n)2	Positioning complete	P00(n+2)2	Floating point set
	P00(n)3	Origin point return complete	POO(n+2)3	Ouput-prohibitedcancellation
	P00(n)4	Origin point undecided state	P00(n+2)4	Speed override
	P00(n)5	Pulseout prohibited state	P00(n+2)5	Error reset
	P00(n)6	Mcode On	P00(n+2)6	Mcode Off
	P00(n)7	Command complete	P00(n+2)7	Deceleration stop
	P00(n)8	Decel. stopping/complete	P00(n+2)8	Interpolation positioning start
	P00(n)9	In constant operation	P00(n+2)9	Positioning start
	P00(n)A	In origin point return	P00(n+2)A	Origin point return operation
	P00(n)B	In positioning	POO(n+2)B	Speed change
	P00(n)C	In interpolation operation	POO(n+2)C	JOG start
	P00(n)D	Position Teaching complete	P00(n+2)D	Position Teaching
	P00(n)E	Speed Teaching complete	P00(n+2)E	Speed Teaching
	P00(n)F	Inching complete	POO(n+2)F	Inching start
Yaxis	$\mathrm{POO}(\mathrm{n}+1) 0$	Error	$\mathrm{POO}(\mathrm{n}+3) 0$	Unused
	P00($\mathrm{n}+1$)1	In operation	P00(n+3)1	Setting operationdata No.
	POO($n+1$)2	Positioning complete	$\mathrm{POO}(\mathrm{n}+3) 2$	Floating point set
	$\mathrm{POO}(\mathrm{n}+1) 3$	Origin point return complete	$\mathrm{POO}(\mathrm{n}+3) 3$	Ouput-prohibitedcancellation
	POO($n+1$)4	Origin point undecided state	P00($n+3$) 4	Speed override
	POO($n+1$)5	Pulseout prohibited state	P00($n+3$) 5	Error reset
	$\mathrm{POO}(\mathrm{n}+1) 6$	Mcode On	$\mathrm{POO}(\mathrm{n}+3) 6$	Mcode Off
	P00($\mathrm{n}+1$)7	Command complete	P00(n+3)7	Deceleration stop
	$\mathrm{POO}(\mathrm{n}+1) 8$	Decel. Stopping/complete	P00($n+3$) 8	Unused
	P00($n+1$) 9	In constant operation	P00(n+3)9	Positioning start
	P00(n+1)A	In origin point return	P00(n+3)A	Origin point return operation
	P00($n+1$) B	In positioning	P00($n+3$) ${ }^{\text {a }}$	Speed change
	POO(n+1)C	In interpolation operation	POO(n+3)C	JOG start
	POO(n+1)D	Position Teaching complete	P00($\mathrm{n}+3$) D	Position Teaching
	POO($n+1$) E	Unused	POO(n+3)E	Unused
	POO($n+1$)F	Inching complete	P00(n+3)F	Inching start

Chapter 9 Inner Memory And I/O Signals

9.2.2 S tatus signal

1) Error

Turned On if error occurred and turned Off by error reset command and cancellation command
of pulse output-prohibited.
2) In operation
(1) Turned On at positioning start command and turned Off if start command complete.
(2) Signals "In operation" of X-axis \& Y-axis are turned On simultaneously at interpolation operation command and turned Off simultaneously if command complete.
(3) Turned On/Off also at inching command and in JOG operation.
(4) Turned Off at deceleration stop and emergency stop.
(5) Turned On during the dwell time.
3) Positioning complete
(1) Turned Off at operation commands of positioning and origin point return
(2) Turned On if single \& repeated operation complete and origin point return complete, and in positioning constant operation after dwell time elapses.
(3) Turned Off at deceleration stop \& emergency stop.
(4) Turned On/Off simultaneously at X -axis \& Y -axis if in interpolation operation.
(5) Turned Off in auto-operation or continuous operation.
4) Origin point return complete
(1) Turned On if dwell time and origin point compensation are executed after operation command of origin point return.
(2) Turned Off by any other command signals.
5) Origin point undecided
(1) Turned Off if floating point set is set or origin point return is complete.
(2) Turned On if origin point is not decided.
6) Pulse-output prohibited
(1) Turned On at emergency stop or if stroke upper/lower limit is exceeded over.
(2) Turned Off by cancellation command of pulse-out prohibited.
7) M code On
(1) M code value is produced as classified into With/After mode at positioning Turned On if the value is 1~255.
(2) Turned On in single, repeated, auto \& constant operation mode after the dwell time.
(3) Turned On at setting position in continuous operation mode.
(4) Turned Off by M code Off command.

Chapter 9 Inner Memory And I/O Signals

8) Command complete
(1) A signal notifying PLC CPU that the command is normally executed at positioning module when Commonused RAM command or P contact command (output contact command of positioning module) is On, which is turned On if the command is normally executed.
(2) Turned Off immediately if Common-used RAM command or P contact command is Off.
(3) Do not use this command complete signal in JOG operation or at approval command of manual pulse generator.

Remark

1. Command shall be turned Off if command complete signal is On.
2. In PLC CPU, commands 2 or above are not allowed simultaneously on positioning module. Surely apply the next command after the prior command is executed.

9) Deceleration stopping / complete

(1) Turned On until stopped by deceleration stop command.
(2) Turned Off at positioning start, origin point return operation, JOG command and inching command.
10) In constant operation

Turned On only in constant operation. Turned Off in others.(acceleration stage, deceleration stage, dwell time, operation stop, etc.)
11) In origin point return

Turned On at operation command of origin point return and turned Off if origin point return is compte.

Chapter 9 Inner Memory And I/O Signals

12) In interpolation operation

Turned On at interpolation operation command and turned Off if positioning complete.
13) Position teaching complete
(1) Turned On if position teaching complete.
(2) Turned Off in positioning start, origin point return operation and JOG operation.
14) Speed teaching complete
(1) Turned On if speed teaching complete.
(2) Turned Off in positioning start, origin point return operation and JOG operation.
15) Inching complete
(1) Turned On if inching complete.
(2) Turned Off in positioning start, origin point return operation and JOG operation

Chapter 9 Inner Memory And I/O Signals

9.2.3 Command signal (P contact command)

1) Emergency stop
(1) Signal input from the outside of positioning module is called as external emergency stop, and P contact emergency stop is called as internal emergency stop.
(2) Internal emergency stop shall be applied when external emergency stop signal is at normalwired state(N.C).
(3) Pulse-out prohibited state is expected after this command is executed.
2) Operation data No.change
(1) Function to jump to random operation data No. by this change command of operation data No.
(2) Operation will be executed with operation data No. saved by positioning start command if operation data No. to jump is saved to address 8 (X -axis) \& 58 (Y -axis) of positioning module's buffer memory and the change command of operation data No. is On.
3) Floating point set
(1) Setting command of floating point set shall be applied to find S/W datum point in a system where circle-operating index table or mechanical datum point is not necessary, even though origin point return is a function to find a mechanical datum point in system.
(2) Present position is changed to origin point address set at parameters if setting command of floating point set is executed.
4) Cancellation of pulse-out prohibited

Cancellation function of the state of pulse out prohibited by stroke upper/lower limit and emergency stop.
5) Override
(1) Function to change operation speed within $10 \sim 150 \%$.
(2) Speed change data which is higher byte of address 11 (X-axis) \& 61 (Y -axis) of positioning buffer memory shall be set in the range of h0100~h0F00.
(3) $\mathrm{h} 0100=10 \%, \mathrm{~h} 0200=20 \%, \ldots \ldots, \mathrm{~h} 0 \mathrm{~F} 00=150 \%$ respectively.
6) Error reset

Command to settle light error if occurred.
7) M code Off

M code On signal if occurred is let turned Off.

Chapter 9 Inner Memory And I/O Signals

8) Deceleration stop
(1) It temporarily stops positioning \& origin point return operation internally if executed.
(2) Position shift is performed as much as travel value by relative position (INC) shift, and as much as the remaining position address by absolute position if positioning start command is executed after execution of deceleration stop.
9) Interpolation operation
(1) Linear interpolation operation is performed at interpolation positioning start.
(2) Arrangement of position data at X -axis \& Y -axis shall be set identical.
(3) Target speed, dwell time, M code and other controls shall be operated as based on Xaxis.
(4) Override command is not processed.
(5) Bias speed is always regarded as 0 .
(6) Operation mode is as based on X -axis
(7) Interpolation operation for others than single, repeated and auto-operation mode is not available but causing error.
(8) Stopped unconditionally at emergency stop.
(9) Processed by signal of either X -axis or Y -axis at deceleration stop and positioning stop.
(10) Refer to 2) 2-axes position control in 3.1.1.
10) Positioning start
(1) If positioning start is executed, operation will be performed upto position address of present operation data No. according to position data.
(2) In single operation mode, operation is performed with incremental operation data No. per execution of positioning start.
(3) In auto-operation or continuous operation mode, operation is performed upto setting operation data No. of single operation mode by one positioning start of positioning.
(4) Refer to 4.2 Operation mode.
11) Origin point return operation
(1) Command to fine the mechanical origin point.
(2) Origin point address assigned by parameter setting will be the present address if origin point return is complete.
(3) 4 methods are available for origin point return. Refer to 3.5 Origin point return for details.
12) Speed change
(1) Function to change operation speed to setting speed up to $10 \sim 200 \mathrm{Kpps}$ during operation.
(2) Actual setting speed value is $1 \sim 20,000$ with operation speed range of $10 \sim 200,000 \mathrm{pps}$.
(3) Since acceleration/deceleration time is not applied at speed change command, sudden speed change may cause separation if step motor used.
(4) Speed change is available in constant operation.

Chapter 9 Inner Memory And I/O Signals

(5) Speed value to be changed shall be set at address 12 (X-axis) \& 62 (Y -axis) of buffer memory and speed change command and speed value shall be programmed to be processed under the same conditions.
13) JOG operation
(1) A manual operation command used for forward and reverse rotation operation at JOG high/low speed as set at parameters.
(2) JOG low-speed shall be set lower than high -speed.
(3) In G6F-POPA, no speed limit error occurs in JOG low-speed operation and the operation is allowed at lower speed than bias setting speed.
14) Position Teaching
(1) Function to change position address of position data to random set value.
(2) Operation data No. of position address to change shall be assigned to address 7 (X-axis) and 57 (Y -axis) of buffer memory and position address value to set shall be assigned to address 9~10 (X-axis) and 59~60(Y-axis) of buffer memory so to be processed as programmed under the same conditions as position teaching command
(4) In G6F-POPA, position teaching is available by position teaching command even if
origin point is at undecided state.
15) Speed Teaching
(1) Function to change speed value of speed data.
(2) Speed data No. and speed data to change shall be assigned to address 13 and 14 of buffer memory so to be processed under the same conditions as speed teaching command.
16) Inching
(1) A Manual operation function to operate with pulse amount (1~99) set by user.
(2) Inching operation is performed at fixed shift speed of 50pps.
(3) Used for accurate move in case JOG operation is not available.

Remark

1. Be careful that the application number of RAM Teaching(G6F-POPA) is not limited but the number of ROM Teaching is limited.(available: 100,000 times)
2. To increase the application number (if performed by one step of teaching operation)
1) set 300 operation steps to repeated operation via software package and
2) change start position No. to the next operation step if the teaching count number reaches 99,000 as compared with 100,000 or below $(99,000)$ in PLC program so to
3) use up to teachingtimes of $99,000 \times 300=29,700,000$.

Chapter 9 Inner Memory And I/O Signals

Example of position teaching) For position teaching of $4^{\text {th }}$ step's position address of X-axis with 100,000
Position data of X -axis

Step No.	Coordi nates	Override	Operatio nme thod	Invalid/v alid	Operation mode	Address	M code	SpeedN 0.	Dwell $(\times 10$ ms
0	Absol ute	Prohibited	Continuo us	Valid	Single	0	0	0	0
1	Absol ute	Prohibited	Continuo us	Valid	Single	0	0	0	0
2	Absol ute	Prohibited	Continuo us	Valid	Single	0	0	0	0
3	Absol ute	Prohibited	Continuo us	Valid	Single	100,000	0	0	0
4	Absol ute	Prohibited	Continuo us	Valid	Single	150,000	0	0	0

D0007 D0007
Add. 10

\triangleright Program(If G6F-POPA is installed on $0^{\text {th }}$ slot)

Chapter 9 Inner Memory And I/O Signals

Rematk

Data-accompanied command shall be processed with data and command simultaneously under the same conditions (M0100 in case of the program above). (position teaching, speed teaching, present position preset, parameter transmission, inching start, speed change, speed override, operation data No.change)

Example of speed teaching) For speed teaching of speed value of speed data No. 3 with 100 .

Chapter 10 MK Program

Chapter 10 MK program

Various examples are discribed for operation of positioning module in MASTER-K
K200S/300S/1000S series via the PLC program.
Example program is prepared in the system below unless noted otherwise.
I/O contact of G6F-POPA positioning module includes 64 points upto $\mathrm{P} 0020 \sim \mathrm{P} 004 \mathrm{~F}$.

[Fig.10.1] System configuration of basic example program

Fig.10.1 shows G6F-POPA positioning module as installed on slot 1 of K200S CPU.
A sequence program shall be composed with I/O word No. as changed for installation on the other slots.
For status information reading to Read/Write common-used RAM (positioning module's buffer memory) data between PLC CPU and positioning module, use GET/ GETP command and for command and data writing, use PUT/PUTP command.

Carefully read 10.2.1 Programming caution for sequence programming with positioning module prior to application.

Chapter 10 MK Program

10．1 Information exchange between positioning module \＆PLC CPU

2 types of information classified into bit－unit and word－unit are transmitted／received as exchanged between PLC CPU and positioning module．

【Fig．10．2】 Structure of positioning module

10．1．1 Exchange of I／O signals（bit information）

I／O signals in bit unit are exchanged between PLC CPU and positioning module．The I／O signals original of positioning module，which are different from external I／O are used in PLC．Input signal is P contact status signal and Output signal is P contact command signal．

\＆I nput signal

【Fig．10．3】 Input signal of positioning module

Input signal used for sequence program is a signal input from positioning module to CPU， which is generated from positioning module side．It is used as a contact point in programming．See the examples below ：
（1）Error signal
Signal turned On if error occurred in operation
（normal：Off，error：On）
（2）＂In operation＂signal
Signal that inputs what is in positioning operation to CPU

Chapter 10 MK Program

\＆Output si gnal

SET，RST or OUT used for sequence program is a signal output from CPU to positioning module， as is generated from CPU to be used as coil or contact point of program．
（1）Positioning start command
Commandto let positioning module find the
next position No．to operate
（2）Origin point return command
Command to find the machine＇s origin pant to operate
【Fig．10．4】 Output of positioning module

10．1．2 Exchange of word data（word information）

Information of word data is exchanged in 16－bit unit．There is buffer memory（common－used RAM）
in positioning module to save data．

【Fig．10．5】 Buffer memory（common－used RAM）

Buffer memory（common－used RAM）Reads status information with GET／GETP commands and Writes commands and data with PUT／PUTP commands in CPU．

【Fig．10．6】 Example of buffer memory（common－used RAM）

Chapter 10 MK Program

10.2 Programming

10.2.1 Programming Caution

Read the status always prior to execution of command.

Any other command than error reset, speed change, override, deceleration stop and Next Move command is not allowed to execute during operation or in error. Command Off is to be processed by command complete signal. (P contact command, common-used RAM command)

Data-accompanied command shall be processed simultaneously with data and command under the same conditions, or positioning module may be abnormal in operation.
(Data accompanied commands : present value preset, start position No. change, override, inching, position teaching, speed teaching)

Chapter 10 MK Program

JOG \& MPG approval command is a level command.
Namely, it is operated only when command condition is On. If command condition is Off, the operation stops promptly. Others than 2 commands described above shall be operated with the pulse of command condition.

Override, Next Move and speed change command shall be executed only at constant.
If position data is of Absolute method, other commands shall be executed after execution of origin point return or floating point set command.

Just one command shall be executed. (2 or above commands are not allowed simultaneously)
If powered On, origin point return or floating point set shall be complete first to allow other command, or error 76 occurs in Absolute operation with the command not executable.

Read only area is arranged according to the address of buffer memory (common-used RAM). Never apply PUT command to this area.
(X-axis Read only area : address $0 \sim 5$, X-axis Read/Write available area : address $6 \sim 21$,
Y-axis Read only area : address $50 \sim 55$, Y-axis Read/Write available area : address $56 \sim$ 71)

Do not Read/Write on other addresses than assigned at buffer memory when executing PUT/GET commands.

Surely refer to 3.1 Buffer memory because the address of buffer memory differs according to the type of positioning module.

Present position address shall be surely read in 2-word unit simultaneously and preset position address be written in 2-word unit simultaneously also. (PUT/GET commands)

Chapter 10 MK Program

10.2.2 Basic program

1) Positioning start (AST)

2) Origin point return(ORG)

3) Deceleration stop(STOP)

Chapter 10 MK Program

4) Internal emergency stop

- Internal emergency stop

Emergency stop with NC (B contact) switch or sensor as connected to external connector pin No. 19 by program

- External emergency stop

Emergency stop with NC (B contact) switch or sensor as connected to external connector pin No. 19 irrelevant to program

Chapter 10 MK Program

5) JOG operation(JOG)

10-8

Chapter 10 MK Program

6) Operation data No. change(SMC)

7) Output-disable cancellation (OFF)

Chapter 10 MK Program

9) Override(OR)

10) Error reset(RES)

11) M code Off(MOF)

Chapter 10 MK Program

12) Speed change(VCG)

13) Position Teaching(TEA)

Chapter 10 MK Program

14) Speed Teaching(VLT)

15) Inching(INC)

Chapter 10 MK Program

16) 2-axes interpolation operation

Positioning operation

(2) Position data and speed data

X-axis, position data

Step	Coordinat es	Override	Operationme thod	Invalid/ Valid	Operation mode	Position address(Pu lse)	M code	Speed No.	Dwell Time
0	Absolute	Disable	Continuous	Valid	Single	10,000	0	0	5
1	Absolute	Disable	Continuous	Valid	Single	25,000	0	1	5
2	Absolute	Disable	Continuous	Valid	Single	5,000	0	2	5
3	Absolute	Disable	Continuous	Invalid	Single	0	0	0	0
4	Absolute	Disable	Continuous	Invalid	Single	0	0	0	0

Y-axis, position data

Step	Coordinate s	Override	Operationme thod	Invalid/ Valid	Operation mode	Position address(Pu lse)	M code	Speed No.	Dwell Time
0	Absolute	Disable	Continuous	Valid	Single	10,000	0	0	5
1	Absolute	Disable	Continuous	Valid	Single	15,000	0	1	5
2	Absolute	Disable	Continuous	Valid	Single	30,000	0	2	5
3	Absolute	Disable	Continuous	Invalid	Single	0	0	0	0
4	Absolute	Disable	Continuous	Invalid	Single	0	0	0	0

- Speed data

No.	Data
0	200
1	400
2	600
3	0

Chapter 10 MK Program

(3) System configuration

System shall be configured as shown in Fig. 10.1 and be connected with the driver with 2 axes of X \& Y.
The operation shall be with X-axis interpolation command signal to let interpolation command On.
(4) Program

Chapter 10 MK Program

17) Teaching mode change

Available only in positioning module G6F-POPA.

18) Parameter change

Available only in positioning module G6F-POPA.

Chapter 10 MK Program

10.3 Application program

10.3.1 Speed change, Next move, Change of operation data No.

1) System configuration

Start position change No. setting

Chapter 10 MK Program

2) Data setting and operational description

- Y-axis position data
* Operation pattern 1

Step	Coordinat es	Override	Operation method	Invalid/ Valid	Operation mode	Address (Pulse)	M code	Speed No.	Dwell
0	Absolute	Disable	Continuous	Valid	Single	100,000	0	0	50
1	Absolute	Disable	Continuous	Valid	Single	120,000	0	1	50
2	Absolute	Disable	Continuous	Valid	Single	0	0	0	50
3	Absolute	Disable	Continuous	Invalid	Single	0	0	0	0
4	Absolute	Disable	Continuous	Invalid	Single	0	0	0	0

* Operation pattern 2

Step	Coordinat es	Override	Operationme thod	Invalid/ Valid	Operation mode	Address (Pulse)	M code	Speed No.	Dwell
10	Absolute	Disable	Continuous	Valid	Continuous	500,000	0	2	50
11	Absolute	Disable	Continuous	Valid	Continuous	900,000	0	3	50
12	Absolute	Disable	Continuous	Valid	Single	0	0	4	50
13	Absolute	Disable	Continuous	Invalid	Single	0	0	0	0
14	Absolute	Disable	Continuous	Invalid	Single	0	0	0	0

- Speed data

No.	Data
0	3000
1	5000
2	2000
3	6000
4	4000
5	0
6	0

Qerational description

Operation Sequence :
Origin point Return(P022) \rightarrow Positioningstart $(\mathrm{P} 020) \rightarrow$ Speed Change $(\mathrm{P} 021) \rightarrow$
Positioning start(P020) \rightarrow Positioning start $(\mathrm{P} 020) \rightarrow$ Operation Data No.Change $(\mathrm{P} 024) \rightarrow$
Positioning start(P020) \rightarrow Next Move $(\mathrm{P} 023) \rightarrow$ Operation Data No.Change $(\mathrm{P} 024) \rightarrow$
Positioning start(P020)

Chapter 10 MK Program

- Speed change operation

Next Move operation

- Qeration of operation data No.change

Pos. No. 0

JJUMP(change command to operation data No. 0) $\sqrt{ }$ JUMP (change command to operation data No. 10)
Pos. No. 12 Oos. No. 11 No. 10

Chapter 10 MK Program

3) $\operatorname{Program}$

Chapter 10 MK Program

Remark

1.The above application program example can be applied in system configuration even if G4F-POPB \& G3F-POPA are used as installed on slot No. 3 position where G6F-POPA is equipped.
2.G3F-POPA, G4F-POPB and G6F-POPA all for 2-axes control takes possession of 64 I/O points identically.

Chapter 10 MK Program

10.3.2 Position Teaching by JOG operation

1) The system configuration is as shown in Fig.10.1.
2) It is position teaching program of present position address 20,000 to position No. 3 after rotated forward at JOG high -speed and then moved reverse at JOG low-speed.

Chapter 10 MK Program

Chapter 10 MK Program

10.3.3 Continuous teaching (Position Teaching, Speed Teaching)

- Teaching means a function to assign a position address to move, which is called as Position teaching to be distinguished from speed teaching which assigns speed value.
- Basically just write position address or speed value on positioning module after perparing in S/W Package(PosPack) if not necessary to change after once set. However, position teaching and speed teaching shall be performed in sequence program if position address or speed value is required frequently to change according to input conditions or the product.

1) Example execution results of this section (System is configured as in Fig.8.1)

Position No.(STEP)
Position address

0	1000				
1	2000				
2	3000				
$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{gathered} 4000 \\ S \end{gathered}$	\}	Address	through	Position
9	10000		Teaching		
10	0				
11	0	j			
Speed No.(No.)	Data (Speed value)				
0	100				
1	150				
2	200				
3	250				
9	550		Teaching		
10	0				
11	0				

- If RAM Teaching mode is set by assignment of position teaching mode/speed teaching mode, the operation is performed with the value through teaching at start after the teaching, which can not be confirmed in S/W Package. If RAM teaching mode is set, teaching is available as unlimited
- If ROM Teaching mode is set by assignment of position teaching mode/speed teaching mode, the operation is performed with the value through teaching at start after the teaching, which can be immediately confirmed in S/W Package. If ROM teaching mode is set, teaching is limited upto 100,000 times.

Chapter 10 MK Program

2) Program

Chapter 10 MK Program

10.3.4 Positioning Start, Speed Teaching, return to origin point, Inching, JOG operation

1) System configuration

BCD digital switch (4lettersX 1)

P0000 ~ P000F

Speed value setting for Speed Teaching /Inching amount setting forward,reverse

Chapter 10 MK Program

2) Data setting and operational description

- X-axis position data

Step	Coordinates	Overrid e	Op Mode	Valid Invalid	Op Mode	Address	M Code	Speed No	Dwell
0	Incremental	Disable	Continue	Valid	Single	10,000	0	0	50
1	Incremental	Disable	Continue	Valid	Repeat	$-10,000$	0	0	50
2	Absolute	Disable	Continue	Invalid	Single	0	0	0	0
3	Absolute	Disable	Continue	Invalid	Single	0	0	0	0
4	Absolute	Disable	Continue	Invalid	Single	0	0	0	0

Speed Data

No.	Data
0	3000
1	0
2	0
3	0

Qperational description

Operation Sequence :
Origin point Return(P0022) $\rightarrow+\operatorname{Inching}(\mathrm{P} 0023) \rightarrow+\mathrm{JOG}(\mathrm{P} 0025) \rightarrow$ Positioning $\operatorname{start}(\mathrm{P} 0020) \rightarrow$ Positioning start(P0020) \rightarrow - JOG(P0026) $\rightarrow-\operatorname{Inching(P0024)~} \rightarrow$ Speed Teaching(P0021)

Chapter 10 MK Program

3) Program

Chapter 10 MK Program

Chapter 10 MK Program

Chapter 11 Operation Proceedings \& Installation

Chapter 11 Operation proceedings \& Installation

11.1 Operation proceedings

Operation sequence for positioning operation with positioning module is as shown below.

11.2 Installation

112.1 Installation conditions

Please take precautions to the following items for reliance and safety of the system although the machine is of high reliance regardless of installation conditions.

1) Installation conditions

- To be installed on the control panel waterproof and dustproof.
- Where no continuous impact or vibration is expected.
- Where is not directly exposed to the sunlight.
- Where no condensation is expected due to sudden change of temperature.
- Ambient temperature of $0-55^{\circ} \mathrm{C}$ as kept .

2) Installation

- Wiring leftovers shall not be allowed into PLC when screw holes processing or wiring performed.
- To be installed at a position easy to manage.
- Do not install on the same panel as is with high-voltage device installed on.
- The distance from the duct and surrounding modules shall be 50 mm or above.
- Allow Ground connection where ambient noise condition is normal.

11.2.2 Caution for treatment

Caution for treatment is described covering unpacking of positioning module and instalation.

1) Do not let it fall or shocked hard.
2) Do not remove PCB from the case, it may cause error.
3) Do not let foreign substances such as leftovers into the module top during wiring.

Remove those if ever inserted.
4) Do not remove or attach the module while powered On.

11.3 Wiring

11.3.1 Caution for wiring

1) Cable shall be connected between positioning module and driver as short as possible since its length is just max. 2 m .
2) Let $A C$ and outer I/O signals of positioning module not influenced by surge or induction noise produced at AC side using a separate cable
3) The electric cable shall be selected considering ambient temperature and allowable current with the max. cable size of AWG22 ($0.3 \mathrm{~mm}^{2}$) or above as recommended.
4) Damage or abnormal operation acurs by short circuit if wired too close to hot devices or materials, or directly on oil for long time.
5) The poles shall be checked before the outer contact signal is approved to the terminal.
6) Abnormal operation or error may be caused by induction error ifwired with high-voltage line or power line.
7) Ground connection of the pipe is necessary for piped wiring.
8) The power supplied from the outside ($\mathrm{DC} 5 \mathrm{~V}, \mathrm{DC} 24 \mathrm{~V}$) shall be stable.
9) If noise seems underlying in wiring between positioning module and driver, the pulse output from positioning module and input to motor driver shall be wired as connected with twisted pair cable or shield cable.

Chapter 11 Operation Proceedings \& Installation

11.3.2 Connection between SERVO and stepping motor drive device

1) Connection with FDA-3000 AC SERVO driver

The wiring diagram between FDA- 3000 CN 1 and G6F-POPA is as shown below if used in position control mode.

*1: 1, 2, 33 or 34 shall be used for GNDterminal .
*2 : Surely ground connect the shi el ded I ine of ONI cable with F. G FRAME GROUND).
2) Connection with FDA-5000 AC SERVO driver

*1 : 1, 2, 33 or 34 shall be used for GNDterminal.
*2: Surely ground connect the shi el ded Iine of ONL cable with F. G FRAME GROND).
3) Connection with Sinnco SSD-5000 type

* Refer to the driver manual for the driver pins if not described.

4) Connection with MITSUBISHI MELSERVO-J type

*1: In case that internal power is used.
※ Refer to the driver manual for the driver pins if not described.
5) Connection with UPD566 (stepping motor driver)

*1: Controllable by PLC's rel ay output or transi stor's output contact.
*2 : Protection control is avail able fromover heating driver usi ng PLC DC input si gnal.
*3: Oigin point return is available by naki ng phase Z si gnal by optical sensor, adj acent sensor or limit switch si nce the steppi ng notor has no encoder.

Chapter 11 Operation Proceedings \& Installation

6) Connection with UPK5114NW2 (stepping motor driver)

*1: Controllable by PLC' s rel ay out put or transi st or's out put cont act.
*2 : Protection control is avail able fromoverheating driver usi ng PLC D input si gnal.
*3: Origi n point return is available by making phase Z si gnal by optical sensor, adj acent sensor or limit switch si nce the stepping not or has no encoder.

7) Connection with TAMAGAWA TBL-I series

8) Connection with MITSUBISHI MELSERVO-SA type

Chapter 12 External di mensions
12.1 G6F-POPA

12-1

12.2 G4F-POPA/G4F-POPB

- External dimensions of G4F-POPA is the same as G4F-POPB.

Unit : mm

Appendix 1 How To Set Postioning Module Parameters For Stepping Motor Drive

Appendix 1: How to set positioning module parameters for stepping motor drive

1. Setting of speed limit

Speed limit decides acceleration/deceleration inclination when operated with acceleration/deceleration time.

Profile example

- First, set the max. frequency available in compliance with load conditions to speed limit referring to the characteristic curve of Torque vs. Frequency of the stepping motor
(Later input speed data shall be set in the range of the value, or error occurs and the operation is not available.)

2. Bias speed setting

Bias is to be set to optimize the operation time or to avoid injurious vibration noise the stepping motor has in low frequency band (approx. 100~200pps). Setting is allowed in the value range not exceeding over the selfoperating frequency produced by motor load.

Be careful, if the value is set too high it causes impact noise or damage on the machine at initial acceleration and stop point of time.

Appendix 1 How To Set Postioning Module Parameters For Stepping Motor Drive

3. Acceleration/deceleration time setting

If acceleration/deceleration time is set too low for stepping motor, separation may occur.
Thus, try to find the max. inclination available with acceleration/deceleration time as changed at load-connected state. At this time, since the characteristics of the motor and driver can be changed if used for long, let the inclination set a little gentle in consideration of safety.

A 1-2

Appendix 1 How To Set Postioning Module Parameters For Stepping Motor Drive

4. Testing example of stepping motor with no load

Table1. Testing example of G6F-POPA stepping motor' s max. accel./decel. inclination

Set1 : Motor: PK569BHW, Driver: UDK5128NW2

Max. acceleration/deceleration inclination : 160ms (Operation Speed 20Kpps, Full Step)
Max. speed : 59000pps (speed limit 100000pps, acceleration/deceleration time 5 sec.)
Set2 : Motor: PK596BW, Driver: UDK5114NW2
Max. acceleration/deceleration inclination : 450ms (Operation Speed 20Kpps, Full Step)
Max. speed : 33600pps (speed limit 100000pps, acceleration/deceleration time 5 sec .)
Set3 : Motor : PK264-2A, Driver: CSD2120-P
Max. acceleration/deceleration inclination : 390ms (Operation Speed 20Kpps, Half Step)
Max. speed : 23500pps (speed limit 50000pps, acceleration/deceleration time 1.1 sec .)

Note) The example above resulted from the test with no load, which is subject to change according to characteristics and conditions of the load

Appendix 2 Calculation Of Travel Value Per Pulse

Appendix 21 Calculation of travel value per pulse

- Shifting amount per pulse means the value of the machine gauge used when the positioning module executes position control.
-Setting shall be performed at the ratio of the pulses number to 1 motor rotation of the machine gauge used, shifting amount to 1 motor rotation and shifting amount to 1 pulse as magnified.

2. 1 Calculation of shifting amount per pulse

1) Specification of the machine gauge

Items necessary to calculate shifting amount per pulse are supposed as described below.

Appendix 2 Calculation Of Travel Value Per Pulse

Items	Abbr. \quad Unit	
Shifting amount per pulse	$\triangle \ell \quad \mathrm{mm} /$ Pulse	
Speed of the op. area at emergent transfer	$\mathrm{V}_{\mathrm{O}} \mathrm{mm} / \mathrm{min}$	To be set below parameter speed limit
Motor rpm at emergent transfer	$\mathrm{N}_{\mathrm{O}} \mathrm{rpm}$	To be set below servo rated ppm.
Ball screw lead	$\mathrm{P}_{\mathrm{B}} \mathrm{mm} / \mathrm{rev}$	
Deceleration rate	$1 / \mathrm{n}$	
Pulses number of encoder	$\mathrm{P}_{\mathrm{f}} \mathrm{Pulse} / \mathrm{rev}$	
Output frequency of positioning module	$\mathrm{F}_{\mathrm{o}} \quad$ Pulse	Max. input pulse of the servo
Shifting amount per motor rotation	$\triangle \mathrm{S} \quad \mathrm{mm} / \mathrm{rev}$	

- Shifting amount per motor rotation: $\triangle \mathrm{S}$

$$
\triangle S=P_{B} \quad X \quad 1 / n(\mathrm{~mm} / \mathrm{rev})
$$

Motor rpm : No

$$
N_{\mathrm{O}}=\frac{\mathrm{V}_{\mathrm{O}}}{\triangle \mathrm{~S}}(\text { rpm }) \leq \text { Rated rpm of the SERVO motor }
$$

Shifting amount per pulse: $\triangle \ell$

$$
\Delta \ell=\frac{\Delta S}{P_{f}} \quad \text { (mm/Pulse) } \quad \times \quad a=
$$

a : coefficient of electronic gear rate or P-rate.

- Output frequency of positioning module의 : F_{o}

60 : constant to convert the unit of min. to sec.

Appendix 2 Calculation Of Travel Value Per Pulse

Ex.

Items	Appr.	Unit	Ex.	Results
Shifting amountper pulse		mm/Pulse	$\begin{aligned} & P_{B}=12 \\ & n=2 \\ & P_{f}=12000 \end{aligned}$	$\begin{aligned} \triangle S & =P_{B} \times 1 / n \\ & =12 / 2=6 \\ \triangle \ell & =\frac{\triangle S}{P_{f}} \times a \\ & =\frac{6}{12000} \times a \\ & (\text { if } a=2) \\ = & 0.001(\mathrm{~mm} / \text { Pulse) } \end{aligned}$ Shifting amount per pulse is 0.001 (mm/Pulse)
Speed of the op. area at emergent transfer		$\mathrm{mm} / \mathrm{min}$		
Motor rpm at emergent transfer	No	rpm		
Ball screw lead		mm/rev		
Deceleration rate	1/n			
Pulses number of encoder	Pf_{f}	Pulse/rev		
Output frequency of positioning module	Fo	Pulse		
Shifting amount per motor rotation	\triangle S	mm/rev		

