

 User User User User’’’’s Manuals Manuals Manuals Manual

LG Programmable Logic Controller

GLOFA-GM

LG LG LG LG Industrial Systems

Instruction & Programming

Table of Contents

I

Ch 1. Overview
1.1. Characteristics of IEC 1131-3 Language1-1

1.2. Type of Language ..1-1

Ch 2. The Structure of Software
2.1. Overview ...2-1

2.2. Project ..2-1

2.3. Configuration ..2-1

2.3.1. Resource ...2-2

2.3.1.1. Program ..2-2

2.3.1.2. Resource Global Variable2-2

2.3.1.3. Task ...2-3

2.3.2. Configuration Global Variable2-4

2.3.3. Access Variable ..2-4

Ch 3. Common Elements

3.1. Expression ...3-1

3.1.1. Identifiers ..3-1

3.1.2. Data Expression ..3-1

3.1.2.1. Numbers ..3-2

3.1.2.2. Character String3-2

3.1.2.3. Time Letters ...3-2

3.1.2.3.1. Duration 3-2

3.1.2.3.2. Time of Day and Date 3-3

3.2. Data Type ..3-4

3.2.1. Basic Data Type ..3-4

3.2.2. Data Type Hierarchy Chart3-5

3.2.3. Initial Value ..3-5

3.2.4. Data Type Structure ..3-6

3.3. Variable ...3-8

3.3.1. Variable Expression ..3-8

3.3.2. Variable Declaration ...3-9

3.3.3. Reserved Variable... 3-12

3.4. Reserved Word ... 3-17

 Table of Contents

II

3.5. Program Type ..3-18

3.5.1. Function ..3-18

3.5.2. Function Block ..3-19

3.5.3. Program ...3-20

Ch 4. SFC (Sequential Function Chart)

4.1. Overview ...4-1

4.2. SFC Structure ..4-1

4.2.1. Step ...4-1

4.2.2. Transition ...4-2

4.2.3. Action ...4-2

4.2.4. Action Qualifier ...4-3

4.3. Extension Regulation ...4-8

4.3.1. Serial Connection ..4-8

4.3.2. Selection Branch ...4-8

4.3.3. Parallel Branch (Simultaneous Branch)4-9

4.3.4. Jump ...4-9

Ch 5. IL (Instruction List)

5.1. Overview ..5-1

5.2. Current Result: CR ..5-1

5.3. Instructions ..5-2

5.3.1. Label...5-2

5.3.2. Modifier..5-2

5.3.3. Basic Operation...5-3

5.3.3.1. Basic Operator..5-5

5.4. Calling of Function and Function Block5-24

Ch 6. LD (Ladder Diagram)

Table of Contents

III

6.1. Overview ...6-1

6.2. Bus Line ...6-1

6.3. Connection Line ..6-2

6.4. Contact ..6-3

6.5. Coil ...6-4

6.6. Calling of Function and Function Block6-5

Ch 7. Function and Function Block
7.1. Function ...7-1

7.1.1. Type Conversion Function7-1

7.1.2. Arithmetic Function ..7-8

7.1.2.1. Numerical Operation Function with One Input7-8

7.1.2.2. Basic Arithmetic Function7-8

7.1.3. Bit Array Function ...7-9

7.1.3.1. Bit-shift Function7-9

7.1.3.2. Bit Operation Function7-9

7.1.4. Selection Function ...7-9

7.1.5. Data Exchange Function7-9

7.1.6. Comparision Function ..7-10

7.1.7. Character String Function7-10

7.1.8. Time/Time of Day/Date and Time of Day Function7-11

7.1.9. System Control Function7-11

7.1.10. Data Manipulation Function7-12

7.1.11. Stack Operation Function7-12

7.2. MK (MASTER-K) Function ...7-13

7.3. Array Operation Function ..7-13

7.4. Basic Function Block ..7-13

7.4.1. Bistable Function Block7-13

7.4.2. Edge Detection Function Block7-13

7.4.3. Counter ...7-14

7.4.4. Timer ...7-14

7.4.5. Other Function Block .. 7-14

 Table of Contents

IV

Ch 8. Basic Function/Function Block
Library

8.1 Basic Function Library.. 8-1

ABS ...8-2

ACOS...8-3

ADD ...8-4

ADD_TIME...8-5

AND..8-6

ARY_TO_STRING..8-7

ASIN...8-8

ATAN...8-9

BCD_TO_***..8-10

BOOL_TO_***...8-11

BYTE_TO_***...8-12

CONCAT..8-13

CONCAT_TIME...8-14

COS...8-15

DATE_TO_***...8-16

DELETE..8-17

DI..8-18

DINT_TO_***...8-20

DIREC_IN..8-22

DIREC_O...8-25

DIV...8-27

DIV_TIME..8-28

DT_TO_***...8-29

DWORD_TO_***..8-30

EI..8-32

EQ..8-33

ESTOP...8-34

EXP...8-35

EXPT..8-36

FIND..8-37

GE..8-38

GT..8-39

INSERT..8-40

INT_TO_***..8-41

LE..8-43

LEFT..8-44

LEN...8-45

Table of Contents

V

LIMIT .. 8-46

LINT_TO_***.. 8-47

LN... 8-49

LOG.. 8-50

LREAL_TO_***... 8-51

LT... 8-53

LWORD_TO_***... 8-54

MAX.. 8-56

MID.. 8-57

MIN.. 8-58

MOD.. 8-59

MOVE... 8-60

MUL.. 8-61

MUL_TIME... 8-62

MUX.. 8-63

NE ... 8-64

NOT.. 8-65

NUM_TO_STRING.. 8-66

OR .. 8-67

REAL_TO_***.. 8-68

REPLACE.. 8-70

RIGHT.. 8-72

ROL.. 8-73

ROR.. 8-74

SEL.. 8-75

SHL.. 8-76

SHR.. 8-77

SIN.. 8-78

SINT_TO_***.. 8-79

SQRT... 8-81

STOP... 8-82

STRING_TO_***.. 8-83

STRING_TO_ARY.. 8-85

SUB.. 8-86

SUB_DATE... 8-87

SUB_DT... 8-88

SUB_TIME... 8-89

SUB_TOD.. 8-90

TAN.. 8-91

TIME_TO_***.. 8-92

TOD_TO_***... 8-93

TRUNC.. 8-94

 Table of Contents

VI

UDINT_TO_*** ...8-95

UINT_TO_***..8-97

ULINT_TO_***...8-99

USINT_TO_***..8-101

WDT_RST...8-103

WORD_TO_***...8-105

XOR ..8-106

8.2 Application Function Library.. 8-107

ARY_ASC_TO_BCD..8-108

ARY_ASC_TO_BYTE...8-110

ARY_AVE_***...8-112

ARY_BCD_TO_ASC..8-114

ARY_BYTE_TO_ASC...8-116

ARY_CMP_***...8-118

ARY_FLL_***...8-120

ARY_MOVE..8-122

ARY_ROT_C_***...8-124

ARY_SCH_***...8-126

ARY_SFT_C_***...8-128

ARY_SWAP_***..8-130

ASC_TO_BCD..8-132

ASC_TO_BYTE...8-133

BCD_TO_ASC..8-134

BIT_BYTE..8-135

BMOV_***..8-136

BSUM_***..8-138

BYTE_BIT..8-139

BYTE_TO_ASC...8-140

BYTE_WORD...8-141

DEC_***...8-142

DECO_***..8-143

DEG_***...8-144

DIS_***...8-145

DWORD_LWORD...8-147

DWORD_WORD..8-148

ENCO_B,W,D,L..8-149

GET_CHAR..8-150

INC_B,W,D,L...8-151

LWORD_DWORD...8-152

MCS...8-153

MCSCLR..8-155

MEQ...8-156

Table of Contents

VII

PUT_CHAR ... 8-158

RAD_*** .. 8-159

ROTATE_A_*** ... 8-160

ROTATE_C_*** ... 8-163

RTC_SET .. 8-165

SEG .. 8-168

SHIFT_A_*** .. 8-170

SHIFT_C_*** .. 8-173

SWAP_*** ... 8-175

UNI_*** .. 8-176

WORD_BYTE .. 8-178

WORD_DWORD ... 8-179

XCHG_*** ... 8-180

8.3 Basic Function Block Library .. 8-182

CTD .. 8-183

CTU .. 8-185

CTUD ... 8-187

F_TRIG ... 8-189

RS .. 8-190

R_TRIG ... 8-191

SEMA ... 8-192

SR .. 8-195

TOF .. 8-196

TON .. 8-198

TP .. 8-200

8.4 Application Function Block Library 8-202

CTR .. 8-203

DUTY .. 8-205

FIFO_*** ... 8-207

LIFO_*** ... 8-211

SCON ... 8-215

TMR .. 8-218

TMR_FLK .. 8-220

TMR_UINT ... 8-222

TOF_RST .. 8-224

TOF_UINT ... 8-226

TON_UINT ... 8-228

TP_RST ... 8-230

TP_UINT .. 8-232

TRTG ... 8-234

TRTG_UINT .. 8-236

 Table of Contents

VIII

 1. Overview

 1-1

1. Overview
 This instruction describes languages that support GM1~GM7 (GLOFA PLC).

 GLOFA PLC is based on the standard language of IEC (International Electrotechnical Commission).

1.1 Characteristics of IEC 1131-3 Language
 The characteristics of IEC language newly introduced are as follows:

▷ Available to support several data types.

▷ The introduction of program elements such as functions, function blocks etc. enables the bottom-

up design and top-down design and the structural creation of PLC program.

▷ The program created by the user shall be stored like as a library system so that it can be used in

other environment, which enables to reuse the software.

▷ Available to support various languages so that the user can select the optimal language suitable for

the environment to apply.

1.2 Type of Language
 The PLC language standardized by IEC consists of two illustrated languages, two character languages

and SFC.

▷ Illustrated languages

 a) LD (Ladder Diagram): A graphical language that is based on the relay ladder logic

 b) FBD (Function Block Diagram): A graphical language for depicting signal and data flows through

function blocks - re-usable software elements

▷ Character language

 a) IL (Instruction List): A low-level 'assembler like' language that is based on similar instruction list

languages.

 b) ST (Structured Text): A high-level language of PASCAL type

▷ SFC (Sequential Function Chart): A graphical language for depicting sequential behavior of a

control system. It is used for defining control sequences that are time- and event-driven.

1. Overview

1-2

The languages supported by GLOFA PLC at present are IL, LD and SFC.

Choose the language to use

 2. The Structure of Software

 2-1

2. The Structure of Software
2.1 Overview
 Before making a PLC program, you should have an overall PLC system mapped out in the aspect of

software. The overall PLC system is defined as one project in GLOFA PLC. In the project, all composition

elements necessary for the PLC system are defined hierarchically.

2.2 Project
 ▷ For a GLOFA PLC program, the first priority should be given to project configuration. To make one

project means that all the elements necessary for a PLC system (scan programs, task definitions,

basic parameters, I/O parameters, etc.) are programmed.

▷ A project is divided into two groups: configuration and parameter. Configuration part is for several

definitions of a PLC program such as global variable, program, task definition and their interrelation.

Parameter part is for setting parameters necessary for a PLC system operation. In this book, we

deal with “Configuration part.” For parameter part, please refer to “GMWIN User’s Manual.”

2.3 Configuration
▷ Configuration means a PLC system. It consists of a base, a CPU module, I/O modules and special

modules and so on. Generally one PLC system has one CPU module; 4 CPU modules can be

installed in GM1.

▷ A PLC system has its own name called Configuration name. This becomes its unique name during

communicating between PLCs. Configuration name is limited up to maximum 8 letters in alphabet

and for more information, please refer to 3.1.1 Identifiers.

▷ Configuration contains resource, configuration global variables and access variables.

Project

Link parameter

I/O parameter

Basic parameter

Access variable

Configuration global variable

Parameter

Configuration Resource

Task

Resource global variable

Program

2. The Structure of Software

 2-2

2.3.1 Resource
▷ Resource means one CPU module. And it is available to define 4 resources in the GM1

Configuration. For GM2 ~ GM5, only one resource is available to define. This resource has its own

name that is also used for communication. The resource name is limited up to 8 letters in alphabet

and it complies with 3.1.1 Identifiers.

▷ Resource has programs, resource global variables and task definitions.

2.3.1.1 Program
▷ It is an application program that is actually executed on PLC. In GLOFA PLC, it is available to

create several application programs for one resource and set program conditions to run. For

example, you can make programs as follows: program A is a general scan program; program B is a

program executed once in a second; program C is an event program that is executed with certain

inputs. These conditions to execute the program are called “Task.” Users should make an

application program as well as set the conditions (task definitions). Unless task definitions are set,

this program will be regarded as a scan program.

Reference

Scan program: application program that repeats a series of execution from the start to the end after

reading input data from input modules, and writing the results in output modules.

▷ A program has its instance name. This instance contains data to be executed in this program.

Reference

For the instance, refer to 3.5.2. Function Block.

2.3.1.2 Resource Global Variable
▷ The variables defined in resource global variable can be used in any program of the resource. All

the data to be shared among programs are defined in resource global variables.

▷ If users want to use resource global variables in their programs, variables are supposed to be

declared as VAR_EXTERNAL.

Reference

For a variable type, refer to 3.3.2 Variable Declaration.

 2. The Structure of Software

 2-3

2.3.1.3 Task
▷ Task means a condition to execute a program. Task definitions contain designation of program

execution condition and priority.

▷ There are 3 types of program execution conditions as follows:

1) Single: executes once if the setting condition is satisfied. The condition is set as a name of

BOOL variable.

2) Interval: executes periodically per a setting time. The condition is set as elapsed time value.

Refer to ‘3.1.2.3.1 Duration’ for how to set the elapsed time value.

3) Interrupt: executes once if the contact of an interrupt card is ON. The condition is set as the

contact number of an interrupt card.

Execution conditions Setting Description

Single %IX0.0.1 Executes once if input contact point %IX0.0.1 is ON.

Interval T#1S Executes per second

Interrupt 4 Executes once if the contact (#4) of an interrupt card

is ON.

▷ The priority is from 0 to 7. Priority 0 is the highest priority. When scheduling, the task with the

highest priority is executed first. And if there are some tasks with the same priority, they’re

executed in execution-condition-occur order.

▷ The task used by the reservation in system contains _ERR_SYS, _H_INIT and _INIT task.

 _ERR_SYS: System Error (available in GM1, 2)

 _H_INIT: Hot Restart

 _INIT: Cold/Warm Restart

2. The Structure of Software

 2-4

2.3.2 Configuration Global Variable
 ▷ The variables defined in Configuration Global Variables can be used in any resource program. All

the data to be shared among resources are defined in Configuration Global Variable.

▷ If users want to use configuration global variables in their programs, variables are supposed to be

declared as VAR_EXTERNAL.

Reference

For a variable type, refer to 3.3.2 Variable Declaration.

▷ Configuration global variable can be defined only in GM1 that can have several resources.

2.3.3 Access Variable
 The variable defined in Access Variable can be used in other PLC system.

Reference

For the use of access variable, refer to the User’s Manual (Communication part).

 3. Common Elements

 3-1

3. Common Elements
 The elements of GLOFA PLC program (programs, functions, function blocks) can be programmed in

other languages such as IL, LD, SFC, etc., respectively. Those languages, however, have grammar

elements in common.

3.1. Expression

3.1.1. Identifiers
▷ Alphabet and all letters starting with underline (_), and all the mixed letters with numbers and

underlines can be identifiers.

▷ Identifiers are used as variable names.

▷ Blank (space) is not allowed in identifiers.

▷ In case of variables, identifiers are generally 16 letters of the alphabet while input/output variable

and instance, 8 letters of the alphabet.

▷ There’s no difference between small letters and capitals in alphabet; all the letters of the alphabet

are recognized as capitals.

Types Examples

Capital letters and numbers IW210, IW215Z, QX75, IDENT

Capital letters, numbers and underline LIM_SW_2, LIMSW5, ABCD, AB_CD

Capital letters and numbers starting with the

underline (_)

_MAIN, _12V7, _ABCD

3.1.2. Data Expression
 The data in GLOFA PLC is: numbers, a string of characters, time letters, etc.

Types Examples

Integer -12, 0, 123_456, +986

Real number -12.0, 0.0, 0.456, 3.14159_26

Real number with an exponent -1.34E-12, 1.0E+6, 1.234E6

Binary number 2#1111_1111, 2#1110_0000

Octal number 8#377 (decimal 255)

8#340 (decimal 224)

Hexadecimal number 16#FF (decimal 255)

16#E0 (decimal 224)

BOOL data 0, 1, TRUE, FALSE

3. Common Elements

 3-2

3.1.2.1. Numbers
▷ There are integer and real numbers.

▷ Discontinuous underline (_) can be placed between numbers and it doesn’t have any meaning.

▷ Decimal complies with general decimal literal expression and if there is a decimal point, this will be

real numbers.

▷ In case of expressing exponent, plus/minus signs can be used. The letter ‘E’ standing for the

exponent does not distinguish capitals from small letters.

▷ When using real numbers with exponents, the followings are not allowed.

 Ex) 12E-5 (×) 12.0E-5 (○)

▷ Integer includes binary, octal, hexadecimal numbers, not to mention decimal, which can be

distinguished by placing # in front of each number.

▷ 0 ~ 9 and A ~ F are used (including small letters a ~ f) in expressing hexadecimal.

▷ Not available to have plus/minus signs in expressing hexadecimal.

▷ Boolean data may be expressed as an integer 0 or 1.

3.1.2.2. Character String
▷ Character string covers all the letters surrounded with single inverted commas.

▷ The length is limited up to 16 letters in case of character string constant and for an initialization

case it does within 30 letters.

Ex)

‘CONVEYER’

3.1.2.3. Time Letters
▷ Time letters are classified into these: 1) Duration data which is calculating and controlling the

elapsed time of a controlling event; 2) Time of Day and Date data which is displaying the time of the

starting/ending point of a controlling event.

3.1.2.3.1. Duration
▷ Duration data starts with the reserved word, 'T#' or 't#'.

▷ Several data types such as date (d), hour (h), minute (m), second (s) and millisecond (ms) should

be written in order and duration date can start with any unit among them. Millisecond (ms), the

minimum unit can be omitted but don’t skip the medium unit between duration units.

▷ Not allowed to use the underline (_).

▷ Duration data can overflow at the maximum unit, if any, and the data with a decimal point is

available except ‘ms’. It does not exceed T#49d17h2m47s295ms (32bits by ‘ms’ unit).

▷ The data is limited to the third decimal place in the second unit (s).

▷ Decimal point is not available at ‘ms’ unit.

 3. Common Elements

 3-3

▷ Capital and small letters are both available.

Content Examples

Duration (no underline) T#14ms, T#14.7s, T#14.7m, T#14.7h

t#14.7d, t#25h15m, t#5d14h12m18s356ms

3.1.2.3.2. Time of Day and Date
▷ There are three types expressing ‘Time of Day and Date’ as follows: Date; Time of Day; Date and

Time.

Content Prefix as a reserved word

Date prefix D#

Time of Day prefix TOD#

Date and Time prefix DT#

▷ The starting point of date is January 1st, 1984.

▷ There's a limit on 'Time of Day’ and ‘Date and Time', which is up to the third decimal place in the

‘ms’ unit.

▷ The overflow is not allowed for all the units when expressing ‘Time of Day’ and ‘Date and Time’.

Content Examples

Date D#1984-06-25

d#1984-06-25

Time of Day TOD#15:36:55.36

tod#15:36:55.369

Date and Time DT#1984-06-25-15:36:55.36

dt#1984-06-25-15:36:55.369

3. Common Elements

 3-4

3.2 . Data Type
Data has a data type to show its character.

3.2.1. Basic Data Type
 GLOFA PLC supports the following basic data types.

No Reserved Word Data Type Size

(bits)
Range

1 SINT Short Integer 8 -128 ~ 127

2 INT Integer 16 -32768 ~ 32767

3 DINT Double Integer 32 -2147483648 ~ 2147483647

4 LINT Long Integer 64 -263 ~ 263-1

5 USINT Unsigned Short Integer 8 0 ~ 255

6 UINT Unsigned Integer 16 0 ~ 65535

7 UDINT Unsigned Double Integer 32 0 ~ 4294967295

8 ULINT Unsigned Long Integer 64 0 ~ 264-1

9 REAL Real Numbers 32 -3.402823E38 ~ -1.401298E-45

1.401298E-45 ~ 3.402823E38

10 LREAL Long Real Numbers 64 -1.7976931E308 ~-4.9406564E-324

4.9406564E-324 ~ 1.7976931E308

11 TIME Duration 32 T#0S ~ T#49D17H2M47S295MS

12 DATE Date 16 D#1984-01-01 ~ D#2163-6-6

13 TIME_OF_DAY Time of Day 32 TOD#00:00:00 ~ TOD#23:59:59.999

14 DATE_AND_TI

ME

Date and Time 64 DT#1984-01-01-00:00:00 ~

 DT#2163-12-31-23:59:59.999

15 STRING Character String 30*8 Limited within 30 letters.

16 BOOL Boolean 1 0, 1

17 BYTE Bit String of Length 8 8 16#0 ~ 16#FF

18 WORD Bit String of Length 16 16 16#0 ~ 16#FFFF

19 DWORD Bit String of Length 32 32 16#0 ~ 16#FFFFFFFF

20 LWORD Bit String of Length 64 64 16#0 ~ 16#FFFFFFFFFFFFFFFF

 ※ LINT, ULINT, REAL, LREAL, LWORD are available in GM1 and GM2 only.

 3. Common Elements

 3-5

3.2.2. Data Type Hierarchy Chart
 Data types used in GLOFA PLC are as follows:

 ANY

 ANY_NUM ANY_BIT ANY STRING ANY_DATE TIME

 LWORD (GM1,2) ATE_AND_TIME

ANY_REAL ANY_INT DWORD DATE

(GM1,2) LINT (GM1,2) WORD TIME_OF_DAY

LREAL DINT BYTE

REAL INT BOOL

 SINT

 ULINT (GM1,2)

 UDINT

 UINT

 USINT

▷ LINT, ULINT, LWORD and ANY_REAL (LREAL, REAL) are available in GM1 and GM2 only.

▷ Data expressed as ANY_NUM includes LREAL, REAL, LINT, DINT, INT, SINT, ULINT, UDINT,

UINT, USINT hereafter.

▷ For example, if a data type is expressed as ANY_BIT in GM3, it can use one of the following data

types: DWORD, WORD, BYTE and BOOL.

3.2.3. Initial Value
 If an initial value of data were not assigned, it would be automatically assigned as below.

Data Type Initial Value

SINT, INT, DINT, LINT 0

USINT, UINT, UDINT, ULINT 0

BOOL, BYTE, WORD, DWORD, LWORD 0

REAL, LREAL 0.0

TIME T#0s

DATE D#1984-01-01

TIME_OF_DAY TOD#00:00:00

DATE_AND_TIME DT#1984-01-01-00:00:00

STRING ' ' (empty string)

3. Common Elements

 3-6

3.2.4. Data Type Structure

Bit String

BOOL 1 bit, range: 0, 1

 7 0

BYTE 8 bits, range: 2#0000_0000 ~ 2#1111_1111, 16#00 ~ 16#FF

 15 8 7 0

WORD 16 bits, range: 2#0000_0000 _0000_0000 ~ 2#1111_1111_1111_1111

 16#0000 ~ 16#FFFF

 31 16 15 0

DWORD 32 bits, range: 2#0000_...000 ~ 2#1111_...111

 16#00000000 ~ 16#FFFFFFFF

 63 32 31 0

LWORD

 64 bits, range: 2#0000_...000 ~ 2#1111_...111, 16#0000000000000000 ~ 16#FFFFFFFFFFFFFFFF

Unsigned Integer

 7 0

USINT 8 bits, range: 0 ~ 255

 15 8 7 0

UINT 16 bits, range: 0 ~ 65,535

 31 16 15 0

UDINT 32 bits, range: 0 ~ 4,294,967,295

 63 32 31 0

ULINT

 64 bits, range: 0 ~ 264-1

Integer (Negative number is expressed as 2's Complement.)

 7 0

SINT 8 bits, range: -128 ~ 127

 15 8 7 0

INT 16 bits, range: -32,768 ~ 32,767

 31 16 15 0

DINT 32 bits, range: -2,147,483,648 ~ 2,147,483,647

 63 32 31 0

LINT

 64 bits, range: -263 ~ 263-1

 3. Common Elements

 3-7

Real (based on the IEEE Standard 754-1984)

 31 30 23 22 0
REAL S Exponent Fraction 32 bits, range: ±1.401298E-45 ~ ±3.402823E38

LREAL S Exponent Fraction

 63 62 52 51 0
64 bits, range: ±4.9406564E-324 ~ ±1.7976931E308

 - S: sign (If it’s 0, the data is a positive number; otherwise, a negative number).

 - Exponent: exponent of 2 (2e-127: for REAL, e=b30b29...b23; for LREAL, e=b62b61...b52).

 - Fraction: a decimal fraction (Fraction: for REAL, f=b22b21...b0; for LREAL, e=b51b52...b0).

Time

 31 0

TIME 32 bits, range: 0 ~ 4,294,967,295ms

 T#49d17h2m47s295ms

Date

 63 48 47 32 31 0

DT 0000000000000000 DATE TOD

 64bits, range: DT#1984-01-01-00:00:00 ~ DT#2163-12-31-23:59:59.999

 15 0

DATE 16bits, range: D#1984-01-01 ~ D#2163-6-6

 31 0

TOD 32bits, range: TOD#00:00:00 ~ TOD#23:59:59.999

#BCD

 7 4 3 0

(BYTE) 101 100 8bits, range: 0 ~ 99

 15 8 7 0

(WORD) 103 102 101 100 16bits, range: 0 ~ 9999

 31 24 23 16 15 8 7 0

(DWORD) 107 106 105 104 103 102 101 100 32bits, range: 0 ~ 99,999,999

 63 48 47 32 31 16 15 0

(LWORD) 1015 1014 1013 1012 1011 1010 109 108 107 106 105 104 103 102 101 100

 64bits, range: 0 ~ 9,999,999,999,999,999

3. Common Elements

 3-8

3.3. Variable
 A variable, data used in the program, has its own value. ‘Variable’ means something that can vary such

as an input/output of PLC, memory, etc.

3.3.1. Variable Expression
▷ Variables can be expressed in two ways: one is to give a name to a data element using an identifier

(Variable by Identifier) and the other is to directly assign a memory address or an input/output of

PLC to a data element (Direct Variable).

▷ A variable by identifier should be unique within its ‘effective scope’ (program area where the

variable was declared) in order to distinguish it from other variables.

▷ A direct variable is expressed as one, which starts with the percent sign (%) followed by the

‘location prefix’, a prefix of the data size, and more than one unsigned integer numbers divided by a

period (.). The prefix are shown as below:

Location prefix

No. Prefix Meaning

1 Ⅰ Input Location

2 Q Output Location

3 M Memory Location

Size prefix

No. Prefix Meaning

1 X 1 bit size

2 None 1 bit size

3 B 1 BYTE (8 bits) size

4 W 1 WORD (16 bits) size

5 D 1 DOUBLE WORD (32 bits) size

6 L 1 LONG WORD (64 bits) size

 Expression format

%[Location Prefix][Size Prefix] n1.n2.n3

No. ⅠⅠⅠⅠ,,,, Q M

n1 Base number (starting from “0”) n1 data according to [size prefix]

(starting from “0”)

n2 Slot number (starting from “0”) n2 bit of n1 data (starting from “0”):

available to omit

n3 n3 data according to the [size prefix]

(starting from “0”)

Not used.

 3. Common Elements

 3-9

Examples

%QX3.1.4 or %Q3.1.4 4th output of no.1 slot on no.3 base (1bit)

%ⅠⅠⅠⅠW2.4.1 1st word input of no.4 slot on no.2 base (16bits)

%MD48 48th double word memory

%MW40.3 3rd bit of 40th word memory

 (Internal memory doesn’t have a base or slot number.)

▷ Small letter is not allowed as a prefix.

▷ A variable without a size prefix is treated as 1 bit.

▷ Direct variables are available to use without a variable declaration.

3.3.2. Variable Declaration
▷ Program elements (programs, functions, function blocks, etc) have declaration parts to edit their

variables to use.

▷ Users should declare variables first to use them in the program elements.

▷ The contents of a variable declaration are as follows:

 1) Variable types: how to declare variables?

Variable types Description

VAR General variable available to read/write

VAR_RETAIN Retaining (data-keeping) variable

VAR_CONSTANT Read Only Variable

VAR_EXTERNAL Declaration to use the variable declared as VAR_GLOBAL

Reference

When declaring Resource Global Variable and Configuration Global Variable, variable formats are

VAR_GLOBAL, VAR_GLOBAL_RETAIN, and VAR_GLOBAL_CONSTANT; VAR_EXTERNAL is not

available for them.

 2) Data type: sets a variable data type.

 3) Memory allocation: assigns memory for a variable.

 Auto: the compiler sets a variable location automatically (Automatic Allocation Variable).

 Assign (AT): a user sets a variable location, using a direct variable (Direct Variable).

3. Common Elements

 3-10

Reference

 The location of Automatic Allocation Variable is not fixed. If variable VAL1, for example, was

declared as BOOL, it is not fixed in the internal memory; the compiler and linker fix its location. If the

program is compiled again after modification, the location may change.

The merit of Automatic Allocation Variable is that users don’t have to care the location of the internal

variables because its location is not overlapped as long as a variable name is different from others.

 It is recommended not to use Direct Variable except %ⅠⅠⅠⅠand %Q because the location of a variable

is fixed and it could be overlapped in a wrong-used case.

▷ Initial Value Assignment: assigns an initial value. A variable is set with an initial value as is shown in

‘3.2.3. Initial Value’ if not assigned.

Reference

The initial value is not assigned when it comes to VAR_EXTERNAL.

In case of ‘Variable Declaration’, you cannot assign an initial value to %ⅠⅠⅠⅠor %Q variables.

▷ You can declare variable VAR_RETAIN that keeps its data in case of power failure. Rules are:

 1) ‘Retention Variable’ retains its data when the system is set as ‘Warm Restart’.

 2) In case of ‘Cold Restart’, variables are initialized as the initial values set by users or the basic initial

values as are shown in ‘3.2.3 Initial Value’.

▷ Variables, which are not declared as VAR_RETAIN, are to be initialized as the initial values set by a

user or the basic initial values in case of Warm or Cold Restart’.

Reference

Variables, which are assigned as %I or %Q, are not to be declared as VAR_RETAIN or

VAR_CONSTANT.

▷ Users can declare variables 'Array' with Elementary Data Type. When declaring the Array Variable,

users are supposed to set Data Type and Array Size; ‘String’ among Elementary Data Type is not

allowed.

▷ Effective scope of variable declaration, the area which is available to use the variable, is limited to

the program where variables are declared. And users can't use variables declared in other program

in the above area. On the contrary, users can get an access to 'Global Variable' from other program

elements by declaring it as 'VAR_EXTERNAL': 'Configuration Global Variable' can be used in all

program elements of all resources; 'Resource Global Variable' can be used in all program elements

of the very resource.

 3. Common Elements

 3-11

Examples of Variable Declaration

Variable Name Variable Kind Data Type Initial Value Memory Allocation

I_VAL VAR INT 1234 Auto

BIPOLAR VAR_RETAIN REAL Auto

LIMIT_SW VAR BOOL %IX1.0.2

GLO_SW VAR_EXTERNAL DWORD Auto

READ_BUF VAR ARRAY OF INT[10] Auto

3. Common Elements

 3-12

3.3.3. Reserved Variable
▷ ‘Reserved Variable’ is the variables previously declared in the system. These variables are used for

special purposes and users cannot declare other variables with the Reserved Variable names.

▷ Users can use these reserved variables without variable declaration.

▷ For further information, please refer to ‘User’s Manual’.

 1) User Flag

Reserved Variable Data Type Description

_ERR BOOL Operation error contact

_LER BOOL Operation error latch contact

_T20MS BOOL 20ms clock contact

_T100MS BOOL 100ms clock contact

_T200MS BOOL 200ms clock contact

_T1S BOOL 1 sec. clock contact

_T2S BOOL 2 sec. clock contact

_T10S BOOL 10 sec. clock contact

_T20S BOOL 20 sec. clock contact

_T60S BOOL 60 sec. clock contact

_ON BOOL All time ON contact

_OFF BOOL All time OFF contact

_1ON BOOL 1 scan ON contact

_1OFF BOOL 1 scan OFF contact

_STOG BOOL Reversal at every scanning

_INIT_DONE BOOL Initial program completion

_RTC_DATE DATE Current date of RTC

_RTC_TOD TOD Current time of RTC

_RTC_WEEK UINT Current day of RTC

 3. Common Elements

 3-13

 2) System Error Flag

Reserved Variable Data Type Description

_CNF_ER WORD System error (Heavy trouble)

_CPU_ER BOOL CPU configuration error

_IO_TYER BOOL Module type inconsistency error

_IO_DEER BOOL Module installation error

_FUSE_ER BOOL Fuse shortage error

_IO_RWER BOOL I/O module read/write error (trouble)

_SP_IFER BOOL Special/communication module interface error (trouble)

_ANNUN_ER BOOL Heavy trouble detection error of external device

_WD_ER BOOL Scan Watch-Dog error

_CODE_ER BOOL Program code error

_STACK_ER BOOL Stack Overflow error

_P_BCK_ER BOOL Program error

3) System Error Release Flag

Reserved Variable Data Type Description

_CNF_ER_M BYTE System error (heavy trouble) release

 4) System Alarm Flag

Reserved variable Data type Description

_CNF_WAR WORD System Alarm (Alarm message)

_RTC_ERR BOOL RTC data error

_D_BCK_ER BOOL Data backup error

_H_BCK_ER BOOL Hot restart unable error

_AB_SD_ER BOOL Abnormal Shutdown

_TASK_ERR BOOL Task conflict (normal cycle, external task)

_BAT_ERR BOOL Battery error

_ANNUN_WR BOOL Light trouble detection of external device

_HSPMT1_ER BOOL Over high-speed link parameter 1

_HSPMT2_ER BOOL Over high-speed link parameter 2

_HSPMT3_ER BOOL Over high-speed link parameter 3

_HSPMT4_ER BOOL Over high-speed link parameter 4

3. Common Elements

 3-14

5) Detailed System Error Flag

Reserved variable Data type Description

_IO_TYER_N UINT Module type inconsistency slot number

_IO_TYERR ARRAY OF BYTE Module type inconsistency location

_IO_DEER_N UINT Module installation slot number

_IO_DEERR ARRAY OF BYTE Module installation location

_FUSE_ER_N UINT Fuse shortage slot number

_FUSE_ERR ARRAY OF BYTE Fuse shortage slot location

_IO_RWER_N UINT I/O module read/write error slot number

_IO_RWERR ARRAY OF BYTE I/O module read/write error slot location

_ANC_ERR ARRAY OF UINT Heavy trouble detection of external device

_ANC_WAR ARRAY OF UINT Light trouble detection of external device

_ANC_WB ARRAY OF BOOL Alarm message detection bit map of external device

_TC_BMAP ARRAY OF BOOL Task conflict mark

_TC_CNT ARRAY OF UINT Task conflict counter

_BAT_ER_TM DT Battery voltage drop-down time

_AC_F_CNT UINT Shutdown counter

_AC_F_TM ARRAY OF DT Instantaneous service interruption history

 3. Common Elements

 3-15

 6) Information of System Operation Status

Reserved variable Data type Description

_CPU_TYPE UINT System Type
_VER_NUM UINT PLC O/S Version number

_MEM_TYPE UINT Memory module type

_SYS_STATE WORD PLC mode and status

_RST_TY BYTE Restart mode information

_INIT_RUN BIT Initializing

_SCAN_MAX UINT Max. scan time (ms)

_SCAN_MIN UINT Min. scan time (ms)

_SCAN_CUR UINT Current scan time (ms)

_STSK_NUM UINT Task number requiring execution time check

_STSK_MAX UINT Max. task execution time (ms)

_STSK_MIN UINT Min. task execution time (ms)

_STSK_CUR UINT Current task execution time (ms)

_RTC_TIME ARRAY OF BYTE Current time

_SYS_ERR UINT Error type

 7) Communication Module Information Flag [n is a slot number where a communication module is

installed (n = 0 ~ 7)]

Reserved variable Data type Description

_CnVERNO UINT Communication module version number

_CnTXECNT UINT Communication transmit error

_CnRXECNT UINT Communication receive error

_CnSVCFCNT UINT Communication service process error

_CnSCANMX UINT Max. communication scan time (1ms unit)

_CnSCANAV UINT Average communication scan time (1ms unit)

_CnSCANMN UINT Minimum communication scan time (1ms unit)

_CnLINF UINT Communication module system information

_CnCRDER BOOL Communication module system error (Error = 1)

_CnSVBSY BOOL Lack of common RAM resource (Lack = 1)

_CnIFERR BOOL Interface error (error = 1)

_CnINRING BOOL Communication in ring (IN_RING = 1)

3. Common Elements

 3-16

 8) Remote I/O Control Flag [m is a slot number where a communication module is installed (m = 0 ~ 7)]

Reserved variable Data type Description

_FSMm_RESET BOOL (able to write) Remote Ⅰ/O station reset control (reset = 1)

_FSMm_IO_RESET BOOL(able to write) Output reset control of remote I/O station (reset = 1)

_FSMm_st_no USINT (able to write) Station number of corresponding remote I/O station

 9) Detailed High-speed Link Information Flag [m is a high-speed link parameter number (m = 1, 2, 3, 4)]

Reserved variable Data type Description

_HSmRLINK BOOL HS RUN_LINK information

_HSmLTRBL BOOL Abnormal information of HS (Link Trouble)

_HSmSTATE ARRAY OF BOOL
General communication status information of k data
block

_HSmMOD ARRAY OF BOOL
Station mode information of k data block at HS link
parameter (Run = 1, Other = 0)

_HSmTRX ARRAY OF BOOL
Communication status information of k data block at HS
link parameter (Normal = 1, Abnormal = 0)

_HSmERR ARRAY OF BOOL
Station status information of k data block at HS link
parameter (Normal = 0, Error = 1)

 3. Common Elements

 3-17

3.4. Reserved Word
Reserved words are previously defined words to use in the system. And these reserved words cannot

be used as an identifier.

Reserved words
ACTION ... END_ACTION
ARRAY ... OF
AT
CASE ... OF ... ELSE ... END_CASE
CONFIGURATION ... END_CONFIGURATION
Name of data type
DATE#, D#
DATE_AND_TIME#, DT#
EXIT
FOR ... TO ... BY ... DO ... END_FOR
FUNCTION ... END_FUNCTION
FUNCTION_BLOCK ... END_FUNCTION_BLOCK
Name of function block
IF ... THEN ... ELSIF ... ELSE ... END_IF
OK
Operator (IL language)
Operator (ST language)
PROGRAM
PROGRAM ... END_PROGRAM
REPEAT ... UNTIL ... END_REPEAT
RESOURCE ... END_RESOURCE
RETAIN
RETURN
STEP ... END_STEP
STRUCTURE ... END_STRUCTURE
T#
TASK ... WITH
TIME_OF_DAY#, TOD#
TRANSITION ... FROM... TO ... END_TRANSITION
TYPE ... END_TYPE
VAR ... END_VAR
VAR_INPUT ... END_VAR
VAR_OUTPUT ... END_VAR
VAR_IN_OUT ... END_VAR
VAR_EXTERNAL ... END_VAR
VAR_ACCESS ... END_VAR
VAR_GLOBAL ... END_VAR
WHILE ... DO ... END_WHILE
WITH

3. Common Elements

 3-18

3.5. Program Type
▷ There are three types of program: function, function block and program.

▷ It is not available to call its own program in the program (reflexive call is prohibited).

3.5.1. Function
▷ A function has one output.

Example

If there is function A that is to add input IN1 and IN2 and then add 100 to the sum of IN1 and IN2. and

the output 1 <= IN1 + IN2 + 100, this function will be correct. However, if the above function has one

more output (output 2 <= IN1 + IN2 * 100), this will not be a function because it has 2 outputs: output 1

and output 2.

▷ A function does not have data to preserve its state inside. This means if an input is constant, an

output value should be constant, which is a function.

Example

If there is function B whose contents are

 Output 1 <= IN1 + IN2 + Val

 Val <= output1 (where, Val is an internal variable),

This cannot be a function as there is internal variable Val. To have an internal variable means that an

output will be different even if there is a same input. Output 1 value is subject to change because of

Val variable even if the value of IN1 and IN2 are constant as is shown on the above. Compared with

the above function A, function A will have output 1 value (150) when IN1 is 20 and IN2 is 30. This

shows that the output value will be constant if inputs are constant.

▷ An internal variable of a function is not available to have an initial value.

▷ Users can’t declare a function as VAR_EXTERNAL and use it.

▷ It is not available to use direct variables inside the function.

▷ A function will be called by program elements and used.

▷ Data transfer from program composition elements, which call the function, to the function will be

executed through an input of a function.

 3. Common Elements

 3-19

Example

SHL function is a basic function that shifts input IN to the left as many as N bit number and produces

it as an output. Program composition elements call SHL function, assigning a value of TEST variable

to input IN and a value of NO variable to input N. The result will be stored in OUTPUT variable.

▷ A function is inserted into a library for use.

▷ It is not available to call a function block or a program inside the function.

▷ A function has a variable whose name is the same as that of the function and whose data type is

the same as the data type of the result of the function. This variable is automatically created when

making a function, and the result value of the function will be written in the output.

Example

If a function name is WEIGH and a data type of a result value is WORD, a variable whose name is

WEIGH and whose data type is WORD will be automatically created inside the function. Users can

store the result of function in variable WEIGH.

ST WEIGH (example in IL)

3.5.2 Function Block
▷ A function block has several outputs.

▷ A function block has data inside. A function block should declare the instance as it declares

variables before using them. Instance is a set of variables used in a function block. A function block

should have its data memory to preserve the output value as well as variables used inside, which is

called as “instance.” A program is a kind of a function block and also needs to declare “instance.”

However, users cannot call a program inside a program or a function block for use, contrary to a

function block.

▷ In order to use the output value of a function block, it is required to place a period (.) between the

name of instance and the output name.

3. Common Elements

 3-20

Example

General examples of a function block are Timer and Counter. On-delay timer function block is TON

and this is executed if IN is ON after users declare T1 as “instance.” In order to use timer output

contact and duration value, it is required to place a period (.) between the name of instance and the

output name. In case of a timer function block, the output contact and the elapsed time value for the

instance are T1.Q and T1.ET respectively because the output contact name is Q and the elapsed

time contact name is ET. The output value of a function is a return value by calling a function while

the output value of a function block is fixed for the instance.

▷ Users cannot declare a direct variable inside a function block. However, users can use a direct

variable declared as Global Variable and allocated according to ‘Assign (AT)’ after declaring it as

VAR_EXTERNAL.

▷ A function block is inserted into a library for use.

▷ It is not available to call a program inside the function block.

3.5.3 Program
▷ Users can use a program after declaring an instance like a function block.

▷ It is available to use direct variables in the program.

▷ A program does not have input/output variables.

The calling of a program is defined in the resource.

T1T1T1T1

TONTONTONTON

QQQQ

PTPTPTPT

ININININ

ETETETET

Instance name

Output

Input

 4. SFC

 4-1

4. SFC (Sequential Function Chart)
4.1. Overview

▷ SFC is a structured language that extends an application program in the form of flow chart

according to the processing sequence, using a PLC language.

▷ SFC splits an application program into step and transition, and provides how to connect them each

other. Each step is related to action and each transition is related to transition condition.

▷ As SFC should contain the state information, only program and function block among program

types are available to apply this SFC.

▷ Type

4.2. SFC Structure

4.2.1. Step
▷ Step indicates a sequence control unit by connecting the action.

▷ When step is in an active state, the attached content of action will be executed.

▷ The initial step is one to be activated first.

▷ If a next transition condition of activated initial step (S1) is established, step 1 (S1) that is currently

activated becomes deactivated and Step 2 (S2) connected to S1 becomes activated.

 Initial step

Action name

Action
Step

Transition

Jump

Label

Transition name

Selection
branch

Parallel
branch

Qualifier

Initial step

Transition condition

Step

4. SFC

 4-2

4.2.2. Transition
▷ Transition indicates the execution condition between steps.

▷ A transition condition should be described as a PLC language such as IL or LD.

 The result of a transition condition should always be a BOOL type and the variable name should be

TRANS for any transition.

▷ In case that the result of transition condition is 1, the current step is deactivated and the next step is

activated.

▷ There must be a transition between step and step.

The content of TRAN1

When TRANS is on, S1 will be deactivated and S2 activated.

TRANS is the internally declared variable.

A transition condition of all transition should be output in TRANS variable.

4.2.3. Action
▷ Each step is able to connect up to two actions.

▷ The step without action is regarded as a waiting action and it is required to wait until the next

transition condition will be 1.

▷ Action is composed of PLC language such as IL or LD and the content of action will be executed

while the step is activated.

▷ Action qualifier will be used to control action.

▷ When action becomes deactivated state after activating, the contact output in action will be 0.

However, S, R, function and function block output retain their state before they become non-

activating.

TRAN1

 4. SFC

 4-3

The content of ACTION1

The content of ACTION2

- ACTION1 will be executed only when S1 is activated.

- ACTION2 will be executed until S1 meets R qualifier after activated.

 It goes on executing even if S1 is deactivated.

- When action is deactivated, this action is Post Scanned and then passes to the next step.

Reference

Post Scan

When action is deactivated, this action is scanned again.

As it is scanned as if there were a contact (contact with the value of 0) in the beginning part of an action

program, the program output, which is composed of contacts, will be 0.

Function, function block, S, R output etc., are not included.

In this figure, as the contact of postscan is 0, C and %Q0.0.0 will be 0.

4.2.4. Action Qualifier
▷ Whenever action is used, action qualifier will be followed.

▷ The action of step defines an executing point and time according to the assigned qualifier.

▷ Types of action qualifier are as follows:

4. SFC

 4-4

1) N (Non-Stored)

Action is executed only when the step is activated.

2) S (Set)

It continues the action after the step is deactivated (until the action is reset by R qualifier).

3) R (Overriding Reset)

It terminates the execution of an action previously started with the S, SD, SL or DS qualifier.

Active state

Action

Step connected
by N

Action

Step connected
by R

Step connected
by S

Step connected
by R

Step connected
by S

Action

 4. SFC

 4-5

4) L (Time Limited)

It start the action when the step becomes active and continue until the step goes inactive or a set

time elapses.

5) D (Time Delayed)

Start a delay timer when the step becomes active - after the time delay the action starts (if step still

active) and continues until deactivated.

Step connected
by L

Action

Step connected
by L

Action

Step connected
by D

Step connected
by D

Action

Action

4. SFC

 4-6

6) P (Pulse)

It starts the action when the step becomes active and executes the action only once.

7) SD (Stored & Time Delayed)

It starts a delay timer when the step becomes active - after the time delay, the action starts and

continues until reset (regardless of step activation/deactivation).

Step connected
by P

Step connected
by R

Step connected
by SD

Step connected
by R

Step connected
by SD

Step connected
by P

Action

Action

Action

Action

1 scan

 4. SFC

 4-7

8) DS (Delayed & Stored)

It starts a delay timer when the step becomes active - after the time delay the action starts (if step

still active) and continues until reset by R qualifier.

9) SL (Stored & Timed Limited)

It starts the action when the step becomes active and continues for a set time or until the action is

reset (regardless of step activation/deactivation).

Step connected
by DS

Step connected
by R

Step connected
by R

Step connected
by DS

Step connected
by SL

Step connected
by R

Step connected
by R

Step connected
by SL

Action

Action

Action

Action

4. SFC

 4-8

4.3. Extension Regulation

4.3.1. Serial Connection
▷ 2 steps are always divided by transitions without connecting directly.

▷ Step always divides 2 transitions without connecting directly.

[correct example] [wrong example]

▷ For the transition between steps connected by serial, the lower step will be activated if the upper

step is active and the transition condition connected to the next is 1.

4.3.2. Selection Branch
▷ When a processor executes a selection branch, the processor finds the first path with a true

transition in the order of the program scan and executes the steps and transitions in that path. If

more than one path in a selection branch goes true at the same time, the processor chooses the

left-most path. The following example shows a typical scan sequence.

Example

* In case that the transition condition of T1 is 1,

 the order of activation will be S1 -> S2 -> S3.

* In case that the transition condition of T4 is 1,

 the order of activation will be S1 -> S4 -> S3.

* In case that the transition condition of T5 is 1,

the order of activation will be S1 -> S5 -> S3.

If the transition conditions are 1 at the same time, the processor chooses the left-most path.

* In case that the transition condition of T1 and T4 is 1 at the same time,

the order of activation will be S1 -> S2 -> S3.

* In case that the transition condition of T4 and T5 is 1 at the same time,

the order of activation will be S1 -> S4 -> S3.

 4. SFC

 4-9

4.3.3. Parallel Branch (Simultaneous Branch)
▷ When a processor executes the parallel (simultaneous) branch, the processor scans the branch

from left-to-right, top-to-bottom. It appears that the processor executes each path in the branch

simultaneously.

▷ In case of connecting by parallel branch, if the transition condition connected to the next is 1, all

steps tied to this transition will be activated. The extension of each branch will be the same as

serial connection. At this time, the steps in the state of activation are as many as the number of

branches.

▷ In case of combining in parallel branch, if the transition condition is 1 when the state of all the last

steps of each branch is activated, the step connected to the next will be activated.

Example

- If the transition condition of T1 is 1 when S1 is active, S2, S6 and S8 will be activated and S1 will be

deactivated.

- If the transition condition of T4 is 1 when S4, S7 and S8 are activated, S5 will be activated and S4,

S7 and S8 will be deactivated.

 * The order of activation

 S1-+->S2-->S3-->S4--+->S5

 +->S6-->S7---------+

 +->S8----------------+

4.3.4. Jump
▷ If the transition condition connected to the next is 1 after the last step of SFC is activated, the initial

step of SFC will be activated.

4. SFC

 4-10

Example

* The order of activation

 S1 S2 S3

▷ It is possible to extend to the place using a jump.

▷ Jump can only be place at the end of SFC program or the end of a selection branch.

It is not allowed to jump into the inside or outside of parallel branch; it is allowed to jump within

parallel branch.

Example

1) Jump at the end of selection branch

- S2 will be activated after S5.

 4. SFC

 4-11

2) Jump within parallel branch

3) Not available to jump into the inside of parallel branch..

4. SFC

 4-12

MEMO

 5. IL

 5-1

5. IL (Instruction List)
5.1. Overview

▷ IL is a low-level 'assembler like' language.

▷ IL is applicable to simple PLC systems.

▷ Type

 Label

 45 THERE:
 46 LDN START (* Switch input reading *)

 Operand

Line No. Operator Identifier Comment

5.2. Current Result: CR

▷ In IL, there is a register that stores an operation result by that time, which is called “CR (current

result)”.

▷ Only one CR exists in IL.

▷ CR is able to be any data type.

▷ The operator that puts a certain value to CR and determines its data type is LD (Load).

Example

LD %IX0.0.0 is to put the value of %IX0.0.0 to the CR. Now, the data type of CR is BOOL because the

data type expressed as X is BOOL. If variable VAL is declared as INT and is written as LD VAL, it

writes the value of VAL to CR and the data type of CR is INT.

▷ ST operator stores the current result (CR) in a variable.

Example

If variable VAL is declared as INT and is written as ST VAL, this means that CR is stored in variable

VAL. At this time, the data type of CR should be INT. Unless CR is an INT type, an error occurs when

compiling.

5. IL

 5-2

Please read the following:

LD %IX0.0.0

ST VAL (assume that variable VAL is declared as INT)

CR is assigned as BOOL in the first row and declared as INT in the second row, which results in an

error when compiling.

LD %IX0.0.0

ST START

LD 20

ST VAL (assume that variable START is declared as BOOL and variable VAL as INT)

The above example is executed normally because the data type to store CR respectively is the same.

5.3. Instructions
▷ IL is a list of instructions.

▷ Each instruction must begin on a new line, and must contain an operator, completed with optional

modifiers and, if necessary, for the specific operation, one or more operands, separated with

commas (',').

5.3.1. Label
▷ A label followed by a colon (':') may precede the instruction.

▷ Labels are used as operands for some operations such as jumps.

5.3.2. Modifier
▷ The modifier character must complete the name of the operator, with no blank characters between

them. There’re three types of modifiers: N, (, C.

▷ The N modifier indicates a Boolean negation of the operand.

Example

ANDN %IX2.0.0 is interpreted as:

 CR <= CR AND NOT %IX2.0.0

When N is attached to JMP, CAL and RET with no blank character between them, this means it

executes the instruction when CR is BOOL 0.

▷ Modifier ‘(‘ delays the operation of an operator until it meets operator ‘)’.

As there is only one CR in IL, it is available to execute the delayed operation: CR is kept while other

operations are executed and after that, operation will be done with the stored CR value.

Type Characteristic Semantics

(Modifier Operation is delayed.

) Operator Evaluation deferred operation used with ‘(‘

 5. IL

 5-3

Example

AND(%IX1.0.0

OR %IX2.0.0)

CR <= CR AND (%IX1.0.0 OR %IX2.0.0)

This means that the execution of AND will be delayed until ‘)’ appears. After the operation inside the

parentheses, %IX1.0.0 OR %IX2.0.0, is executed, the operation with the result will be done.

▷ Modifier ‘C’ indicates that the attached instruction must be executed only if the current result has

the Boolean value 1 (TRUE).

Example

JMPC THERE

If CR is BOOL 1, jump to THERE.

5.3.3. Basic Operator
▷ Basic operators are as follows:

No. Operator Modifier Operand Semantics

1 LD N Data Set current results equal to operand

2 ST N Data Store current results to operand

3

S

R

BOOL

BOOL

If CR is BOOL 1, set Boolean Operand to 1

If CR is BOOL 1, set Boolean Operand to 0

4

5

6

AND

OR

XOR

N,(

N,(

N,(

Data

Data

Data

Boolean AND operation

Boolean OR operation

Boolean XOR operation

7

8

9

10

ADD

SUB

MUL

DIV

(

(

(

(

Data

Data

Data

Data

Addition operation

Subtraction operation

Multiplication operation

Division operation

11

12

13

14

15

16

GT

GE

EQ

NE

LE

LT

(

(

(

(

(

(

Data

Data

Data

Data

Data

Data

Comparison operation: > (greater than)

Comparison operation: >= (greater than or equal to)

Comparison operation: = (equal to)

Comparison operation: <> (not equal)

Comparison operation: <= (less than or equal to)

Comparison operation: < (less than)

17

18

19

JMP

CAL

RET

C, N

C, N

C, N

Label

Name

Jump to label

Call a function or function block

Return from a function or function block

20) Evaluation deferred operation used with ‘(‘

5. IL

 5-4

▷ Operators from no. 4 to 16 execute the following functions:

 CR <== CR Operation Operand

 After executing the operation made between CR and operand value is done, it stores the result in CR.

Example

AND %IX1.0.0 is interpreted as follows:

 CR <= CR AND %IX1.0.0

▷ Comparison operator stores its Boolean result in CR after a comparison operation made between

CR and the right operand.

Example

For GT %MW10, if CR is greater than the value of internal memory word 10, the value of CR will be

BOOL 1. Otherwise it will be 0.

▷ The data type of CR is not modified by most of the operation instructions. However, in case of

comparison operators, a data type of CR is changed.

Example

LD VAL (a)

EQ GROSS (b)

AND %IX0.0.0 (c)

ST START (d)

(assume that variable START is declared as BOOL, and variable VAL and GROSS as INT)

At (a) row, the INT value of VAL is put in CR. At (b) row, after comparing the CR to INT value of

GROSS, if the value is same, it puts BOOL 1 in CR; if not, CR is BOOL 0. At this time, a data type

of CR changes from INT to BOOL. Accordingly, instructions of (c) and (d) rows are normal without

making an error.

 5. IL

 5-5

5.3.3.1. Basic Operator
 (1) LD

Meaning It loads a value in the current result. A data type of CR changes according to the

operand data type.

Modifier N: If the operand is BOOL, it negates its value and loads it in CR.

Operand All the data types including constant are available.

Examples LD TRUE

LD INT_VALUE

LD T#1S

LDN B_VALUE

The value of BOOL 1 is loaded in CR.

The data type of CR is BOOL.

The value of INT_VALUE is loaded in CR.

The data type of CR is INT.

T#1S, time constant, is loaded in CR.

The data type of CR is TIME.

The value of B_VALUE is negated and is loaded in CR.

The data type of CR is BOOL.

 (2) ST

Meaning It stores the current result (CR) in a variable (operand).

The data type of both CR and operand should be the same. The current result is not

modified by this operation.

Modifier N: If CR is BOOL, it negates its value and stores it in the operand. At this time, the

value of CR does not change.

Operand All the data types except constant are available.

Its data type should be the same as that of CR.

Examples LD FALSE

ST B_VALUE1

STN B_VALUE2

LD INT_VALUE

ST I_VALUE1

LD D#1995-12-25

ST D_VALUE1

The value of BOOL 0 is loaded in CR.

The data type of CR is BOOL.

Stores the value of CR in variable B_VALUE1 of which data

type is BOOL.

Negates the value of CR and stores it in B_VALUE2 of which

data type is BOOL.

The value of INT_VALUE that is INT variable is loaded in CR.

The data type of CR is INT.

Stores the value of CR in variable I_VALUE1 of which data

type is INT.

Date constant D#1995-12-25 is loaded in CR.

At this time, a data type of CR is DATE.

Stores the value of CR in variable D_VALUE1 of which data

type is DATE.

5. IL

 5-6

 (3) S (Set)

Meaning If CR is BOOL 1, the operand value of which data type is BOOL will be 1.

No operation is processed if CR is BOOL 0.

The current result is not modified by this operation.

Modifier None

Operand Only BOOL data type is available.

Constant is not available.

Examples LD FALSE

S B_VALUE1

LD TRUE

S B_VALUE2

The value of BOOL 0 is loaded in CR. At this time, a data type

of CR is BOOL.

No operation is processed because CR is 0.

The value of B_VALUE1 does not change.

The value of BOOL 1 is loaded in CR. At this time, a data type

of CR is BOOL.

As CR is 1, the value of B_VALUE2 whose data type is BOOL

will be 1.

(4) R (Reset)

Meaning If CR is BOOL 1, the operand value whose data type is BOOL will be 0.

No operation is processed if CR is BOOL 0.

The current result is not modified by this operation.

Modifier None

Operand Only BOOL data type is available.

Constant is not available.

Examples LD FALSE

R B_VALUE1

LD TRUE

R B_VALUE2

ST B_VALUE3

The value of BOOL 0 is loaded in CR. At this time, a data type

of CR is BOOL.

No operation is processed because CR is 0.

The value of B_VALUE1 does not change.

The value of BOOL 1 is loaded in CR. At this time, a data type

of CR is BOOL.

As CR is 1, the value of B_VALUE2 whose data type is BOOL

will be 0. The value of CR does not change.

The value of CR (Boolean 1) is stored in B_VALUE3 whose

data type is BOOL.

 5. IL

 5-7

 (5) AND

Meaning After logical AND operation for CR and the operand value, stores the operation result in

CR. At this time, a data type of both CR and the operand should be the same. The

operand value does not change.

Modifier N: If the operand data type is BOOL, logical AND operation is made between the

operand value and CR after negating the operand value.

(: If a data type of operand is BOOL, moves CR value in other place for a while and

stores the operand value in CR (deferred operation).

Operand Only BOOL, BYTE, WORD, DWORD, LWORD data types are available.

Constant is also available.

Examples LD B_VALUE1

AND B_VALUE2

ANDN B_VALUE3

ST B_VALUE4

LD W_VALUE1

AND W_VALUE2

ST W_VALUE3

LD B_VALUE1

AND(B_VALUE2

OR B_VALUE3

)

ST B_VALUE4

The value of B_VALUE1 whose data type is BOOL is loaded in

CR. At this time, a data type of CR is BOOL.

After logical AND operation for CR and the value of B_VALUE2

whose data type is BOOL, stores the result in CR.

After negating the value of B_VALUE3, logical AND operation is

made between CR and the value of B_VALUE3 whose data type

is BOOL.

Stores CR value in B_VALUE4 whose data type is BOOL.

B_VALUE4 <== B_VALUE1 AND B_VALUE2 AND NOT (B_VALUE3)

The value of W_VALUE1 whose data type is WORD is loaded in

CR. At this time, a data type of CR is WORD.

After logical AND operation for CR and the value of W_VALUE2

whose data type is WORD, stores the result in CR.

Stores CR value in W_VALUE3 whose data type is WORD.

W_VALUE3 <== W_VALUE1 AND W_VALUE2

The value of B_VALUE1 whose data type is BOOL is loaded in

CR. At this time, a data type of CR is BOOL.

Moves CR value in other place and stores the value of

B_VALUE2 whose data type is BOOL in CR.

After logical OR operation for CR and the value of B_VALUE3

whose data type is BOOL, stores the result in CR.

After logical AND operation for the current CR value and the

moved CR value stored in other place, stores the result in CR.

Stores CR value in B_VALUE4 whose data type is BOOL.

B_VALUE4 <== B_VALUE1 AND (B_VALUE2 OR B_VALUE3)

5. IL

 5-8

 (6) OR

Meaning After logical OR operation for CR and the operand value, stores the operation result in

CR. At this time, a data type of both CR and the operand should be the same. The

operand value does not change.

Modifier N: If the operand data type is BOOL, logical AND operation is made between the

operand value and CR after negating the operand value.

(: If a data type of operand is BOOL, moves CR value in other place for a while and

stores the operand value in CR (deferred operation).

Operand Only BOOL, BYTE, WORD, DWORD, LWORD data types are available.

Constant is also available.

Examples LD B_VALUE1

OR B_VALUE2

ORN B_VALUE3

ST B_VALUE4

LD W_VALUE1

OR W_VALUE2

ST W_VALUE3

LD B_VALUE1

OR(B_VALUE2

AND B_VALUE3

)

ST B_VALUE4

The value of B_VALUE1 whose data type is BOOL is loaded in

CR. At this time, a data type of CR is BOOL.

After logical OR operation for CR and the value of B_VALUE2

whose data type is BOOL, stores the result in CR.

After negating the value of B_VALUE3, logical OR operation is

made between CR and the value of B_VALUE3 whose data type

is BOOL.

Stores CR value in B_VALUE4 whose data type is BOOL.

B_VALUE4 <== B_VALUE1 OR B_VALUE2 OR NOT (B_VALUE3)

The value of W_VALUE1 whose data type is WORD is loaded in

CR. At this time, a data type of CR is WORD.

After logical AND operation for CR and the value of W_VALUE2

whose data type is WORD, stores the result in CR.

Stores CR value in W_VALUE3 whose data type is WORD.

W_VALUE3 <== W_VALUE1 OR W_VALUE2

The value of B_VALUE1 whose data type is BOOL is loaded in

CR. At this time, a data type of CR is BOOL.

Moves CR value in other place and stores the value of

B_VALUE2 whose data type is BOOL in CR.

After logical AND operation for CR and the value of B_VALUE3

whose data type is BOOL, stores the result in CR.

After logical OR operation for the current CR value and the

moved CR value stored in other place, stores the result in CR.

Stores CR value in B_VALUE4 whose data type is BOOL.

B_VALUE4 <== B_VALUE1 OR (B_VALUE2 AND B_VALUE3)

 5. IL

 5-9

 (7) XOR

Meaning After logical XOR operation for CR and the operand value, stores the operation result in

CR. At this time, a data type of both CR and the operand should be the same. The

operand value does not change.

 Modifier N: If the operand data type is BOOL, logical AND operation is made between the

operand value and CR after negating the operand value.

(: If a data type of operand is BOOL, moves CR value in other place for a while and

stores the operand value in CR (deferred operation).

Operand Only BOOL, BYTE, WORD, DWORD, LWORD data types are available.

Constant is also available.

Examples LD B_VALUE1

XOR B_VALUE2

XORN B_VALUE3

ST B_VALUE4

LD W_VALUE1

XOR W_VALUE2

ST W_VALUE3

LD B_VALUE1

XOR(B_VALUE2

AND B_VALUE3

)

ST B_VALUE4

The value of B_VALUE1 whose data type is BOOL is loaded in

CR. At this time, a data type of CR is BOOL.

After logical XOR operation for CR and the value of B_VALUE2

whose data type is BOOL, stores the result in CR.

After negating the value of B_VALUE3, logical XOR operation is

made between CR and the value of B_VALUE3 whose data type

is BOOL.

Stores CR value in B_VALUE4 whose data type is BOOL.

B_VALUE4 <== B_VALUE1 XOR B_VALUE2 XOR NOT (B_VALUE3)

The value of W_VALUE1 whose data type is WORD is loaded in

CR. At this time, a data type of CR is WORD.

After logical XOR operation for CR and the value of W_VALUE2

whose data type is WORD, stores the result in CR.

Stores CR value in W_VALUE3 whose data type is WORD.

W_VALUE3 <== W_VALUE1 XOR W_VALUE2

The value of B_VALUE1 whose data type is BOOL is loaded in

CR. At this time, a data type of CR is BOOL.

Moves CR value in other place and stores the value of

B_VALUE2 whose data type is BOOL in CR.

After logical AND operation for CR and the value of B_VALUE3

whose data type is BOOL, stores the result in CR.

After logical XOR operation for the current CR value and the

moved CR value stored in other place, stores the result in CR.

Stores CR value in B_VALUE4 whose data type is BOOL.

B_VALUE4 <== B_VALUE1 XOR (B_VALUE2 AND B_VALUE3)

5. IL

 5-10

 (8) ADD

Meaning After addition operation for CR and the operand value, stores the operation result in CR.

At this time, a data type of both CR and the operand should be the same. The operand

value does not change.

Modifier (: Moves CR value in other place for a while and stores the operand value in CR

(deferred operation).

Operand Only SINT, INT, DINT, LINT, USINT, UINT, UDINT, ULINT, REAL, LREAL data types

are available.

Constant is also available.

Examples LD I_VALUE1

ADD I_VALUE2

ST I_VALUE3

LD D_VALUE1

ADD(D_VALUE2

DIV D_VALUE3

)

ST D_VALUE4

The value of I_VALUE1 whose data type is INT is loaded in CR.

At this time, a data type of CR is INT.

After ADD operation for CR and the value of I_VALUE2 whose

data type is INT, stores the result in CR.

Stores CR value in I_VALUE3 whose data type is INT.

I_VALUE3 <== I_VALUE1 + I_VALUE2

The value of D_VALUE1 whose data type is DINT is loaded in

CR. At this time, a data type of CR is DINT.

Moves CR value in other place and stores the value of

D_VALUE2 whose data type is DINT in CR.

After DIV operation for CR and the value of D_VALUE3 whose

data type is DINT, stores the result in CR.

After ADD operation for the current CR value and the moved CR

value stored in other place, stores the result in CR.

Stores the CR value in D_VALUE4 whose data type is DINT.

D_VALUE4 <== D_VALUE1 + (D_VALUE2 / D_VALUE3)

 5. IL

 5-11

 (9) SUB

Meaning After subtraction operation for CR and the operand value, stores the operation result in

CR. At this time, a data type of both CR and the operand should be the same. The

operand value does not change.

Modifier (: Moves CR value in other place for a while and stores the operand value in CR

(deferred operation).

Operand Only SINT, INT, DINT, LINT, USINT, UINT, UDINT, ULINT, REAL, LREAL data types

are available.

Constant is also available.

Examples LD I_VALUE1

SUB I_VALUE2

ST I_VALUE3

LD D_VALUE1

SUB(D_VALUE2

MUL D_VALUE3

)

ST D_VALUE4

The value of I_VALUE1 whose data type is INT is loaded in CR.

At this time, a data type of CR is INT.

After SUB operation for CR and the value of I_VALUE2 whose

data type is INT, stores the result in CR.

Stores CR value in I_VALUE3 whose data type is INT.

I_VALUE3 <== I_VALUE1 - I_VALUE2

The value of D_VALUE1 whose data type is DINT is loaded in

CR. At this time, a data type of CR is DINT.

Moves CR value in other place and stores the value of

D_VALUE2 whose data type is DINT in CR.

After MUL operation for CR and the value of D_VALUE3 whose

data type is DINT, stores the result in CR.

After SUB operation for the current CR value and the moved CR

value stored in other place, stores the result in CR.

Stores the CR value in D_VALUE4 whose data type is DINT.

D_VALUE4 <== D_VALUE1 - (D_VALUE2 X D_VALUE3)

5. IL

 5-12

 (10) MUL

 Meaning After multiplication operation for CR and the operand value, stores the operation result in

CR. At this time, a data type of both CR and the operand should be the same. The

operand value does not change.

Modifier (: Moves CR value in other place for a while and stores the operand value in CR

(deferred operation).

Operand Only SINT, INT, DINT, LINT, USINT, UINT, UDINT, ULINT, REAL, LREAL data types are

available.

Constant is also available.

Examples LD I_VALUE1

MUL I_VALUE2

ST I_VALUE3

LD D_VALUE1

MUL(D_VALUE2

SUB D_VALUE3

)

ST D_VALUE4

The value of I_VALUE1 whose data type is INT is loaded in CR.

At this time, a data type of CR is INT.

After MUL operation for CR and the value of I_VALUE2 whose

data type is INT, stores the result in CR.

Stores CR value in I_VALUE3 whose data type is INT.

I_VALUE3 <== I_VALUE1 X I_VALUE2

The value of D_VALUE1 whose data type is DINT is loaded in

CR. At this time, a data type of CR is DINT.

Moves CR value in other place and stores the value of

D_VALUE2 whose data type is DINT in CR.

After SUB operation for CR and the value of D_VALUE3 whose

data type is DINT, stores the result in CR.

After MUL operation for the current CR value and the moved CR

value stored in other place, stores the result in CR.

Stores the CR value in D_VALUE4 whose data type is DINT.

D_VALUE4 <== D_VALUE1 X (D_VALUE2 - D_VALUE3)

 5. IL

 5-13

 (11) DIV

Meaning After division operation for CR and the operand value, stores the operation result in CR.

At this time, a data type of both CR and the operand should be the same. The operand

value does not change.

 Modifier (: Moves CR value in other place for a while and stores the operand value in CR

(deferred operation).

Operand Only SINT, INT, DINT, LINT, USINT, UINT, UDINT, ULINT, REAL, LREAL data types

are available.

Constant is also available.

Examples LD I_VALUE1

DIV I_VALUE2

ST I_VALUE3

LD D_VALUE1

DIV(D_VALUE2

ADD D_VALUE3

)

ST D_VALUE4

The value of I_VALUE1 whose data type is INT is loaded in CR.

At this time, a data type of CR is INT.

After DIV operation for CR and the value of I_VALUE2 whose

data type is INT, stores the result in CR.

Stores CR value in I_VALUE3 whose data type is INT.

I_VALUE3 <== I_VALUE1 / I_VALUE2

The value of D_VALUE1 whose data type is DINT is loaded in

CR. At this time, a data type of CR is DINT.

Moves CR value in other place and stores the value of

D_VALUE2 whose data type is DINT in CR.

After ADD operation for CR and the value of D_VALUE3 whose

data type is DINT, stores the result in CR.

After DIV operation for the current CR value and the moved CR

value stored in other place, stores the result in CR.

Stores the CR value in D_VALUE4 whose data type is DINT.

D_VALUE4 <== D_VALUE1 / (D_VALUE2 + D_VALUE3)

5. IL

 5-14

 (12) GT

Meaning After comparison operation for CR and the operand value, stores the BOOL result in

CR. CR will be 1 only if CR is greater than operand. A data type of both CR and the

operand should be the same. The operand value does not change. After operation, a

data type of CR will be BOOL regardless of the operand data type.

Modifier (: Moves CR value in other place for a while and stores the value of operand in CR

(deferred operation).

Operand All the data types except ARRAY are available.

Constant is also available.

Examples

LD I_VAL1

GT I_VAL2

ST B_VAL1

LD I_VAL2

GT I_VAL1

ST B_VAL2

LD I_VAL1

GT(I_VAL2

SUB I_VAL3

)

ST B_VAL3

In case that I_VAL1 = 50, I_VAL2 = 100 IVAL_3 = 70,

The value of I_VAL1 whose data type is INT is loaded in CR.

After comparison operation for CR and the value of I_VAL2

whose data type is INT, stores the result in CR.

(As I_VAL1 < I_VAL2, CR will be 0)

Stores CR value in B_VAL1 whose data type is BOOL.

B_VAL1 <== FALSE

The value of I_VAL2 whose data type is INT is loaded in CR.

After comparison operation for CR and the value of I_VAL1

whose data type is INT, stores the result in CR.

(As I_VAL1 < I_VAL2, CR will be 1)

Stores CR value in B_VAL2 whose data type is BOOL.

B_VAL2 <== TRUE

The value of I_VAL1 whose data type is INT is loaded in CR.

Moves CR value in other place and stores the value of I_VAL2

whose data type is INT in CR.

After SUB operation for CR and the value of I_VAL3 whose data

type is INT, stores the result in CR.

After comparison operation for the current CR value and the

moved CR value stored in other place, stores the result in CR.

(As the stored CR > current CR, CR will be 1)

Stores the CR value in B_VAL3 whose data type is BOOL.

B_VAL3 <== TRUE

 5. IL

 5-15

 (13) GE

Meaning After comparison operation for CR and the operand value, stores the BOOL result in

CR. CR will be 1 only if CR is greater than operand. A data type of both CR and the

operand should be the same. The operand value does not change. After operation, a

data type of CR will be BOOL regardless of the operand data type.

Modifier (: Moves CR value in other place for a while and stores the value of operand in CR

(deferred operation).

Operand All the data types except ARRAY are available.

Constant is also available.

Examples

LD I_VAL1

GE I_VAL2

ST B_VAL1

LD I_VAL2

GE I_VAL1

ST B_VAL2

LD I_VAL1

GE(I_VAL2

SUB I_VAL3

)

ST B_VAL3

In case that I_VAL1 = 50, I_VAL2 = 100 IVAL_3 = 70,

The value of I_VAL1 whose data type is INT is loaded in CR.

After comparison operation for CR and the value of I_VAL2

whose data type is INT, stores the result in CR.

(As I_VAL1 < I_VAL2, CR will be 0)

Stores CR value in B_VAL1 whose data type is BOOL.

B_VAL1 <== FALSE

The value of I_VAL2 whose data type is INT is loaded in CR.

After comparison operation for CR and the value of I_VAL1

whose data type is INT, stores the result in CR.

(As I_VAL1 < I_VAL2, CR will be 1)

Stores CR value in B_VAL2 whose data type is BOOL.

B_VAL2 <== TRUE

The value of I_VAL1 whose data type is INT is loaded in CR.

Moves CR value in other place and stores the value of I_VAL2

whose data type is INT in CR.

After SUB operation for CR and the value of I_VAL3 whose data

type is INT, stores the result in CR.

After comparison operation for the current CR value and the

moved CR value stored in other place, stores the result in CR.

(As the stored CR > current CR, CR will be 1)

Stores the CR value in B_VAL3 whose data type is BOOL.

B_VAL3 <== TRUE

5. IL

 5-16

 (14) EQ

Meaning After comparison operation for CR and the operand value, stores the BOOL result in

CR. CR will be 1 only if CR is greater than operand. A data type of both CR and the

operand should be the same. The operand value does not change. After operation, a

data type of CR will be BOOL regardless of the operand data type.

Modifier (: Moves CR value in other place for a while and stores the value of operand in CR

(deferred operation).

Operand All the data types except ARRAY are available.

Constant is also available.

Examples

LD I_VAL1

EQ I_VAL2

ST B_VAL1

LD I_VAL1

EQ I_VAL3

ST B_VAL2

LD I_VAL1

EQ(I_VAL2

SUB I_VAL3

)

ST B_VAL3

In case that I_VAL1 = 50, I_VAL2 = 100 IVAL_3 = 50,

The value of I_VAL1 whose data type is INT is loaded in CR.

After comparison operation for CR and the value of I_VAL2

whose data type is INT, stores the result in CR.

(As I_VAL1 < I_VAL2, CR will be 0)

Stores CR value in B_VAL1 whose data type is BOOL.

B_VAL1 <== FALSE

The value of I_VAL2 whose data type is INT is loaded in CR.

After comparison operation for CR and the value of I_VAL1

whose data type is INT, stores the result in CR.

(As I_VAL1 = I_VAL3, CR will be 1)

Stores CR value in B_VAL2 whose data type is BOOL.

B_VAL2 <== TRUE

The value of I_VAL1 whose data type is INT is loaded in CR.

Moves CR value in other place and stores the value of I_VAL2

whose data type is INT in CR.

After SUB operation for CR and the value of I_VAL3 whose data

type is INT, stores the result in CR.

After comparison operation for the current CR value and the

moved CR value stored in other place, stores the result in CR.

(As the stored CR = current CR, CR will be 1)

Stores the CR value in B_VAL3 whose data type is BOOL.

B_VAL3 <== TRUE

 5. IL

 5-17

 (15) NE

Meaning After comparison operation for CR and the operand value, stores the BOOL result in

CR. CR will be 1 only if CR is greater than operand. A data type of both CR and the

operand should be the same. The operand value does not change. After operation, a

data type of CR will be BOOL regardless of the operand data type.

Modifier (: Moves CR value in other place for a while and stores the value of operand in CR

(deferred operation).

Operand All data types except ARRAY are available.

Constant is also available.

Examples

LD I_VAL1

NE I_VAL3

ST B_VAL1

LD I_VAL1

NE I_VAL2

ST B_VAL2

LD I_VAL1

NE(I_VAL2

SUB I_VAL3

)

ST B_VA3

In case that I_VAL1 = 50, I_VAL2 = 100 IVAL_3 = 50,

The value of I_VAL1 whose data type is INT is loaded in CR.

After comparison operation for CR and the value of I_VAL2

whose data type is INT, stores the result in CR.

(As I_VAL1 = I_VAL3, CR will be 0)

Stores CR value in B_VAL1 whose data type is BOOL.

B_VAL1 <== FALSE

The value of I_VAL2 whose data type is INT is loaded in CR.

After comparison operation for CR and the value of I_VAL1

whose data type is INT, stores the result in CR.

(As I_VAL1 <> I_VAL2, CR will be 1)

Stores CR value in B_VAL2 whose data type is BOOL.

B_VAL2 <== TRUE

The value of I_VAL1 whose data type is INT is loaded in CR.

Moves CR value in other place and stores the value of I_VAL2

whose data type is INT in CR.

After SUB operation for CR and the value of I_VAL3 whose data

type is INT, stores the result in CR.

After comparison operation for the current CR value and the

moved CR value stored in other place, stores the result in CR.

(As the stored CR = current CR, CR will be 0)

Stores the CR value in B_VAL3 whose data type is BOOL.

B_VAL2 <== FALSE

5. IL

 5-18

 (16) LE

Meaning After comparison operation for CR and the operand value, stores the BOOL result in

CR. CR will be 1 only if CR is greater than operand. A data type of both CR and the

operand should be the same. The operand value does not change. After operation, a

data type of CR will be BOOL regardless of the operand data type.

Modifier (: Moves CR value in other place for a while and stores the value of operand in CR

(deferred operation).

Operand All data types except ARRAY are available.

Constant is also available.

Examples

LD I_VAL2

LE I_VAL1

ST B_VAL1

LD I_VAL1

LE I_VAL2

ST B_VAL2

LD I_VAL1

LE(I_VAL2

SUB I_VAL3

)

ST B_VA3

In case that I_VAL1 = 50, I_VAL2 = 100 IVAL_3 = 70,

The value of I_VAL2 whose data type is INT is loaded in CR.

After comparison operation for CR and the value of I_VAL1

whose data type is INT, stores the result in CR.

(As I_VAL1 < I_VAL2, CR will be 0)

Stores CR value in B_VAL1 whose data type is BOOL.

B_VAL1 <== FALSE

The value of I_VAL1 whose data type is INT is loaded in CR.

After comparison operation for CR and the value of I_VAL2

whose data type is INT, stores the result in CR.

(As I_VAL1 < I_VAL2, CR will be 1)

Stores CR value in B_VAL2 whose data type is BOOL.

B_VAL2 <== TRUE

The value of I_VAL1 whose data type is INT is loaded in CR.

Moves CR value in other place and stores the value of I_VAL2

whose data type is INT in CR.

After SUB operation for CR and the value of I_VAL3 whose data

type is INT, stores the result in CR.

After comparison operation for the current CR value and the

moved CR value stored in other place, stores the result in CR.

(As the stored CR > current CR, CR will be 0)

Stores the CR value in B_VAL3 whose data type is BOOL.

B_VAL2 <== FALSE

 5. IL

 5-19

 (17) LT

Meaning After comparison operation for CR and the operand value, stores the BOOL result in

CR. CR will be 1 only if CR is greater than operand. A data type of both CR and the

operand should be the same. The operand value does not change. After operation, a

data type of CR will be BOOL regardless of the operand data type.

Modifier (: Moves CR value in other place for a while and stores the value of operand in CR

(deferred operation).

Operand All data types except ARRAY are available.

Constant is also available.

Examples

LD I_VAL2

LT I_VAL1

ST B_VAL1

LD I_VAL1

LT I_VAL2

ST B_VAL2

LD I_VAL1

LT(I_VAL2

SUB I_VAL3

)

ST B_VA3

In case that I_VAL1 = 50, I_VAL2 = 100 IVAL_3 = 70,

The value of I_VAL2 whose data type is INT is loaded in CR.

After comparison operation for CR and the value of I_VAL1

whose data type is INT, stores the result in CR.

(As I_VAL1 < I_VAL2, CR will be 0)

Stores CR value in B_VAL1 whose data type is BOOL.

B_VAL1 <== FALSE

The value of I_VAL1 whose data type is INT is loaded in CR.

After comparison operation for CR and the value of I_VAL2

whose data type is INT, stores the result in CR.

(As I_VAL1 < I_VAL2, CR will be 1)

Stores CR value in B_VAL2 whose data type is BOOL.

B_VAL2 <== TRUE

The value of I_VAL1 whose data type is INT is loaded in CR.

Moves CR value in other place and stores the value of I_VAL2

whose data type is INT in CR.

After SUB operation for CR and the value of I_VAL3 whose data

type is INT, stores the result in CR.

After comparison operation for the current CR value and the

moved CR value stored in other place, stores the result in CR.

(As the stored CR > current CR, CR will be 0)

Stores the CR value in B_VAL3 whose data type is BOOL.

B_VAL2 <== FALSE

5. IL

 5-20

 (18) JMP

Meaning Jumps to the specified label.

Modifier C: If CR whose data type is BOOL is TRUE (1), it jumps to the specified label.

 If CR whose data type is BOOL is FALSE (0), it does not jump to the specified label

but executes the next instruction.

N: If CR whose data type is BOOL is FALSE (0), it jumps to the specified label.

 If CR whose data type is BOOL is TRUE (1), it does not jump to the specified label

but executes the next instruction.

If there is no modifier, it jumps to the label regardless of CR value.

Operand Label defined in the same IL program.

Examples

LD B_VAL1

JMPC THERE1

LD I_VAL1

JMP THERE2

THERE1:

LD I_VAL2

THERE2:

ST I_VAL3

LD B_VAL2

JMPN THERE3

LD B_VALUE

SEL

 G:= CURRENT

 RESULT

 IN1:= I_VAL1

 IN2:= I_VAL2

ST I_VAL3

THERE3:

This is a program that stores the value of I_VAL1 or I_VAL2 in

I_VAL3 according to the value of B_VAL1 whose data type is

BOOL.

The value of B_VAL1 whose data type is BOOL is loaded in

CR.

If CR is 1, it jumps to THERE1 label; if CR is 0, it executes the

next instruction.

CR <== I_VAL1

Jumps to THERE2 label unconditionally.

THERE1 label

CR <== I_VAL2

THERE2 label

I_VAL3 <== CR

This is a program that executes SEL function if the value of

B_VAL2 whose data type is BOOL is 1.

CR <== B_VAL2

If CR is 0 (FALSE), it jumps to THERE3 label.

CR <== B_VALUE

Calls SEL function.

I_VAL3 <== CR

THERE3 label

 5. IL

 5-21

 (19) CAL

Meaning Calls the function block whose name is described in the operand section.

Modifier C: if CR whose data type is BOOL is TRUE (1), it calls a function block.

 If CR whose data type is BOOL is FALSE (0), it does not call a function block.

N : if CR whose data type is BOOL is FALSE (0), it calls a function block.

If CR whose data type is BOOL is TRUE (1), it does not call a function block.

 If there is no modifier, it calls a function block regardless of CR.

Operand Function block name

Examples

LD B_VAL1

CALC TON TIMER1

 IN:= T_INPUT

 PT:= PRE_TIME

LD B_VAL2

CALN CTU COUNT1

 CU:= B_UP

 R:= B_RESET

 PV:= 100

CAL CTD COUNT2

 CD:= B_DOWN

 LD:= B_LDV

 PV:= 300

This is a program that if the value of B_VAL1 whose data

type is BOOL is 1(TRUE), calls the TON (on-delay timer).

The value of B_VAL1 whose data type is BOOL is loaded in

CR.

If CR is 1, it calls the on-delay timer, TON whose instance is

TIMER1.

This is a program that calls the CTU, (up counter), if the

value of B_VAL2 whose data type is BOOL is 0 (FALSE).

The value of B_VAL2 whose data type is BOOL is loaded in

CR.

If CR is 1, it calls the CTU (up counter) whose instance is

COUNT1.

This is a program that calls the CTD (down-counter)

regardless of CR.

Calls the CTD (down-counter) whose instance is COUNT2.

5. IL

 5-22

 (20) RET

Meaning Returns from a function or function block.

Modifier C: if CR whose data type is BOOL is TRUE (1), it returns.

 If CR whose data type is BOOL is FALSE (0), it does not return.

N: if CR whose data type is BOOL is FALSE (0), it returns.

 If CR whose data type is BOOL is TRUE (1), it does not return.

If there is no modifier, it returns regardless of CR.

Operand None

Examples

LD I_VAL1

MUL I_VAL2

ST I_VAL3

LD _ERR

RETN

LD 0

ST I_VAL3

RET

This is a function that stores the result in I_VAL3 after MUL

operation for the value of I_VAL1 whose data type is INT and the

value of I_VAL2 whose data type is INT. At this time, if an

operation error occurs in MUL operation, it returns after storing 0

in I_VAL3.

CR <== system error flag

If CR is 0, instance will return.

I_VAL3 <== 0

Returns unconditionally.

 5. IL

 5-23

 (21))

Meaning Evaluation deferred operation used with ‘(‘.

Modifier None

Operand None

 Examples LD I_VAL1

ADD I_VAL2

MUL I_VAL3

ST I_VAL4

LD I_VAL1

ADD(I_VAL2

MUL I_VAL3

)

ST I_VAL4

LD L_VAL1

ADD(L_VAL2

MUL(L_VAL3

SUB L_VAL4

)

ADD L_VAL5

)

DIV L_VAL6

ST L_VAL7

I_VAL4 <== (I_VAL1 + IVAL2) X I_VAL3

I_VAL4 <== I_VAL1 + (IVAL2 X I_VAL3)

L_VAL7 <== (L_VAL1 + (L_VAL2 X (L_VAL3 - L_VAL4) +

L_VAL5)) / L_VAL6

5. IL

 5-24

5.4. Calling of Function and Function Block
▷ Calls a function using its name as an operator.

▷ When calling a function, CR is stored as the first input.

▷ If a function has more than one input, assign the input value and then call a function.

▷ The output value of a function will be stored in CR.

▷ A data type of CR will be the output data type a function.

Example
LD VAL

SIN

ST RESULT (VAL and RESULT are regarded as a REAL data type)

If you store the value of VAL in CR at the first row and call SIN function at the second row, then the CR

value will be stored in SIN function as a first input. And it does not need other inputs because SIN

function has only one input, and the output value will be stored in CR after executing SIN function. At

the third row, CR will be stored in RESULT variable.

LD %IX0.0.0

SEL G:= CURRENT RESULT

 IN0:= VAL1

 IN1:= VAL2

ST VAL3

This is the example of a function that has several inputs. CR is set at the first row and is loaded in SEL

function as a first input value. If you assign each value for the rest inputs and call SEL function, the

result will be stored in CR and CR value will be stored in variable VAL3.

 5. IL

 5-25

▷ JMP (JMPN, JMPC) instructions are used to call a function conditionally.

Example

LD %IX0.0.0

JMPN THERE

LD I_VAL1

ADD IN1:= CURRENT RESULT

 IN2:= I_VAL2

 IN3:= I_VAL3

ST I_VAL4

THERE:

%IX0.0.0 value is loaded in CR whose data type is BOOL at the first row. And if the value is 0 at the

second row, it jumps to THERE: label. If %IX0.0.0 value is 1, it does not execute JMP instruction but

does the next row.

▷ When calling a function block, CAL is used as an operator and the instance name as an operand

that is previously declared.

▷ CAL INSTANCE /* call a function block unconditionally. */

 CALN INSTANCE /* if CR is BOOL 0, call a function block. */

 CALC INSTANCE /* if CR is BOOL 1, call a function block. */

Here, INSTANCE should be previously declared as an instance of a function block.

▷ CR is not loaded in a function block input. So it is required to assign all the input values necessary

for a function block. Besides output value is not stored in CR.

Example

On-Delay Timer function block

LD %IX0.0.0

CALC TON TIMER0

 IN:= %IX0.1.2

 PT:= T#200S

LD TIMER0.Q

ST %QX1.0.2

(assume that TIMER0 is declared as an instance of TON)

On-delay timer has 2 inputs and calls it after assigning its input values, respectively. If users want to

use the result values, they can do it like the fifth row in the above program because the result values

are stored in TIMER0.Q and TIMER0.ET respectively.

5. IL

 5-26

MEMO

 6. LD

 6-1

6. LD (Ladder Diagram)
6.1. Overview

▷ LD program represents PLC program through graphic signs such as coil or contact used in relay

logic diagram.

▷ Configuration

 Line no.

 l

6.2. Bus Line
▷ Bus line as power line is placed vertically on both left and right sides on LD graphic diagram.

No. Symbol Description

1

Left bus line

Its value is always 1 (BOOL).

2

Right bus line

The value is not fixed.

Function block Rung comment

Contact

Coil

Jump label

Right bus line

Horizontal link Vertical link

Function

Left bus line

Rung

Label

6. LD

 6-2

6.3. Connection Line
▷ The value (BOOL 1) of left bus line is transmitted to the right side by the ladder diagram. The line

that has the transmitted value is called as 'power flow line' or 'connection line' which is connected to

a contact or coil. Power flow line has always a BOOL value and there's only one power flow line in

one rung that is connected by lines.

▷ There are two types of a connection line of LD: horizontal connection line and vertical connection

line.

No. Symbol Description

1

 Horizontal connection line

It transmits the left side value to the right side.

2

Vertical connection line

It’s logical OR of horizontal connection lines of

its left side.

 6. LD

 6-3

6.4. Contact
▷ 'Contact' transmits a value to the right horizontal connection line, which is the result of logical AND

operation of these: the state of left horizontal connection line, Boolean input/output related to the

current contact, or memory variables. It does not change the value of variable itself related to the

contact. Standard contact symbols are as follows:

Static contact

No. Symbol Description

1

Normally open contact

When the addressed memory bit (marked with ***) is ON, the instruction is

TRUE, which transmits the state of the left connection line to the right one.

Otherwise the state of the right connection line is OFF.

2

/

Normally closed contact

When the addressed memory bit (marked with ***) is OFF, the instruction

is TRUE, which transmits the state of the left connection line to the right

one. Otherwise the state of the right connection line is OFF.

State transition-sensing contact

3

P

Positive transition-sensing contact

When the addressed memory bit (marked with ***) that was OFF in the

previous scan is ON, it maintains ON state during one scan (current scan).

4

N

Negative transition-sensing contact

When the addressed memory bit (marked with ***) that was ON in the

previous scan is OFF, it maintains ON state during just one scan (current

scan).

6. LD

 6-4

6.5. Coil
▷ Coil stores the state of the left connection line or the processing result of state transition in the

associated BOOL variable. Standard coil symbols are as follows:

No. Symbol Description

Momentary Coils

1

 ()

Coil

When the rung is TRUE, the addressed memory bit (marked with ***) is set ON.

If the bit controls an output device, that output device will be ON.

2

(/)

Negated coil

When the rung is TRUE, the addressed memory bit (marked with ***) is set OFF.

That is, if the state of left connection line is OFF, the associated variable is ON

and if the state of left connection line is ON, the associated variable is OFF.

If the bit controls an output device, that output device will be OFF.

Latched Coils

3

(S)

Set coil

It sets the associated variable (marked with ***) to ON when the left link is in the

ON state or TRUE and remains set until reset by a Reset coil. When the left link

is OFF or FALSE, the associated variable is not affected by the Set coil element.

4

(R)

Reset coil

It sets the associated variable (marked with ***) to OFF when the left link is in the

ON state or TRUE and remains reset until set by a Set coil. When the left link is

OFF or FALSE, the associated variable is not affected by the Reset coil element.

State Transition-sensing Coils

5

(P)

Positive transition-sensing coil

If the state of its left connection that was OFF in the previous scan is ON in the

current scan, the associated variable (marked with ***) is ON during the current

scan.

6

(N)

Negative transition-sensing coil

If the state of its left connection that was ON in the previous scan is OFF in the

current scan, the associated variable (marked with ***) is ON during the current

scan.

▷ Coils are placed in the rightmost side of LD, of which right side is a right bus line.

 6. LD

 6-5

6.6. Calling of Function and Function Block
▷ ▷ The connection to a function and function block will be done by putting suitable data or variable

to their input/output.

Example

 Function Function block

▷ There should be at least one BOOL-type input and BOOL-type output in a function or function block

if you want to enable them. EN and ENO are BOOL-type input/output in a function while a data type

of the first input and first output are BOOL-type in a function block.

Example

 Bool type input/output of Function

Bool type input/output of Function Block

6. LD

 6-6

▷ Function in LD is different from that of IL. By convention the ladder logic connected Boolean input

to a function is called EN and the corresponding output Boolean is called ENO, or enable out. If the

value of EN is 1, then the function is executed, otherwise it is not executed. In all cases, the default

is for the value of EN to be copied to the output ENO. If, for whatever reason, an error occurs in the

execution of a function, the function is responsible to set ENO to FALSE (BOOL 0). EN is

connected to the power flow line but ENO doesn't have to be connected to it. However, when

connecting the power flow line to the function output instead of ENO, output data type should be a

BOOL type. Note that only one power flow line can be connected to a function (when connecting

the power flow line to the function output not ENO, do not connect anything to ENO output). All the

inputs of a function are assigned by entering its data. The output of a function is stored at the

output variable in the right side of it.

▷ You can use a function block in LD as you do in IL. Inputs of a function block are assigned much

the same as a function. A function block is called when the left link is TRUE and not called when

the left link is FALSE. The value of the left link IN is copied to the right link Q for further processing.

The name of the function block is the "instance" name, which can be user-defined and must be

unique to LD in which the function block appears. You don't have to assign output variables

because they are in the instance. If a function block is connected to the power flow line, it is always

executed because there is neither EN nor ENO in it. Therefore, it is required to use Jump (-->>) to

determine whether or not to execute a function block according to the logic result. When

connecting the power flow line to the function block, it is required to connect it to the input/output of

which data type is BOOL.

Example

 6. LD

 6-7

▷ You can place a function and function block in any place of LD. It is available to make a program by

connecting the power flow line to their output and then putting the contact to that.

Example

▷ Only one power flow line can be connected to a function or function block.

Example

6. LD

 6-8

MEMO

7. Function and Function Block

7-1

7. Function and Function Block
It’s a list of function and function block. For each function and function block, please refer to the next

chapter.

7.1. Function

7.1.1. Type Conversion Function
It converts each input data type into an output data type.

Application
Function group Function Input data type Output data type

GMR‾2 GM3 GM4‾7

ARY_ASC_TO_BYTE WORD (ASCII) BYTE ○ ○ ○
ARY_ASC_TO_***

ARY_ASC_TO_BCD WORD (ASCII) BYTE (BCD) ○ ○ ○

ARY_BYTE_TO_*** ARY_BYTE_TO_ASC BYTE WORD (ASCII) ○ ○ ○

ARY_BCD_TO_*** ARY_BCD_TO_ ASC BYTE (BCD) WORD (ASCII) ○ ○ ○

ASC_TO_BCD BYTE (BCD) USINT ○ ○ ○
ASC_TO_***

ASC_TO_BYTE WORD (BCD) UINT ○ ○ ○

BCD_TO_SINT BYTE (BCD) SINT ○ ○ ○

BCD_TO_INT WORD (BCD) INT ○ ○ ○

BCD_TO_DINT DWORD (BCD) DINT ○ ○ ○

BCD_TO_LINT LWORD (BCD) LINT ○

BCD_TO_USINT BYTE (BCD) USINT ○ ○ ○

BCD_TO_UINT WORD (BCD) UINT ○ ○ ○

BCD_TO_UDINT DWORD (BCD) UDINT ○ ○ ○

BCD_TO_ULINT LWORD (BCD) ULINT ○

BCD_TO_***

BCD_TO_ASC BYTE (BCD) WORD ○ ○ ○

REAL DINT ○
TRUNC TRUNC

LREAL LINT ○

REAL_TO_SINT REAL SINT ○

REAL_TO_INT REAL INT ○

REAL_TO_DINT REAL DINT ○

REAL_TO_LINT REAL LINT ○

REAL_TO_USINT REAL USINT ○

REAL_TO_UINT REAL UINT ○

REAL_TO_UDINT REAL UDINT ○

REAL_TO_ULINT REAL ULINT ○

REAL_TO_DWORD REAL DWORD ○

REAL_TO_***

REAL_TO_LREAL REAL LREAL ○

LREAL_TO_SINT LREAL SINT ○

LREAL_TO_INT LREAL INT ○

LREAL_TO_DINT LREAL DINT ○

LREAL_TO_LINT LREAL LINT ○

LREAL_TO_***

LREAL_TO_USINT LREAL USINT ○

7. Function and Function Block

7-2

Application
Function group Function Input data type Output data type

GMR‾2 GM3 GM4‾7

LREAL_TO_UINT LREAL UINT ○

LREAL_TO_UDINT LREAL UDINT ○

LREAL_TO_ULINT LREAL ULINT ○

LREAL_TO_LWORD LREAL LWORD ○

LREAL_TO_***

LREAL_TO_REAL LREAL REAL ○

SINT_TO_INT SINT INT ○ ○ ○

SINT_TO_DINT SINT DINT ○ ○ ○

SINT_TO_LINT SINT LINT ○

SINT_TO_USINT SINT USINT ○ ○ ○

SINT_TO_UINT SINT UINT ○ ○ ○

SINT_TO_UDINT SINT UDINT ○ ○ ○

SINT_TO_ULINT SINT ULINT ○

SINT_TO_BOOL SINT BOOL ○ ○ ○

SINT_TO_BYTE SINT BYTE ○ ○ ○

SINT_TO_WORD SINT WORD ○ ○ ○

SINT_TO_DWORD SINT DWORD ○ ○ ○

SINT_TO_LWORD SINT LWORD ○

SINT_TO_BCD SINT BYTE (BCD) ○ ○ ○

SINT_TO_REAL SINT REAL ○

SINT_TO_***

SINT_TO_LREAL SINT LREAL ○

INT_TO_SINT INT SINT ○ ○ ○

INT_TO_DINT INT DINT ○ ○ ○

INT_TO_LINT INT LINT ○

INT_TO_USINT INT USINT ○ ○ ○

INT_TO_UINT INT UINT ○ ○ ○

INT_TO_UDINT INT UDINT ○ ○ ○

INT_TO_ULINT INT ULINT ○

INT_TO_BOOL INT BOOL ○ ○ ○

INT_TO_BYTE INT BYTE ○ ○ ○

INT_TO_WORD INT WORD ○ ○ ○

INT_TO_DWORD INT DWORD ○ ○ ○

INT_TO_LWORD INT LWORD ○

INT_TO_BCD INT WORD (BCD) ○ ○ ○

INT_TO_REAL INT REAL ○

INT_TO_***

INT_TO_LREAL INT LREAL ○

7. Function and Function Block

7-3

Application
Function group Function Input data type Output data type

GMR‾2 GM3 GM4‾7

DINT_TO_SINT DINT SINT ○ ○ ○

DINT_TO_INT DINT INT ○ ○ ○

DINT_TO_LINT DINT LINT ○

DINT_TO_USINT DINT USINT ○ ○ ○

DINT_TO_UINT DINT UINT ○ ○ ○

DINT_TO_UDINT DINT UDINT ○ ○ ○

DINT_TO_ULINT DINT ULINT ○

DINT_TO_BOOL DINT BOOL ○ ○ ○

DINT_TO_BYTE DINT BYTE ○ ○ ○

DINT_TO_WORD DINT WORD ○ ○ ○

DINT_TO_DWORD DINT DWORD ○ ○ ○

DINT_TO_LWORD DINT LWORD ○

DINT_TO_BCD DINT DWORD (BCD) ○ ○ ○

DINT_TO_REAL DINT REAL ○

DINT_TO_***

DINT_TO_LREAL DINT LREAL ○

LINT_TO_SINT LINT SINT ○

LINT_TO_INT LINT INT ○

LINT_TO_DINT LINT DINT ○

LINT_TO_USINT LINT USINT ○

LINT_TO_UINT LINT UINT ○

LINT_TO_UDINT LINT UDINT ○

LINT_TO_ULINT LINT ULINT ○

LINT_TO_BOOL LINT BOOL ○

LINT_TO_BYTE LINT BYTE ○

LINT_TO_WORD LINT WORD ○

LINT_TO_DWORD LINT DWORD ○

LINT_TO_LWORD LINT LWORD ○

LINT_TO_BCD LINT LWORD (BCD) ○

LINT_TO_REAL LINT REAL ○

LINT_TO_***

LINT_TO_LREAL LINT LREAL ○

USINT_TO_SINT USINT SINT ○ ○ ○

USINT_TO_INT USINT INT ○ ○ ○

USINT_TO_DINT USINT DINT ○ ○ ○

USINT_TO_LINT USINT LINT ○

USINT_TO_UINT USINT UINT ○ ○ ○

USINT_TO_UDINT USINT UDINT ○ ○ ○

USINT_TO_ULINT USINT ULINT ○

USINT_TO_BOOL USINT BOOL ○ ○ ○

USINT_TO_BYTE USINT BYTE ○ ○ ○

USINT_TO_WORD USINT WORD ○ ○ ○

USINT_TO_DWORD USINT DWORD ○ ○ ○

USINT_TO_***

USINT_TO_LWORD USINT LWORD ○

7. Function and Function Block

7-4

Application
Function group Function Input data type Output data type

GMR‾2 GM3 GM4‾7

USINT_TO_BCD USINT BYTE (BCD) ○ ○ ○

USINT_TO_REAL USINT REAL ○ USINT_TO_***

USINT_TO_LREAL USINT LREAL ○

UINT_TO_SINT UINT SINT ○ ○ ○

UINT_TO_INT UINT INT ○ ○ ○

UINT_TO_DINT UINT DINT ○ ○ ○

UINT_TO_LINT UINT LINT ○

UINT_TO_USINT UINT USINT ○ ○ ○

UINT_TO_UDINT UINT UDINT ○ ○ ○

UINT_TO_ULINT UINT ULINT ○

UINT_TO_BOOL UINT BOOL ○ ○ ○

UINT_TO_BYTE UINT BYTE ○ ○ ○

UINT_TO_WORD UINT WORD ○ ○ ○

UINT_TO_DWORD UINT DWORD ○ ○ ○

UINT_TO_LWORD UINT LWORD ○

UINT_TO_BCD UINT WORD (BCD) ○ ○ ○

UINT_TO_REAL UINT REAL ○

UINT_TO_LREAL UINT LREAL ○

UINT_TO_***

UINT_TO_DATE UINT DATE ○ ○ ○

UDINT_TO_SINT UDINT SINT ○ ○ ○

UDINT_TO_INT UDINT INT ○ ○ ○

UDINT_TO_DINT UDINT DINT ○ ○ ○

UDINT_TO_LINT UDINT LINT ○

UDINT_TO_USINT UDINT USINT ○ ○ ○

UDINT_TO_UINT UDINT UINT ○ ○ ○

UDINT_TO_ULINT UDINT ULINT ○

UDINT_TO_BOOL UDINT BOOL ○ ○ ○

UDINT_TO_BYTE UDINT BYTE ○ ○ ○

UDINT_TO_WORD UDINT WORD ○ ○ ○

UDINT_TO_DWORD UDINT DWORD ○ ○ ○

UDINT_TO_LWORD UDINT LWORD ○

UDINT_TO_BCD UDINT DWORD (BCD) ○ ○ ○

UDINT_TO_REAL UDINT REAL ○

UDINT_TO_LREAL UDINT LREAL ○

UDINT_TO_TOD UDINT TOD ○ ○ ○

UDINT_TO_***

UDINT_TO_TIME UDINT TIME ○ ○ ○

ULINT_TO_SINT ULINT SINT ○

ULINT_TO_INT ULINT INT ○

ULINT_TO_DINT ULINT DINT ○

ULINT_TO_LINT ULINT LINT ○

ULINT_TO_USINT ULINT USINT ○

ULINT_TO_***

ULINT_TO_UINT ULINT UINT ○

7. Function and Function Block

7-5

Application
Function group Function Input data type Output data type

GMR‾2 GM3 GM4‾7

ULINT_TO_UDINT ULINT UDINT ○

ULINT_TO_BOOL ULINT BOOL ○

ULINT_TO_BYTE ULINT BYTE ○

ULINT_TO_WORD ULINT WORD ○

ULINT_TO_DWORD ULINT DWORD ○

ULINT_TO_LWORD ULINT LWORD ○

ULINT_TO_BCD ULINT LWORD (BCD) ○

ULINT_TO_REAL ULINT REAL ○

ULINT_TO_***

ULINT_TO_LREAL ULINT LREAL ○

BOOL_TO_SINT BOOL SINT ○ ○ ○

BOOL_TO_INT BOOL INT ○ ○ ○

BOOL_TO_DINT BOOL DINT ○ ○ ○

BOOL_TO_LINT BOOL LINT ○

BOOL_TO_USINT BOOL USINT ○ ○ ○

BOOL_TO_UINT BOOL UINT ○ ○ ○

BOOL_TO_UDINT BOOL UDINT ○ ○ ○

BOOL_TO_ULINT BOOL ULINT ○

BOOL_TO_BYTE BOOL BYTE ○ ○ ○

BOOL_TO_WORD BOOL WORD ○ ○ ○

BOOL_TO_DWORD BOOL DWORD ○ ○ ○

BOOL_TO_LWORD BOOL LWORD ○

BOOL_TO_***

BOOL_TO_STRING BOOL STRING ○ ○ ○

BYTE_TO_SINT BYTE SINT ○ ○ ○

BYTE_TO_INT BYTE INT ○ ○ ○

BYTE_TO_DINT BYTE DINT ○ ○ ○

BYTE_TO_LINT BYTE LINT ○

BYTE_TO_USINT BYTE USINT ○ ○ ○

BYTE_TO_UINT BYTE UINT ○ ○ ○

BYTE_TO_UDINT BYTE UDINT ○ ○ ○

BYTE_TO_ULINT BYTE ULINT ○

BYTE_TO_BOOL BYTE BOOL ○ ○ ○

BYTE_TO_WORD BYTE WORD ○ ○ ○

BYTE_TO_DWORD BYTE DWORD ○ ○ ○

BYTE_TO_LWORD BYTE LWORD ○

BYTE_TO_STRING BYTE STRING ○ ○ ○

BYTE_TO_***

BYTE_TO_ASC BYTE WORD (ASCII)

WORD_TO_SINT WORD SINT ○ ○ ○

WORD_TO_INT WORD INT ○ ○ ○

WORD_TO_DINT WORD DINT ○ ○ ○

WORD_TO_LINT WORD LINT ○

WORD_TO_USINT WORD USINT ○ ○ ○

WORD_TO_***

WORD_TO_UINT WORD UINT ○ ○ ○

7. Function and Function Block

7-6

Application
Function group Function Input data type Output data type

GMR‾2 GM3 GM4‾7

WORD_TO_UDINT WORD UDINT ○ ○ ○

WORD_TO_ULINT WORD ULINT ○

WORD_TO_BOOL WORD BOOL ○ ○ ○

WORD_TO_BYTE WORD BYTE ○ ○ ○

WORD_TO_DWORD WORD DWORD ○ ○ ○

WORD_TO_LWORD WORD LWORD ○

WORD_TO_DATE WORD DATE ○ ○ ○

WORD_TO_***

WORD_TO_STRING WORD STRING ○ ○ ○

DWORD_TO_SINT DWORD SINT ○ ○ ○

DWORD_TO_INT DWORD INT ○ ○ ○

DWORD_TO_DINT DWORD DINT ○ ○ ○

DWORD_TO_LINT DWORD LINT ○

DWORD_TO_USINT DWORD USINT ○ ○ ○

DWORD_TO_UINT DWORD UINT ○ ○ ○

DWORD_TO_UDINT DWORD UDINT ○ ○ ○

DWORD_TO_ULINT DWORD ULINT ○

DWORD_TO_BOOL DWORD BOOL ○ ○ ○

DWORD_TO_BYTE DWORD BYTE ○ ○ ○

DWORD_TO_WORD DWORD WORD ○ ○ ○

DWORD_TO_LWORD DWORD LWORD ○

DWORD_TO_REAL DWORD REAL ○

DWORD_TO_TIME DWORD TIME ○ ○ ○

DWORD_TO_TOD DWORD TOD ○ ○ ○

DWORD_TO_***

DWORD_TO_STRING DWORD STRING ○ ○ ○

LWORD_TO_SINT LWORD SINT ○

LWORD_TO_INT LWORD INT ○

LWORD_TO_DINT LWORD DINT ○

LWORD_TO_LINT LWORD LINT ○

LWORD_TO_USINT LWORD USINT ○

LWORD_TO_UINT LWORD UINT ○

LWORD_TO_UDINT LWORD UDINT ○

LWORD_TO_***

LWORD_TO_ULINT LWORD ULINT ○

LWORD_TO_BOOL LWORD BOOL ○

LWORD_TO_BYTE LWORD BYTE ○

LWORD_TO_WORD LWORD WORD ○

LWORD_TO_DWORD LWORD DWORD ○

LWORD_TO_LREAL LWORD LREAL ○

LWORD_TO_DT LWORD DT ○

LWORD_TO_***

LWORD_TO_STRING LWORD STRING ○

STRING _TO_SINT STRING SINT ○ ○ ○

STRING _TO_INT STRING INT ○ ○ ○ STRING_TO_***

STRING _TO_DINT STRING DINT ○ ○ ○

7. Function and Function Block

7-7

Application
Function group Function Input data type Output data type

GMR‾2 GM3 GM4‾7

STRING _TO_LINT STRING LINT ○

STRING _TO_USINT STRING USINT ○ ○ ○

STRING _TO_UINT STRING UINT ○ ○ ○

STRING _TO_UDINT STRING UDINT ○ ○ ○

STRING _TO_ULINT STRING ULINT ○

STRING _TO_BOOL STRING BOOL ○ ○ ○

STRING _TO_BYTE STRING BYTE ○ ○ ○

STRING _TO_WORD STRING WORD ○ ○ ○

STRING _TO_DWORD STRING DWORD ○ ○ ○

STRING _TO_LWORD STRING LWORD ○

STRING _TO_REAL STRING REAL ○

STRING _TO_LREAL STRING LREAL ○

STRING _TO_DT STRING DT ○ ○ ○

STRING _TO_DATE STRING DATE ○ ○ ○

STRING _TO_TOD STRING TOD ○ ○ ○

STRING_TO_***

STRING _TO_TIME STRING TIME ○ ○ ○

NUM_TO_STRING NUM_TO_STRING ANY_NUM STRING ○ ○ ○

TIME_TO_UDINT TIME UDINT ○ ○ ○

TIME_TO_DWORD TIME DWORD ○ ○ ○ TIME_TO_***

TIME_TO_STRING TIME STRING ○ ○ ○

DATE_TO_UINT DATE UINT ○ ○ ○

DATE_TO_WORD DATE WORD ○ ○ ○ DATE_TO_***

DATE_TO_STRING DATE STRING ○ ○ ○

TOD_TO_UDINT TOD UDINT ○ ○ ○

TOD_TO_DWORD TOD DWORD ○ ○ ○ TOD_TO_***

TOD_TO_STRING TOD STRING ○ ○ ○

DT_TO_LWORD DT LWORD ○

DT_TO_DATE DT DATE ○ ○ ○

DT_TO_TOD DT TOD ○ ○ ○
DT_TO_***

DT_TO_STRING DT STRING ○ ○ ○

7. Function and Function Block

7-8

7.1.2. Arithmetic Function

7.1.2.1. Numerical Operation Function with One Input
 It supports GMR, GM1, GM2 (Note: ABS function supports GM3, GM4, GM6, GM7).

No. Function Description

General function

1 ABS Absolute value operation

2 SQRT Calculate SQRT (Square root operation)

Logarithm

3 LN Natural logarithm operation

4 LOG Base 10 logarithm operation

5 EXP Natural exponential operation

Trigonometric function

6 SIN Sine operation

7 COS Cosine operation

8 TAN Tangent operation

9 ASIN Arc Sine operation

10 ACOS Arc Cosine operation

11 ATAN Arc Tangent operation

Angle function

12 RAD_REAL

13 RAD_LREAL

Convert degree into radian

14 DEG_REAL

15 DEG_LREAL

Convert radian into degree

7.1.2.2. Basic Arithmetic Function
 EXPT supports GMR, GM1, GM2 only; XCHG_*** supports GM3, GM4, GM6, GM7.

No. Function Description

Operation function of which input number (n) can be extended up to 8.

1 ADD Addition (OUT <= IN1 + IN2 + ... + INn)

2 MUL Multiplication (OUT <= IN1 * IN2 * ... * INn)

Operation function of which input number is fixed.

3 SUB Subtraction (OUT <= IN1 - IN2)

4 DIV Division (OUT <= IN1 / IN2)

5 MOD Calculate remainder (OUT <= IN1 Modulo IN2)

6 EXPT Exponential operation (OUT <= IN1IN2)

7 MOVE Copy data (OUT <= IN)

Input data exchange

8 XCHG_*** Exchanges two input data

7. Function and Function Block

7-9

7.1.3. Bit Array Function

7.1.3.1. Bit-shift Function

No. Function Description

1 SHL Shift left

2 SHR Shift right

3 SHIFT_C_*** Shift with Carry

4 ROL Rotate left

5 ROR Rotate right

6 ROTATE_C_*** Rotates a designated direction

7.1.3.2. Bit Operation Function

No. Function Description (n can be extended up to 8)

1 AND Logical AND (OUT <= IN1 AND IN2 AND ... AND INn)

2 OR Logical OR (OUT <= IN1 OR IN2 OR ... OR INn)

3 XOR Exclusive OR (OUT <= IN1 XOR IN2 XOR ... XOR INn)

4 NOT Reverse logic (OUT <= NOT IN1)

7.1.4. Selection Function

No. Function Description (n can be extended up to 8)

1 SEL Selection from two inputs

2 MAX Produces a maximum value among input IN1, …, INn

3 MIN Produces a minimum value among input IN1, …, INn

4 LIMIT Limits upper and lower boundary

5 MUX Selection from multiple inputs

7.1.5. Data Exchange Function

No. Function Description

SWAP_BYTE Swaps upper nibble for lower nibble data.

SWAP_WORD Swaps upper byte for lower byte data.

SWAP_DWORD Swaps upper word for lower word data.

1

SWAP_LWORD Swaps upper double word for lower double word data.

ARY_SWAP_BYTE Swaps upper/lower nibble of byte elements.

ARY_SWAP_WORD Swaps upper/lower byte of WORD elements.

ARY_SWAP_DWORD Swaps upper/lower WORD of DWORD elements.

2

ARY_SWAP_LWORD Swaps upper/lower DWORD of LWORD elements.

7. Function and Function Block

7-10

7.1.6. Comparison Function

No. Function Description (n can be extended up to 8)

1 GT ‘Greater than’ comparison

OUT <= (IN1>IN2) & (IN2>IN3) & ... & (INn-1 > INn)

2 GE ‘Greater than or equal to’ comparison

OUT <= (IN1>=IN2) & (IN2>=IN3) & ... & (INn-1 >= INn)

3 EQ ‘Equal to’ comparison

OUT <= (IN1=IN2) & (IN2=IN3) & ... & (INn-1 = INn)

4 LE 'Less than or equal to' comparison

OUT <= (IN1<=IN2) & (IN2<=IN3) & ... & (INn-1 <= INn)

5 LT ‘Less than’ comparison

OUT <= (IN1<IN2) & (IN2<IN3) & ... & (INn-1 < INn)

6 NE ‘Not equal to’ comparison

OUT <= (IN1<>IN2) & (IN2<>IN3) & ... & (INn-1 <> INn)

7.1.7. Character String Function

No. Function Description

1 LEN Find a length of a character string

2 LEFT Take a left side of a string

3 RIGHT Take a right side of a string

4 MID Take a middle side of a string

5 CONCAT Concatenate the input character string in order

6 INSERT Insert a string

7 DELETE Delete a string

8 REPLACE Replace a string

9 FIND Find a string

7. Function and Function Block

7-11

7.1.8. Time/Time of Day/Date and Time of Day Function

No. Function Description

1 ADD_TIME Add time (Time/time of day/date and time addition)

SUB_TIME Subtract time

SUB_DATE Subtract date

SUB_TOD Subtract TOD

2

SUB_DT Subtract DT

3 MUL_TIME Multiply time

4 DIV_TIME Divide time

5 CONCAT_TIME Concatenate date with TOD

7.1.9. System Control Function

No. Function Description

1 DI Invalidates interrupt (Not to permit task program starting)

2 EI Permits running for a task program

3 STOP Stop running by a task program

4 ESTOP Emergency running stop by a program

5 DIREC_IN Update input data (available for GM1 ‾ GM7)

6 DIREC_O Updates output data (available in GM1 ‾ GM7)

7 WDT_RST Initialize a timer of watchdog

8 MCS Set MCS (Master Control)

9 MCSCLR Set MCSCLR (Master Control Clear)

7. Function and Function Block

7-12

7.1.10. Data Manipulation Function

No. Function Description

1 MEQ_*** Compare whether two inputs are equal after masking

2 DIS_*** Data distribution

3 UNI_*** Unite data

4 BIT_BYTE Combine 8 bits into one byte

5 BYTE_BIT Divide one byte into 8 bits

6 BYTE_WORD Combine two bytes into one WORD

7 WORD_BYTE Divide one WORD into two bytes

8 WORD_DWORD Combine two WORD data into DWORD

9 DWORD_WORD Divide DWORD into 2 WORD data

10 DWORD_LWORD Combine two DWORD data into LWORD

11 LWORD_DWORD Divide LWORD into two DWORD data

12 GET_CHAR Get one character from a character string

13 PUT_CHAR Puts a character in a string

14 STRING_TO_ARY Convert a string into a byte array

15 ARY_TO_STRING Convert a byte array into a string

7.1.11. Stack Operation Function

No. Function Description

1 FIFO_*** First In First Out

2 LIFO_*** Last In First Out

7. Function and Function Block

7-13

7.2. MK (MASTER-K) Function

No. Function Description (n can be extended up to 8)

1 ENCO_*** Output a position of On bit by number

2 DECO_*** Turn a selected bit on

3 BSUM_*** Output a number of On bit

4 SEG Convert BCD/HEX into 7-segment code

5 BMOV_*** Move part of a bit string

6 INC_*** Increase IN data

7 DEC_*** Decrease IN data

7.3. Array Operation Function

No. Function Description

1 ARY_MOVE Copy array-typed data (OUT <= IN)

2 ARY_CMP_*** Array comparison

3 ARY_SCH_*** Array search

4 ARY_FLL_*** Filling an array with data

5 ARY_AVE_*** Find an average of an array

6 ARY_SFT_C_*** Array bit shift left with carry

7 ARY_ROT_C_*** Bit rotation of array with carry

8 SHIFT_A_*** Shift array elements

9 ROTATE_A_*** Rotates array elements

7.4. Basic Function Block

7.4.1. Bistable Function Block

No. Function Block Description

1 SR Set preference bistable

2 RS Reset preference bistable

3 SEMA Semaphore

7.4.2. Edge Detection Function Block

No. Function Block Description

1 R_TRIG Rising edge detector

2 F_TRIG Falling edge detector

7. Function and Function Block

7-14

7.4.3. Counter

No. Function Block Description

1 CTU Up Counter

2 CTD Down Counter

3 CTUD Up/Down Counter

4 CTR Ring Counter

7.4.4. Timer

No. Function Block Description

1 TP Pulse Timer

2 TON On-Delay Timer

3 TOF Off-Delay Timer

4 TMR Integrating Timer

5 TP_RST TP with reset

6 TRTG Retriggerable Timer

7 TOF_RST TOF with reset

8 TON_UNIT TON with integer setting

9 TOF_UNIT TOF with integer setting

10 TP_UNIT TP with integer setting

11 TMR_UNIT TMR with integer setting

7.4.5. Other Function Block

No. Function Block Description

1 SCON Step Controller

2 DUTY Scan setting On/Off

8. Basic Function/Function Block Library

8-1

8. Function/Function Block Library
8.1 Basic Function Library

This chapter describes the basic function library respectively.

 When a function error occurs, please refer to the following instruction.
▷ Function error

If an error occurs when a function is run, ENO will be 0 and, the error flag (_ERR, _LER) will be 1.
 Unless an error occurs, ENO will be equal to EN (EN and ENO are used in LD only).

▷ Error flag
 _ERR (Error)

- After function execution of which error is described, _ERR value will be changed as follows:
(There’s no change in _ERR value as long as there’s no function error.)

 - In case of an operation error, it will be 1.
 - In other cases, it will be 0.

 _LER (Latched Error)
- In case of an error after execution, _LER will be 1 and maintained until the end of the program.
- It is possible to write 0 in the program.

Program Example
 This is a program that moves VALUE1 data to OUT_VAL without executing SUB function if an ADD

function error occurs.

 (1) An error occurs in ADD function when its two inputs are as follows:
 Input (IN1): VALUE1 (SINT) = 100 (16#64)
 (IN2): VALUE2 (SINT) = 50 (16#32)
 Output (OUT): OUT_VAL (SINT) = -106 (16#96)
 (2) As an output value is out of range of its data type, the abnormal value will be stored in the OUT_VAL

(SINT). At this time, ENO of ADD function will be 0 and SUB function will not be executed, and the
error flag (_ERR and _LER) will be on.

 (3) _ERR will be on and MOVE function will be executed.
 Input (IN1): VALUE1 (SINT) = 100 (16#64)
 Output (OUT): OUT_VAL (SINT) = 100 (16#64)

POINT

8. Basic Function/Function Block Library

8-2

ABS
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 ABS
 BOOL EN ENO BOOL
 ANY_NUM IN OUT ANY_NUM

 Input EN: executes the function in case of 1
 IN: input value of absolute value operation

 Output ENO: without an error, it will be 1
 OUT: absolute value

 IN, OUT should be the same data type.

Function

It converts input IN into its absolute value and produces output OUT.
|X|, an absolute value of X is,
 If X>=0, |X| = X,
 If X<0, |X| = -X.
OUT = IN

Error
 _ERR, _LER flags are set when input IN is a minimum value.
 Ex) If IN value is –128 and its data type is SINT, an error occurs.

Program Example

LD IL

 LD %I0.0.0
 JMPN AL
 LD VALUE
 ABS
 ST ABS_VALUE
 AL :

(1) If the transition condition (%I0.0.0) is on, ABS function will be executed.
(2) If VALUE = -7, ABS_VALUE = -7 = 7.
 If VALUE = 200, ABS_VALUE = 200 = 200.

 Input (IN): VALUE (INT) = -7
 (16#FFF9)

 Output (OUT): ABS_VALUE (INT) = 7
 (16#0007)
The negative number of INT type is represented as the 2's compliment form (refer to 3.2.4. Data Type
Structure)

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

(ABS)

Absolute value operation

8. Basic Function/Function Block Library

8-3

ACOS
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 ACOS
 BOOL EN ENO BOOL
ANY_REAL IN OUT ANY_REAL

 Input EN: executes the function in case of 1
 IN: input value of Arc Cosine operation

 Output ENO: without an error, it will be 1
 OUT: Arc Cosine (radian)
 IN, OUT should be the same data type.

 Function

It converts input IN into its Arc Cosine value and produces output OUT. The output range is between 0 and π.
OUT = ACOS (IN).

 Error
Unless an IN value is between -1.0 and 1.0, _ERR, _LER flags are set.

 Program Example
LD IL

 LD %M0
 JMPN LL
 LD INPUT
 ACOS
 ST RESULT
 LL :

(1) If the transition condition (%M0) is on, ACOS function will be executed.
(2) If INPUT is 0.8660... (√ 3 / 2), RESULT will be 0.5235... (π/6 rad = 30°).
 ACOS (√3 / 2) = π/6
 (COS π/6 = √ 3 / 2)

 Input (IN1): INPUT (REAL) = 0.866

(ACOS)

 Output (OUT): RESULT (REAL) = 5.23499966E-01

REAL type representation is based on IEEE Standard 754-1984 (refer to 3.2.4. Data Type Structure).

Arc Cosine operation

8. Basic Function/Function Block Library

8-4

ADD
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 ADD
 BOOL EN ENO BOOL
ANY_NUM IN1 OUT ANY_NUM
ANY_NUM IN2

 Input EN: executes the function in case of 1
 IN1: value to be added
 IN2: value to add
 Input variable number can be extended up to 8

 Output ENO: without an error, it will be 1
 OUT: added value

 IN1, IN2, ..., OUT should be the same data type.

 Function

It adds input variables up (IN1, IN2, ..., and INn, n: input number) and produces output OUT.
OUT = IN1 + IN2 + ... + INn

 Error
 When the output value is out of its data type, _ERR, _LER flags are set.

 Program Example
LD IL

 LD %M0
 JMPN CA
 LD VALUE1
 ADD IN1:= CURRENT RESULT
 IN2:= VALUE2
 IN3:= VALUE3
 ST OUT_VAL
 CA :

(1) If the transition condition (%M0) is on, ADD function will be executed.
(2) If input variable VALUE1 = 300, VALUE2 = 200, and VALUE3 = 100,

 output variable OUT_VAL = 300 + 200 + 100 = 600.

 Input (IN1): VALUE1 (INT) = 300 (16#012C)
 + (ADD)
 (IN2): VALUE2 (INT) = 200 (16#00C8)
 + (ADD)
 (IN2): VALUE3 (INT) = 100 (16#0064)

 (OUT): OUT_VAL (INT) = 600 (16#0258)

0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0

Addition

8. Basic Function/Function Block Library

8-5

ADD_TIME
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 ADD_TIME
 BOOL EN ENO BOOL
TIME/TOD/DT IN1 OUT TIME/TOD/DT
 TIME IN2

 Input EN: executes the function in case of 1
 IN1: reference time, time of date
 IN2: time to add
 Output ENO: without an error, it will be 1
 OUT: added result of TOD or time
 IN1, IN2, and OUT should be the same data type:

If IN1 type is TIME_OF_DAY, OUT type will be also
TIME_OF_DAY.

 Function
▷ If IN1 is TIME, added TIME will be an output.
▷ If IN1 is TIME_OF_DAY, it adds TIME to reference TIME_OF_DAY and produces output TIME_OF_DAY.
▷ If IN1 is DATE_AND_TIME, the output data type will be DT (Date and Time of Day) adding the time to the

standard date and time of day.

 Error
▷ If an output value is out of range of related data type, _ERR, _LER flag will be set.
▷ An error occurs: 1) when the result of adding the time and the time is out of range of TIME data type

T#49D17H2M47S295MS; 2) the result of adding TOD (Time of Day) and the time exceeds 24hrs; 3) the
result of adding the date and DT (Date and the Time of Day) exceeds the year, 2083.

 Program Example

LD IL

 LD %I0.1.0
 JMPN ABC
 LD START_TIME
 ADD_TIME IN1:= CURRENT RESULT
 IN2:= WORK_TIME
 ST END_TIME
 ABC :

(1) If the transition condition (%I0.1.0) is on, ADD_TIME function will be executed.
(2) If START_TIME is TOD#08:30:00 and WORK_TIME is T#2H10M20S500MS,

END_TIME will be TOD#10:40:20.5.

 Input (IN1): START_TIME (TOD) = TOD#08:30:00
 + (ADD_TIME)

 (IN2): WORK_TIME (TIME) = T#2H10M20S500MS

 Output (OUT): END_TIME (TOD) = TOD#10:40:20.5

Time Addition

8. Basic Function/Function Block Library

8-6

AND
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 AND
 BOOL EN ENO BOOL
 ANY_BIT IN1 OUT ANY_BIT
 ANY_BIT IN2

 Input EN: executes the function in case of 1
 IN1: input 1
 IN2: input 2
 Input variables can be extended up to 8.

 Output ENO: without an error, it will be 1
 OUT: AND result
 IN1, IN2, and OUT should be all the same data type.

 Function
It performs logical AND operation on the input variables by bit and produces output OUT.
 IN1 1111 0000
 &
 IN2 1010 1010
 OUT 1010 0000

 Program Example

LD IL

 LD %I0.1.1
 JMPN AA
 LD %MB10
 AND IN1:= CURRENT RESULT
 IN2:= ABC
 ST %QB0.0.0
 AA :

(1) If the transition condition (%I0.1.1) is on, AND function will be executed.
(2) If INI = %MB10 and IN2 = ABC, the result of AND will be shown in OUT (%QB0.0.0).

 Input (IN1): %MB10 (BYTE) = 16#CC
 & (AND)
 (IN2): ABC (BYTE) = 16#F0

 Output (OUT): %QB0.0.0 (BYTE) = 16#C0

1 1 0 0 1 1 0 0

1 1 1 1 0 0 0 0

1 1 0 0 0 0 0 0

Logical AND (Logical multiplication)

 8. Basic Function/Function Block Library

8-7

ARY_TO_STRING
 MODEL GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

Input EN: executes the function in case of 1
 IN: byte array input

 Output ENO: without an error, it will be 1
 OUT: string output

 Function
It converts a byte array input into a string.

 Program Example

LD

(1) If the transition condition (%M2) is on, BYTE_STRING function will be executed.
(2) Input variable INPUT is converted into string-type variable OUTPUT.

For example, if INPUT is 16#{22(“), 47(G), 4D(M), 34(4), 2D(-), 43(C), 50(P), 55(U), 41(A), 22(“)}, the
RESULT will be “GM4-CPUA”.

STRING

ARY_ARY_ARY_ARY_TO_STRINGTO_STRINGTO_STRINGTO_STRING

ENO EN
IN1 OUT

BOOL BOOL

BYTE_ARY

Converts a byte array into a string

8. Basic Function/Function Block Library

8-8

ASIN
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 ASIN
 BOOL EN ENO BOOL
ANY_REAL IN OUT ANY_REAL

 Input EN: executes the function in case of 1
 IN: input value of Arc Sine operation

 Output ENO: without an error, it will be 1
 OUT: radian output value after operation
 IN and OUT should be the same data type.

 Function

It produces an output (Arc Sine value) of IN. The output value is between -π/2 and π/2.
OUT = ASIN (IN)

 Error
If an input value exceeds the range from -1.0 to 1.0, _ERR and _LER flags are set.

 Program Example
LD IL

 LD %M0
 JMPN AAA
 LD INPUT
 ASIN
 ST RESULT
 AAA :

(1) If the transition condition (%M0) is on, ASIN function will be executed.
(2) If INPUT variable is 0.8660.... (√ 3 /2), the RESULT will be 1.0471.... (π/3 radian = 60°).

ASIN (√ 3 / 2) = π/3
 Therefore, SIN (π/3) = √ 3 /2

 Input (IN1): INPUT (REAL) = 0.866
 (ASIN)

 Output (OUT): RESULT (REAL) = 1.04714680E+00

Arc Sine operation

8. Basic Function/Function Block Library

8-9

ATAN
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 ATAN
 BOOL EN ENO BOOL
ANY_REAL IN OUT ANY_REAL

 Input EN: executes the function in case of 1
 IN: Input value of Arc Tangent operation

 Output ENO: without an error, it will be 1
 OUT: radian output value after operation

 IN, OUT should be the same data type.

■ Function
It produces an output (Arc Tangent value) of IN value. The output value is between -π/2 and π/2.
OUT = ATAN (IN)

■ Program Example

LD IL

 LD %M0
 JMPN AA
 LD INPUT
 ATAN
 ST RESULT
 AA :

(1) If the transition condition (%M0) is on, ATAN function will be executed.
(2) If INPUT = 1.0, then output RESULT will be:
 RESULT = π/4 = 0.7853...
 ATAN (1) = π/4
 (TAN (π/4) = 1)

 Input (IN1): INPUT (REAL) = 1.0

(ATAN)

 Output (OUT): RESULT (REAL) = 7.85398185E-01

Arc Tangent operation

8. Basic Function/Function Block Library

8-10

BCD_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 BCD_TO_***

 BOOL EN ENO BOOL
 ANY_BIT IN OUT ***

 Input EN: executes the function in case of 1
 IN: ANY_BIT (BCD)

 Output ENO: without an error, it will be 1
 OUT: type-converted data

 Function

It converts input IN type and produces output OUT.

Function Input type Output type Description

 BCD_TO_SINT BYTE SINT
 BCD_TO_INT WORD INT
 BCD_TO_DINT DWORD DINT
 BCD_TO_LINT LWORD LINT
 BCD_TO_USINT BYTE USINT
 BCD_TO_UINT WORD UINT
 BCD_TO_UDINT DWORD UDINT
 BCD_TO_ULINT LWORD ULINT

It converts BCD data into an output data type.
It coverts only when the input date type is a BCD value.
If an input data type is WORD, only the part of its data

(0 ∼16#9999) will be normally converted.

 Error

If IN is not a BCD data type, then the output will be 0 and _ERR, _LER flags will be set.

 Program Example
LD IL

 LD %M0
 JMPN ABC
 LD BCD_VAL
 BCD_TO_SINT
 ST OUT_VAL
 ABC :

(1) If the transition condition (%M0) is on, BCD_TO_*** function will be executed.
(2) If BCD_VAL (BYTE) = 16#22 (2#0010_ 0010),

then the output variable OUT_VAL (SINT) = 22 (2#0001_ 0110).

 Input (IN1): BCD_VAL (BYTE) = 16#22
 (BCD_TO_SINT)
 Output (OUT): OUT_VAL (SINT) = 22

0 0 1 0 0 0 1 0

0 0 0 1 0 1 1 0

Converts BCD data into an integer number

8. Basic Function/Function Block Library

8-11

BOOL_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 BOOL_TO_***
 BOOL EN ENO BOOL
 BOOL IN OUT ***

 Input EN: executes the function in case of 1
 IN: bit to convert (1 bit)

 Output ENO: without an error, it will be 1.
 OUT: type-converted data

 Function
It converts input IN type and produces output OUT.

Function
Output

type
Description

 BOOL_TO_SINT SINT
 BOOL_TO_INT INT
 BOOL_TO_DINT DINT
 BOOL_TO_LINT LINT
 BOOL_TO_USINT USINT
 BOOL_TO_UINT UINT
 BOOL_TO_UDINT UDINT
 BOOL_TO_ULINT ULINT

If the input value (BOOL) is 2#0, it produces the integer number ‘0’ and
if it is 2#1, it does the integer number ‘1’ according to the output data
type.

 BOOL_TO_BYTE BYTE
 BOOL_TO_WORD WORD
 BOOL_TO_DWORD DWORD
 BOOL_TO_LWORD LWORD

 It converts BOOL into the output data type of which upper bits are filled
with 0.

 BOOL_TO_STRING STRING It converts BOOL into a STRING type, which will be ‘0’ or ‘1’.

 Program Example

LD IL

 LD %M0
 JMPN ABC
 LD BOOL_VAL
 BOOL_TO_BYTE
 ST OUT_VAL
 ABC :

(1) If the transition condition (%M0) is on, BOOL_TO_*** function will be executed.
(2) If input BOOL_VAL (BOOL) = 2#1, then output OUT_VAL (BYTE) = 2#0000_ 0001.
 Input (IN1): BOOL_VAL (BOOL) = 2#1

(BOOL_TO_SINT)
 Output (OUT): OUT_VAL (BYTE) = 16#1 0 0 0 0 0 0 0 1

1

BOOL type conversion

8. Basic Function/Function Block Library

8-12

BYTE_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 BYTE_TO_***
 BOOL EN ENO BOOL
 BYTE IN OUT ***

 Input EN: executes the function in case of 1
 IN: bit string to convert (8 bits)

 Output ENO: without an error, it will be 1.
 OUT: type-converted data

 Function

It converts input IN type and produces output OUT.

Function Output type Description
 BYTE _TO_SINT SINT Converts into SINT type without changing its internal bit array.
 BYTE _TO_INT INT Converts into INT type filling the upper bits with 0.
 BYTE _TO_DINT DINT Converts into DINT type filling the upper bits with 0.
 BYTE _TO_LINT LINT Converts into LINT type filling the upper bits with 0.
 BYTE _TO_USINT USINT Converts into USINT type without changing its internal bit array.
 BYTE _TO_UINT UINT Converts into UINT type filling the upper bits with 0.
 BYTE _TO_UDNT UDINT Converts into UDINT type filling the upper bits with 0.
 BYTE _TO_ULINT ULINT Converts into ULINT type filling the upper bits with 0.
 BYTE _TO_BOOL BOOL Takes the lower 1 bit and converts it into BOOL type.
 BYTE _TO_WORD WORD Converts into WORD type filling the upper bits with 0.
 BYTE _TO_DWORD DWORD Converts into DWORD type filling the upper bits with 0.
 BYTE _TO_LWORD LWORD Converts into LWORD type filling the upper bits with 0.
 BYTE _TO_STRING STRING Converts the input value into STRING type.

 Program Example

LD IL

 LD %M10
 JMPN LLL
 LD IN_VAL
 BYTE_TO_SINT
 ST OUT_VAL
 LLL :

(1) If the transition condition (%M10) is on, BYTE_TO_SINT function will be executed.
(2) If IN_VAL (BYTE) = 2#0001_1000, OUT_VAL (SINT) = 24 (2#0001_1000).

 Input (IN1): IN_VAL (BYTE) = 16#18
 (BYTE_TO_SINT)
 Output (OUT): OUT_VAL (SINT) = 24

0 0 0 1 1 0 0 0

0 0 0 1 1 0 0 0

BYTE type conversion

8. Basic Function/Function Block Library

8-13

CONCAT
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 CONCAT

 BOOL EN ENO BOOL
 STRING IN1 OUT STRING
 STRING IN2

 Input EN: executes the function in case of 1
 IN1: input character string
 IN2: input character string
 Input variable number can be extended up to 8.

Output ENO: without an error, it will be 1.

 OUT: output character string

 Function

It concatenates the input character string IN1, IN2, IN3, …, INn (n: input number) in order and produces
output character string OUT.

 Error
If the sum of character number of each input character string is greater than 30, then the output CONCAT is
the concatenate string of each input character string (up to 30 letters), and _ERR, _LER flags will be set.

 Program Example
LD IL

 LD %0.2.1
 JMPN THERE
 LD IN_TEXT1
 CONCAT IN1:= CURRENT RESULT
 IN2:= IN_TEXT2
 ST OUT_TEXT
 THERE :

(1) If the transition condition (%I0.2.1) is on, CONCAT function will be executed.
(2) If input variable IN_TEXT1 = ‘ABCD’ and IN_TEXT2 = ‘DEF’, then OUT_TEXT = ‘ABCDDEF’.

 Input (IN1): IN_TEXT1 (STRING) = ‘ABCD’
 (IN2): IN_TEXT2 (STRING) = ‘DEF’

(CONCAT)
 Output (OUT): OUT_TEXT (STRING) = ‘ABCDDEF’

Concatenates a character string

8. Basic Function/Function Block Library

8-14

CONCAT_TIME
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 CONCAT_TIME

 BOOL EN ENO BOOL
 DATE IN1 OUT DT
 TOD IN2

 Input EN: executes the function in case of 1
 IN1: date data input
 IN2: Time of day data input

 Output ENO: without an error, it will be 1.
 OUT: DT (Date and Time of Day) output

 Function
It concatenates IN1 (date) and IN2 (time of day) and produces output OUT (DT).

 Program Example
LD IL

 LD %M1
 JMPN AA
 LD START_DATE
 CONCAT_TIME IN1:= CURRENT RESULT
 IN2:= START_TIME
 ST START_DT
 AA :

(1) If the transition condition (%M1) is on, CONCAT_TIME function will be executed.
(2) If START_DATE = D#1995-12-06 and START_TIME = TOD#08:30:00,

then, output START_DT = DT#1995-12-06-08:30:00.

 Input (IN1): START_DATE1 (DATE) = D#1995-12-06
 (CONCAT_TIME)
 (IN2): START_TIME (TOD) = TOD#08:30:00

 Output (OUT): START_DT (DT) = DT#1995-12-06-08:30:00

Concatenates date and time of day

 8. Basic Function/Function Block Library

8-15

COS
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 COS
 BOOL EN ENO BOOL
ANY_REAL IN OUT ANY_REAL

 Input EN: executes the function in case of 1
 IN: radian input value of Cosine operation

 Output ENO: without an error, it will be 1.
 OUT: result value of Cosine operation

 IN and OUT should be the same data type.

 Function

It produces IN’s Cosine operation value.
OUT = COS (IN)

 Program Example
LD IL

 LD %I0.1.3

 JMPN CCC

 LD INPUT

 COS

 ST RESULT

 CCC :

(1) If the transition condition (%I0.1.3) is on, COS function will be executed.
(2) If input INPUT = 0.5235 (π/6 rad = 30°), output RESULT = 0.8660 ... (√ 3 /2).
 COS (π/6) = √ 3/2 = 0.866

 Input (IN1): INPUT (REAL) = 0.5235
 (COS)
 Output (OUT): RESULT (REAL) = 8.66074800E-01

Cosine operation

8. Basic Function/Function Block Library

8-16

DATE_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 DATE_TO_***
BOOL EN ENO BOOL
DATE IN OUT ***

 Input EN: executes the function in case of 1
 IN: date data to convert

 Output ENO: without an error, it will be 1.
 OUT: type-converted data

 Function

It converts an input IN type and produces output OUT.

Function Output type Description
DATE_TO_UINT UINT Converts DATE into UINT type.

DATE_TO_WORD WORD Converts DATE into WORD type.

DATE_TO_STRING STRING Converts DATE into STRING type.

 Program Example

LD IL

 LD %M0

 JMPN LL

 LD IN_VAL

 DATE_TO_STRING

 ST OUT_VAL

 LL :

(1) If the transition condition (%M0) is on, DATE_TO_STRING function will be executed.
(2) If IN_VAL (DATE) = D#1995-12-01, OUT_VAL (STRING) = D#1995-12-01.

 Input (IN1): IN_VAL (DATE) = D#1995-12-01
 (DATE_TO_STRING)

 Output (OUT): OUT_VAL (STRING) = ‘D#1995-12-01’

Date type conversion

8. Basic Function/Function Block Library

8-17

DELETE
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 DELETE
 BOOL EN ENO BOOL
 STRING IN OUT STRING
 INT L
 INT P

 Input EN: executes the function in case of 1
 IN: input character string
 L: length of character string to delete
 P: position of character string to delete

 Output ENO: without an error, it will be 1.
 OUT: output character string

Function
After deleting a character string (L) from the P character of IN, produces output OUT.

 Error
 If P≤ 0 or L< 0, or
 If P > character number of IN, _ERR and _LER flags will be set.

 Program Example
LD IL

 LD %I0.0.0
 JMPN KKK
 LD IN_TEXT
 DELETE IN:= CURRENT RESULT
 L:= LENGTH
 P:= POSITION
 ST OUT_TEXT
 KKK :

(1) If the transition condition (%I0.0.0) is ON, DELETE function will be executed.
(2) If input variable IN_TEXT = ‘ABCDEF’, LENGTH = 3, and POSITION = 3, then OUT_TEXT (STRING) will

be ‘ABF’.
 Input (IN): IN_TEXT (STRING) = ‘ABCDEF’
 (L): LENGTH (INT) = 3
 (P): POSITION (INT) = 3
 (DELETE)
 Output (OUT): OUT_VAL (STRING) = ‘ABF’

Deletes a character string

8. Basic Function/Function Block Library

8-18

DI
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 DI
 BOOL EN ENO BOOL
 BOOL REQ OUT BOOL

 Input EN: executes the function in case of 1
 REQ: requires to invalidate task program starting

Output ENO: without an error, it will be 1.
 OUT: If DI is executed, it will be 1.

 Function

 ▷ If EN = 1 and REQ = 1, it stops a task program (single, interval, interrupt).

 ▷ Once DI function is executed, a task program does not start even if REQ input is 0.

 ▷ In order to start a task program normally, please use ‘EI’ function.

 ▷ If you want to partially stop the task program for the troubled part, (otherwise, miss the continuity of

operation process due to the execution of other task program), it is available to use this function.

 ▷ The task programs created while its execution is not invalidated will be executed according to task

program types as follows:

- Single task: it will be executed after 'EI' function or current-running task program execution. In his

case, it repeats a task program as many as the state of single variable changes.

- Interval task, interrupt: Interval task, interrupt: the task occurred when it is not permitted to execute

will be executed after 'EI' function or the current-running task program execution. But, if it occurs

more than 2 times, TASK_ERR is ON and TC_CNT (the number of task collision) is counted.

Invalidates task program (Not to permit task program
starting)

8. Basic Function/Function Block Library

8-19

 Program Example
This is the program that controls the task program increasing the value per second by using DI (Invalidates
task program) and EI (permits running for task program).

LD IL
(1) Scan program (TASK program control)

(2) Task program increasing by executing per second.

(1) Scan program (TASK program control)

 LDN %M100

 JMPN KK

 LD %I0.1.14

 DI

 ST DI_OK

 KK :

 LDN %M100

 JMPN LL

 LD %I0.1.15

 EI

 ST EI_OK

 LL :

(2) Task program increasing by executing per

second
 LDN %M1

 JMPN MM

 LD %IW0.0.0

 MOVE

 ST %MW100

 MM :

(1) If REQ (assigned as direct variable %I0.1.14) of DI is on, DI function will be executed and output DI_OK will

be 1.

(2) If DI function is executed, the task program to be executed per second stops.

(3) If REQ (assigned as direct variable %I0.1.15) of EI is on, EI function will be executed and output EI_OK will

be 1.

(4) If EI function is executed, the task program stopped due to function DI will restart.

8. Basic Function/Function Block Library

8-20

DINT_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 DINT_TO_***
 BOOL EN ENO BOOL
 DINT IN OUT ***

 Input EN: executes the function in case of 1
 IN: double integer value to convert

 Output ENO: without an error, it will be 1.
 OUT: type-converted data

■ Function
It converts Input IN type and produces output OUT.

Function Output type Description
 DINT_TO_SINT SINT If input is -128 ∼ 127, normal conversion.

Except this, an error occurs.

 DINT_TO_INT INT
If input is -32768 ∼ 32767, normal conversion.
Except this, an error occurs.

 DINT_TO_LINT LINT Converts normally into LINT type.

 DINT_TO_USINT USINT
If input is 0 ∼ 255, normal conversion.
Except this, an error occurs.

 DINT_TO_UINT UINT
If input is 0 ∼ 65535, normal conversion.
Except this, an error occurs.

 DINT_TO_UDINT UDINT
If input is 0 ∼ 2147483647, normal conversion.
Except this, an error occurs.

 DINT_TO_ULINT ULINT
If input is 0 ∼ 2147483647, normal conversion.
Except this, an error occurs.

 DINT_TO_BOOL BOOL Takes the low 1 bit and converts into BOOL type.
 DINT_TO_BYTE BYTE Takes the low 8 bit and converts into BYTE type.
 DINT_TO_WORD WORD Takes the low 18 bit and converts into WORD type.
 DINT_TO_DWORD DWORD Converts into DWORD type without changing the internal bit array.
 DINT_TO_LWORD LWORD Converts into LWORD type filling the upper bytes with 0.

 DINT_TO_BCD DWORD
If input is 0 ∼ 99,999,999, normal conversion.
Except this, an error occurs.

 DINT_TO_REAL REAL
Converts DINT into REAL type.
During conversion, an error caused by the precision may occur.

 DINT_TO_LREAL LREAL
Converts DINT into LREAL type.
During conversion, an error caused by the precision may occur.

 Error
If a conversion error occurs, _ERR, _LER flags will be set.

When an error occurs, it takes as many lower bits as the bit number of the output type and produces an
output without changing the internal bit array.

Invalidates task program (Not to permit task program
starting)

8. Basic Function/Function Block Library

8-21

 Program Example

LD IL

 LD %M1
 JMPN LSB
 LD DINT_VAL
 DINT_TO_SINT
 ST SINT_VAL
 LSB :

(1) If the transition condition (%M1) is on, DINT_TO_SINT function will be executed.
(2) If INI = DINT_VAL (DINT) = -77, SINT_VAL (SINT) = -77.

 Input (IN1): DINT_VAL (DINT) = -77 upper

lower

 (DINT_TO_SINT)

 Output (OUT): OUT_VAL (SINT) = -77

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 0 0 1 1

1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1

8. Basic Function/Function Block Library

8-22

DIREC_IN
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 DIREC_IN
 BOOL EN ENO BOOL
 USINT BASE OUT BOOL
 USINT SLOT
 DWORD MASK_L
 DWORD MASK_H

 Input EN: executes the function in case of 1
 BASE: base number of an input module installed
 SLOT: slot number of an input module installed
 MASK_L: designates bits not to be updated

among lower 32-bit data of input
 MASK_H: designates bits not to be updated

among upper 32-bit data of input

 Output ENO: without an error, it will be 1.
 OUT: if update is completed, output will be 1.

 Function
 ▷ If EN is 1 during the scan, DIREC_IN function reads 64-bit data of an input module from the designated

position of BASE and SLOT and updates them.

 ▷ At this time, only the actual contacts of an input module will be updated in the image scope.

 ▷ DIREC_IN function is available to use when you want to change the ON/OFF state of input (%I) during

the scan.

 ▷ Generally, it's impossible to update input data during 1 scan (executing a scan program) because a

scan-synchronized batch processing mode executes the batch processing to read input data and

produce output data after a scan program. It's available to update related input data, if you use

DIREC_IN function during program execution.

Update input data

8. Basic Function/Function Block Library

8-23

 Program Example
1. This is the program that updates a 16-contact module installed in the 4th slot (slot number is 3) of the 3rd

extension base of which input data are 2# 1010_1010_1110_1011.
LD IL

 LD %M0

 JMPN ABC

 LD 3

 DIREC_IN BASE:= CURRENT RESULT

 SLOT:= 3

 MASK_L:= 16#FFFF0000

 MASK_H:= 16#FFFF0000

 ST REF_OK

 ABC :

(1) If the input condition (%M0) is on, function DIREC_IN will be executed.
(2) The image scope to update will be %IW3.3.0 and %IW3.3.0 will be updated with

2#1010_1010_1110_1011 during the scan because a 16-contact module is installed and the lower 16-bit
data update is allowed (MASK_L = 16#FFFF0000).

(3) It doesn't matter what data are set in MASK_H because a 16-contact module is installed.

2. This is the program that updates the lower 16-bit data of the 32-contact module installed in the 4th slot

(slot number is 3) of the 3rd extension base of which input data are
2#0000_0000_1111_1111_1100_1100_0011_0011.

LD IL

 LD %M0

 JMPN ABC

 LD 3

 DIREC_IN BASE:= CURRENT RESULT

 SLOT:= 3

 MASK_L:= 16#FFFF0000

 MASK_H:= 16#FFFFFFFF

 ST REF_OK

 ABC :

(1) If input condition (%M0) is on, function DIREC_IN will be executed.
(2) The image scope to update will be %ID3.3.0 but only %IW3.3.0 will be updated with

2#1100_1100_0011_0011 during the scan because a 16-contact module is installed and the lower 16-bit
data update is allowed (MASK_L = 16#FFFF0000).

8. Basic Function/Function Block Library

8-24

3. This is the program that updates the lower 48-bit data of the 64-contact module installed in the 4th slot
(slot number is 3) of the 3rd extension base of which input data are 16#0000_FFFF_AAAA_7777
(2#0000_0000_0000_0000_1111_1111_1111_1111_1010 _1010_1010_1010_0111_0111_0111_0111).

LD IL

 LD %M0

 JMPN ABC

 LD 3

 DIREC_IN BASE:= CURRENT RESULT

 SLOT:= 3

 MASK_L:= 16#00000000

 MASK_H:= 16#FFFF0000

 ST REF_OK

 ABC :

(1) If the input condition (%M0) is on, function DIREC_IN will be executed.
(2) The installed module is a 64-contact module and the image scope to update will be %IL3.3.0 (%ID3.3.0

and ID3.3.1).
 %ID3.3.0 will be updated because the lower 32-bit data update is allowed (MASK_L = 16#00000000).
 %IW3.3.2 of %ID3.3.1 will be updated because only the lower 16-bit data update (among upper 32 bits) is

allowed (MASK_H = 16#FFFF0000).
 Accordingly, the data update of the image scope is as follows:
 %IL3.3.0 %ID3.3.0 %IW.3.3.0: 2#0111_0111_0111_0111
 %IW.3.3.1: 2#1010_1010_1010_1010
 %ID3.3.1 %IW3.3.2: 2#1111_1111_1111_1111
 %IW3.3.3: maintains the previous value
(3) If the input update is completed, output REF_OK will be 1.

 8. Basic Function/Function Block Library

8-25

DIREC_O
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 DIREC_O
 BOOL EN ENO BOOL
 USINT BASE OUT BOOL
 USINT SLOT
 DWORD MASK_L
 DWORD MASK_H

 Input EN: executes the function in case of 1
 BASE: base number of an input module installed
 SLOT: slot number of an input module installed
 MASK_L: designates bits not to be updated

among lower 32-bit data of output
 MASK_H: designates a bit not to update

among upper 32-bit data of output
 Output ENO: without an error, it will be 1.
 OUT: If update is completed, output will be 1.

 Function
▷ If EN is 1 during the scan, DIREC_O function reads 64-bit data of an output module from the designated

position of BASE and SLOT and updates the unmasked (MASK (0)) data.

 ▷ DIREC_O is available to use when you want to change the ON/OFF state of output (%Q) during the scan.

▷ Generally, it's impossible to update input data during 1 scan (executing a scan program) because a scan-

synchronized batch processing mode executes the batch processing to read input data and produce output

data after a scan program.

▷ It's available to update related output data, if you use DIREC_O function during program execution.

▷ If the base/slot number is wrong or it is not available to write data normally in an output module, ENO and

OUT are '1' (without an error, it will be 1).

 Program Example

1. This is the program that produces output data 2#0111_0111_0111_0111 in a 16-contact relay output
module installed in the 5th slot (slot number is 4) of the 2nd extension base.

LD IL

 LD %I0.0.0

 JMPN AAA

 LD 2

 DIREC_O BASE: = CURRENT RESULT

 SLOT: = 4

 MASK_L: = 16#FFFF0000

 MASK_H: = 16#FFFFFFFF

 ST REF_OK

 AAA :

(1) Input the slot and base number in which an output module installed.

Update output data

8. Basic Function/Function Block Library

8-26

(2) Set MASK_L as 16#FFFF0000 because the output data to produce are the lower 16 bits among the
output contacts.

(3) If the transition condition (%I0.0.0) is on, DIREC_O will be executed and the data of the output module
will be updated as 2#0111_0111_0111_0111 during the scan.

2. This is the program that updates the lower 24 bits of the 32-contact transistor output module, installed in

the 5th slot (slot number is 4) of the 2nd extension base, with 2#1111_0000_1111_0000_1111_0000
during the scan.

LD IL

 LD %I0.0.0

 JMPN AAA

 LD 2

 DIREC_O BASE:= CURRENT RESULT

 SLOT:= 4

 MASK_L:= 16#FF000000

 MASK_H:= 16#FFFFFFFF

 ST REF_OK

 AAA:

(1) Input the slot and base number in which an output module installed.
(2) Set MASK_L as 16#FF000000 because the output data to produce are the lower 24 bits among the

output contacts.
(3) If the transition condition (%I0.0.0) is off, function DIREC_O will be executed and the data of the output

module will be updated as 2#□□□□_□□□□_1111_0000_1111_0000_1111_0000 during the scan.

 Maintains the previous value.

8. Basic Function/Function Block Library

8-27

DIV
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 DIV
 BOOL EN ENO BOOL
 ANY_NUM IN1 OUT ANY_NUM
 ANY_NUM IN2

 Input EN: executes the function in case of 1
 IN1: the value to be divided (dividend)
 IN2: the value to divide (divisor)

 Output ENO: without an error, it will be 1.
 OUT: the divided result (quotient)

The variable connected to IN1, IN2 and OUT should be all the
same data type.

 Function
It divides IN1by IN2 and produces an output omitting decimal fraction from the quotient.
OUT = IN1/IN2

IN1 IN2 OUT Remarks
 7
 7
-7
-7

 2
-2
 2
-2

3
-3
-3
3

Decimal fraction omitted.

7 0 × Error

 Error
If the value to divide (divisor) is ‘0’, _ERR, _LER flags will be set.

 Program Example
LD IL

 LD %I0.0.0
 JMPN LL
 LD VALUE1
 DIV IN1:= CURRENT RESULT
 IN2:= VALUE2
 ST OUT_VAL
 LL :

(1) If the transition condition (%I0.0.0) is on, DIV function will be executed.
(2) If input VALUE1 = 300 and VALUE2 = 100, then output OUT_VAL = 300/100 = 3.

 Input (IN1): VALUE1 (INT) = 300 (16#012C)
 / (DIV)
 (IN2): VALUE2 (INT) = 100 (16#0064)

 Output (OUT): OUT_VAL (INT) = 3 (16#3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

Division

8. Basic Function/Function Block Library

8-28

DIV_TIME
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 DIV_TIME
 BOOL EN ENO BOOL
 TIME IN1 OUT TIME
 ANY_NUM IN2

 Input EN: executes the function in case of 1
 IN1: Time to divide
 IN2: The value to divide

 Output ENO: without an error, it will be 1.
 OUT: divided result time

 Function

It divides IN1 (time) by IN2 (number) and produces output OUT (divided time).

 Error
If a divisor (IN2) is 0, _ERR and _LER flags will be set.

 Program Example
This is the program that calculates the time required to produce one product in some product line if the
working time of day is 12hr 24min 24sec and product quantity of a day is 12 in a product line.

LD IL

 LD %I0.1.0
 JMPN SS
 LD TOTAL_TIME
 DIV_TIME IN1:= CURRENT RESULT
 IN2:= PRODUCT_COUNT
 ST TIME_PER_PRO
 SS :

(1) If the transition condition (%I0.1.0) is on, DIV_TIME function will be executed.
(2) If it divides TOTAL_TIME (T#12H24M24S) by PRODUCT_COUNT (12), the time required to produce one
product TIME_PER_PRO (T#1H2M2S) will be an output. That is, it takes 1hr 2min 2sec to produce one
product.

 Input (IN1): TOTAL_TIME (TIME) = T#12H24M24S
 / (DIV_TIME)
 (IN2): PRODUCT_COUNT (INT) = 12

 Output (OUT): TIME_PER_PRO (TIME) = T#1H2M2S

Time division

8. Basic Function/Function Block Library

8-29

DT_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 DT_TO_***
 BOOL EN ENO BOOL
 DT IN OUT ***

 Input EN: executes the function in case of 1
 IN: date and time of day data to convert

 Output ENO: without an error, it will be 1.
 OUT: type-converted data

 Function

It converts Input IN type and produces output OUT.

Function Output type Description
 DT_TO_LWORD LWORD Converts DT into LWORD type.

(The inverse conversion is available as there is no internal data change).
 DT_TO_DATE DATE Converts DT into DATE type.
 DT_TO_TOD TOD Converts DT into TOD type.
 DT_TO_STRING STRING Converts DT into STRING type.

 Program Example
LD IL

 LD %M20
 JMPN L
 LD IN_VAL
 DT_TO_DATE
 ST OUT_VAL
 L :

(1) If the transition condition (%M20) is on, DT_TO_DATE function will be executed.
(2) If input IN_VAL (DT) = DT#1995-12-01-12:00:00, output OUT_VAL (DATE) = D#1995-12-01.

 Input (IN1): IN_VAL (DT) = DT#1995-12-01-12:00:00
 (DT_TO_DATE)
 Output (OUT): OUT_VAL (DATE) = D#1995-12-01

DT type conversion

8. Basic Function/Function Block Library

8-30

DWORD_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 DWORD_TO_***
 BOOL EN ENO BOOL
DWORD IN OUT ***

 Input EN: executes the function in case of 1
 IN: bit string to convert (32bit)

 Output ENO: without an error, it will be 1.
 OUT: type-converted data

 Function

It converts Input IN type and produces output OUT.

Function Output type Description
 DWORD _TO_SINT SINT Takes the lower 8 bits and converts into SINT type.
 DWORD _TO_INT INT Takes the lower 16 bits and converts into INT type.
 DWORD _TO_DINT DINT Converts into DINT type without changing the internal bit array.
 DWORD _TO_LINT LINT Converts into LINT type filling the upper bits with 0
 DWORD _TO_USINT USINT Takes the lower 8 bits and converts into USINT type.
 DWORD _TO_UINT UINT Takes the lower 16 bits and converts into UINT type.
 DWORD _TO_UDINT UDINT Converts into UDINT type without changing the internal bit array.
 DWORD _TO_ULINT ULINT Converts into ULINT type filling the upper bits with 0.
 DWORD _TO_BOOL BOOL Takes the lower 1 bit and converts into BOOL type.
 DWORD _TO_BYTE BYTE Takes the lower 8 bits and converts into BYTE type.
 DWORD _TO_WORD WORD Takes the lower 16 bits and converts into WORD type.
 DWORD _TO_LWORD LWORD Converts into LWORD type filling the upper bits with 0.
 DWORD _TO_REAL REAL Converts into REAL type without changing the internal bit array.
 DWORD _TO_TIME TIME Converts into TIME type without changing the internal bit array.
 DWORD _TO_TOD TOD Converts into TOD type without changing the internal bit array.
 DWORD _TO_STRING STRING Changes input value into decimal and converts into STRING type.

DWORD type conversion

8. Basic Function/Function Block Library

8-31

 Program Example

LD IL

 LD %M0
 JMPN AA
 LD IN_VAL
 DWORD_TO_WORD
 ST OUT_VAL
 AA :

(1) If the transition condition (%M0) is on, DWIRD_TO_TOD function will be executed.
(2) If output IN_VAL (DWORD) = 16#3E8 (1000), output OUT_VAL (TOD) = TOD#1S.

Input (IN1): IN_VAL (DWORD) = 16#3E8(1000) High
 Low
 Converts a data type only

without changing a data
(internal bit array state)

Output (OUT): OUT_VAL(TOD) = TOD#1S High
 Low

 Calculates TIME, TOD by converting decimal into MS unit. That is, 1000 is 1000ms = 1s.

Refer to 3.2.4. Data Type Structure.

0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8. Basic Function/Function Block Library

8-32

EI
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 EI
 BOOL EN ENO BOOL
 BOOL REQ OUT BOOL

 Input EN: executes the function in case of 1
 REQ: requires to permit running for task program

 Output ENO: without an error, it will be 1.
 OUT: If EI is executed, an output will be 1.

 Function
▷ If EN is 1 and REQ input is 1, task program blocked by 'DI' function starts normally.
▷ Once 'EI' command is executed, task program starts normally even if REQ input is 0.
▷ Task programs created when they are not permitted to operate will be executed after 'EI' function or the

current-running task program execution.

 Program Example (refer to DI)
LD IL

 LD %I0.0.0

 JMPN LSB

 LD EN_TASK

 EI

 ST EN_OK

 LSB :

If EN_TASK is 1, a task program starts normally.
If EI function permits running for a task program, output EN_OK will be 1.

.

Permits running for task program

8. Basic Function/Function Block Library

8-33

EQ
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 EQ
 BOOL EN ENO BOOL
 ANY IN1 OUT BOOL
 ANY IN2

 Input EN: executes the function in case of 1
 IN1: the value to be compared
 IN2: The value to compare
 Input variable number can be extended up to 8.
 IN1, IN2, ... should be the same type.

 Output ENO: without an error, it will be 1.
 OUT: comparison result value

 Function
If IN1 = IN2 = IN3 ... = INn (n : input number), output OUT will be 1.
In other cases, OUT will be 0.

 Program Example
LD IL

 LD %I0.1.0
 JMPN AA
 LD VALUE1
 EQ IN1:= CURRENT RESULT
 IN2:= VALUE2
 IN3:= VALUE3
 ST %Q0.0.1
 AA :

(1) If the transition condition (%I0.1.0) is on, EQ function will be executed.
(2) If VALUE1 = 300, VALUE2 = 300, VALUE3 = 300 (comparison result VALUE1 = VALUE2 = VALUE3),
output %Q0.0.1 = 1.

 Input (IN1): VALUE1 (INT) = 300 (16#012C)
 = (EQ)
 (IN2): VALUE2 (INT) = 300 (16#012C)
 = (EQ)
 (IN3): VALUE1 (INT) = 300 (16#012C)

 Output (OUT): %Q0.0.1 (BOOL) = 1 (16#1)

0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

1

‘Equal to’ comparison

8. Basic Function/Function Block Library

8-34

ESTOP
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 ESTOP
 BOOL EN ENO BOOL
 BOOL REQ OUT BOOL

 Input EN: executes the function in case of 1
 REQ: requires the emergency running stop

 Output ENO: without an error, it will be 1.
 OUT: If ESTOP is executed, an output will be 1.

 Function
▷ If transition condition EN is 1 and the signal to require the emergency running stop by program REQ is 1,

program operation stops immediately and returns to STOP mode.
▷ In case that a program stops by 'ESTOP' function, it does not start despite of power re-supply.
▷ If operation mode moves from STOP to RUN, it restarts.
▷ If 'ESTOP' function is executed, the running program stops during operation; if it is not a cold restart

mode, an error may occur when restarts.

 Program Example
LD IL

 LD %I0.2.0
 JMPN SSS
 LD ACCIDENT
 ESTOP
 (ST DUMMY)
 SSS :

(1) If the transition condition (%I0.2.0) is on, ESTOP function will be executed.
(2) If ACCIDENT = 1, the running program stops immediately and returns to STOP mode.
 In case of emergency, it is available to use it as a double safety device with mechanical interrupt.

Emergency running stop by program

8. Basic Function/Function Block Library

8-35

EXP
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 EXP
 BOOL EN ENO BOOL
ANY_REAL IN OUT ANY_REAL

Input EN: executes the function in case of 1
 IN: input value of exponent operation

 Output ENO: without an error, it will be 1.
 OUT: result value

 IN, OUT should be the same data type.

 Function

It calculates the natural exponent with exponent IN and produces output OUT.
OUT = eIN

 Program Example
LD IL

 LD %M5

 JMPN JJ

 LD INPUT

 EXP

 ST RESULT

 JJ :

(1) If the transition condition (%M5) is on, EXP function will be executed.
(2) If INPUT is 2.0, RESULT will be 7.3890…
 e2.0 = 7.3890.....
Input (IN1): INPUT (REAL) = 2.0 High
 Low
 (16#40000000)
 (EXP)
Output (OUT): RESULT (REAL) = 7.38905621E+00

High
 Low

 (16#40EC7326)

0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Natural exponential operation

8. Basic Function/Function Block Library

8-36

EXPT
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 EXPT
 BOOL EN ENO BOOL
ANY_REAL IN1 OUT ANY_REAL
ANY_NUM IN2

 Input EN: executes the function in case of 1
 IN1: real number
 IN2: exponent

 Output ENO: without an error, it will be 1.
 OUT: result value

 IN1 and OUT should be the same data type.

 Function
It calculates IN1 with exponent IN2 and produces output OUT.
OUT = IN1IN2

 Error
If an output is out of range of related data type, _ERR and _LER flags will be set.

 Program Example
LD IL

 LD %I0.1.0
 JMPN LSB
 LD IN_VAL
 EXPT IN1:= CURRENT RESULT
 IN2:= VALUE
 ST OUT_VAL
 LSB :

(1) If the transition condition (%I0.1.0) is on, ‘EXPT’ exponential function will be executed.
(2) If input IN_VAL = 1.5, VALUE = 3, output OUT_VAL = 1.53 = 1.5 ×1.5 ×1.5 = 3.375.

 Input (IN1): IN_VAL (REAL) = 1.5

 (IN2): VALUE (INT) = 3
 (EXPT)
 Output (OUT): OUT_VAL (REAL) = 3.37500000E+00

Exponential operation

8. Basic Function/Function Block Library

8-37

FIND
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 FIND
 BOOL EN ENO BOOL
 STRING IN1 OUT INT
 STRING IN2

 Input EN: executes the function in case of 1
 IN1: input character string
 IN2: character string to find

 Output ENO: without an error, it will be 1.
 OUT: location of character string to be found

 Function
It finds the location of character string IN2 from input character string IN1. If the location is found, it shows a
position of a first character of character string IN2 from character string IN1. Otherwise, output will be 0.

 Program Example
LD IL

 LD %I0.1.1

 JMPM XYZ

 LD IN_TEXT1

 FIND IN1:= CURRENT RESULT

 IN2:= IN_TEXT2

 ST POSITION

 XYZ :

(1) If the transition condition (%I0.1.1) is on, FIND function will be executed.
(2) If input character string IN_TEXT1=‘ABCEF’ and IN_TEXT2=‘BC’, then output variable POSITION = 2.
(3) The first location of IN_TEXT2 (‘BC’) from input character string IN_TEXT1 (‘ABCEF’) is 2nd.

 Input (IN1): IN_TEXT1 (STRING) = ‘ABCEF’
 (FIND)
 (IN2): IN_TEXT2 (STRING) = ‘BC’

 Output (OUT): POSITION (INT) = 2

Finds a character string

8. Basic Function/Function Block Library

8-38

GE
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 GE
 BOOL EN ENO BOOL
 ANY IN1 OUT BOOL
 ANY IN2

 Input EN: executes the function in case of 1
 IN1: the value to be compared
 IN2: the value to compare
 Input variable number can be extended up to 8.
 IN1, IN2, ... should be the same data type.

 Output ENO: without an error, it will be 1.
 OUT: comparison result value

 Function
 If IN1 ≥ IN2 ≥ IN3... ≥ INn (n: input number), an output will be 1.
 Otherwise it will be 0.

 Program Example
LD IL

 LD %M77

 JMPN YY

 LD VALUE1

 GE IN1= CURRENT RESULT

 IN2= VALUE2

 IN3= VALUE3

 ST %Q0.0.1

 YY:

(1) If the transition condition (%M77) is on, GE function will be executed.
(2) If input variable VALUE1 = 300, VALUE3 = 200, comparison result will be VALUE1 ≥ VALUE2 ≥ VALUE3.

The output %Q0.01 = 1.

 Input (IN1): VALUE1 (INT) = 300 (16#012C)
 ≥ (GE)
 (IN2): VALUE2 (INT) = 200 (16#00C8)
 ≥ (GE)
 (IN3): VALUE3 (INT) = 100 (16#0064)

 Output (OUT): %Q0.0.1 (BOOL) = 1 (16#1)

0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

1

‘Greater than or equal to’ comparison

8. Basic Function/Function Block Library

8-39

GT
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 GT
 BOOL EN ENO BOOL
 ANY IN1 OUT BOOL
 ANY IN2

 Input EN: executes the function in case of 1
 IN1: the value to be compared
 IN2: the value to compare
 Input variable number can be extended up to 8.
 IN1, IN2, ... should be the same data type.

 Output ENO: without an error, it will be 1.
 OUT: comparison result value

 Function
If IN1 > IN2 > IN3... > INn (n: input number), an output will be 1.
Otherwise it will be 0.

 Program Example
LD IL

 LD %M0

 JMPN AAA

 LD VALUE1

 GT IN1:= CURRENT RESULT

 IN2:= VALUE2

 IN3:= VALUE3

 ST %Q0.0.1

 AAA :

(1) If the transition condition (%M0) is on, GT function will be executed.
(2) If input variable VALUE1 = 300, VALUE2 = 200, and VALUE3 = 100, comparison result will be VALUE1 >

VALUE2 > VALUE3. The output %Q0.0.1 = 1.

 Input (IN1): VALUE1 (INT) = 300 (16#012C)
 > (GT)
 (IN2): VALUE2 (INT) = 200 (16#00C8)
 > (GT)
 (IN3): VALUE3 (INT) = 100 (16#0064)

 Output (OUT): %Q0.0.1 (BOOL) = 1 (16#1)

0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

1

‘Greater than’ comparison

8. Basic Function/Function Block Library

8-40

INSERT
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 INSERT
 BOOL EN ENO BOOL
 STRING IN1 OUT STRING
 STRING IN2
 INT P

 Input EN: executes the function in case of 1
 IN1: character string to be inserted
 IN2: character string to insert
 P: position to insert a character string

 Output ENO: without an error, it will be 1.
 OUT: output character string

 Function
It inserts character string IN2 after the P character of IN1 and produces output OUT.

 Error
If P ≤ 0, ‘character number of variable IN1’ < P, or if the character number of result exceeds 30 (just 30
characters are produced), then _ERR, _LER flags will be set.

 Program Example
LD IL

 LD %M0

 JMPN AA

 LD IN_TEXT1

 INSERT IN1:= CURRENT RESULT

 IN2:= IN_TEXT2
 P:= POSITION

ST OUT_TEXT
AA:

(1) If the transition condition (%M0) is on, INSERT function will be executed.
(2) If input variable IN_TEXT1 = ‘ABCD’, IN_TEXT2 = ‘XY’, and POSITON = 2,

output variable OUT_TEXT = ‘ABXYCD’.

 Input (IN1): IN_TEXT1 (STRING) = ‘ABCD’
 (IN2): IN_TEXT2 (STRING) = ‘XY’
 (P): POSITION (INT) = 2
 (FIND)
 Output (OUT): OUT_TEXT = ‘ABXYCD’

Inserts a character string

8. Basic Function/Function Block Library

8-41

INT_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 INT_TO_***
 BOOL EN ENO BOOL
 INT IN OUT ***

 Input EN: executes the function in case of 1
 IN: integer value to convert
 Output ENO: without an error, it will be 1.
 OUT: type-converted data

 Function
It converts input IN type and produces output OUT.

Function Output type Description

 INT_TO_SINT SINT If input is -128 ∼ 127, normal conversion. Except this, an error occurs.

 INT_TO_DINT DINT Converts into DINT type normally.

 INT_TO_LINT LINT Converts into LINT type normally.

 INT_TO_USINT USINT If input is 0 ∼ 255, normal conversion. Except this, an error occurs.

 INT_TO_UINT UINT If input is 0 ∼ 32767, normal conversion. Except this, an error occurs.

 INT_TO_UDINT UDINT If input is 0 ∼ 32767, normal conversion. Except this, an error occurs.

 INT_TO_ULINT ULINT If input is 0 ∼ 32767, normal conversion. Except this, an error occurs.

 INT_TO_BOOL BOOL Takes the lower 1 bit and converts into BOOL type.

 INT_TO_BYTE BYTE Takes the lower 8 bits and converts into BYTE type.

 INT_TO_WORD WORD Converts into WORD type without changing the internal bit array.

 INT_TO_DWORD DWORD Converts into DWORD type filling the upper bits with 0.

 INT_TO_LWORD LWORD Converts into LWORD type filling the high bit with 0.

 INT_TO_BCD WORD If input is 0~9,999, normal conversion. Except this, an error occurs.

 INT_TO_REAL REAL Converts INT into REAL type normally.

 INT_TO_LREAL LREAL Converts INT into LREAL type normally.

 Error
If a conversion error occurs, _ERR _LER flags will be set.
If an error occurs, take as many lower bits as the bit number of the output type and produces an output
without changing the internal bit array.

INT type conversion

8. Basic Function/Function Block Library

8-42

 Program Example

LD IL

 LD %M0
 JMPN AAA
 LD IN_VAL
 INT_TO_WORD
 ST OUT_WORD
 AAA:

(1) If the input condition (%M0) is on, INT_TO_WORD function will be executed.
(2) If input variable IN_VAL (INT) = 512 (16#200), output variable OUT_WORD (WORD) = 16#200.

 Input (IN1): IN_VAL (INT) = 512 (16#200)
 (INT_TO_WORD)
 Output (OUT): OUT_WORD (WORD) = 16#200

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

8. Basic Function/Function Block Library

8-43

LE
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 LE
 BOOL EN ENO BOOL
 ANY IN1 OUT BOOL
 ANY IN2

 Input EN: executes the function in case of 1
 IN1: the value to be compared
 IN2: the value to compare
 Input variable number can be extended up to 8.
 IN1, IN2, ...should be the same data type.

 Output ENO: without an error, it will be 1.
 OUT: comparison result value

 Function
If IN1 ≤ IN2 ≤ IN3... ≤ INn (n: input number), output OUT will be 1.
Otherwise it will be 0.

 Program Example
LD IL

 LD %M0

 JMPN BBB
 LD VALUE1
 LE IN1:= CURRENT RESULT
 IN2:= VALUE2
 IN3:= VALUE3
 ST %Q0.0.1
 BBB:

(1) If the transition condition (%M0) is on, LE function will be executed.
(2) If input variable VALUE1 = 150, VALUE2 = 200, and VALUE3 = 250, output %Q0.0.1 = 1

(VALUE1 ≤ VALUE2 ≤ VALUE3).

 Input (IN1): VALUE1 (INT) = 150 (16#0096)
 ≤ (LE)
 (IN2): VALUE2 (INT) = 200 (16#00C8)
 ≤ (LE)
 (IN3): VALUE1 (INT) = 250 (16#0064)

 Output (OUT): %Q0.0.1 (BOOL) = 1 (16#1)

0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0

0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

1

'Less than or equal to' comparison

8. Basic Function/Function Block Library

8-44

LEFT
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 LEFT
 BOOL EN ENO BOOL
 STRING IN OUT STRING
 INT L

 Input EN: executes the function in case of 1
 IN: input character string
 L: length of character string

 Output ENO: without an error, it will be 1.
 OUT: output character string

 Function
It takes a left character string (L) of IN and produces output OUT.

 Error
If L < 0, _ERR and _LER flags will be set.

 Program Example
LD IL

 LD %M0

 JMPN FF

 LD IN_TEXT
 LEFT IN:= CURRENT RESULT
 L:= LENGTH
 ST OUT_TEXT
 FF:

(1) If the transition condition (%M0) is on, function LEFT function will be executed.
(2) If input variable IN_TEXT = ‘ABCDEFG’ and LENGTH = 3, output character string OUT_TEXT = ‘ABC’.

 Input (IN1): IN_TEXT (STRING) = ‘ABCDEFG’
 (IN2): LENGTH (INT) = 3
 (LEFT)
 Output (OUT): OUT_TEXT (STRING) = ‘ABC’

Takes the left side of a character string

8. Basic Function/Function Block Library

8-45

LEN
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 LEN
 BOOL EN ENO BOOL
 STRING IN OUT INT

 Input EN: executes the function in case of 1
 IN: input character string

 Output ENO: without an error, it will be 1.
 OUT: the length of a character string

 Function

It produces a length (character number) of the input character string (IN).

 Program Example
LD IL

 LD %M0

 JMPN II

 LD IN_TEXT
 LEN IN:= CURRENT RESULT
 ST LENGTH
 II:

(1) If the transition condition (%M0) is on, LEN function will be executed.
(2) If input variable IN_TEXT = ‘ABCD’, output variable LENGTH = 4.

 Input (IN1): IN_TEXT (STRING) = ‘ABCD’
 (LEN)

 Output (OUT): LENGTH (INT) = 4

Finds a length of a character string

8. Basic Function/Function Block Library

8-46

LIMIT
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 LIMIT
 BOOL EN ENO BOOL
 ANY MN OUT ANY
 ANY IN
 ANY MX

 Input EN: executes the function in case of 1
 MN: minimum value
 IN: the value to be limited
 MX: maximum value

 Output ENO: without an error, it will be 1.
 OUT: value in the range

 MN, IN, MX, OUT should be the same data type.

 Function
▷ If input IN value is between MN and MX, the IN will be an output.
 That is, if MN ≤ IN ≤ MX, OUT = IN
▷ If input IN value is less than MN, MN will be an output. That is, if IN < MN, OUT = MN.
▷ If input IN value is greater than MX, MX will be an output. That is, if IN > MX, OUT = MX

 Program Example
LD IL

 LD %M0

 JMPN MM

 LD LIMIT_LOW
 LIMIT MN:= CURRENT RESULT
 IN := IN_VALUE
 MX:= LIMIT_HIGH
 ST OUT_VAL
 MM:

(1) If the transition condition (%M0) is on, LIMIT function will be executed.
(2) Output variable OUT_VAL for lower limit input LIMIT_LOW, upper limit input (LIMIT_HIGH) and limited

value input IN_VALUE will be as follows:
LIMIT_LOW IN_VALUE LIMIT_HIGH OUT_VAL

1000 2000 3000 2000
1000 500 3000 1000
1000 4000 3000 3000

 Input (MN): LIMIT_LOW (INT) = 1000
 (IN): IN_VALUE (INT) = 4000
 (MX): IN_VALUE (INT) = 3000
 (LIMIT)
 Output (OUT): OUT_VAL (INT) = 3000

Limits upper and lower boundary

8. Basic Function/Function Block Library

8-47

LINT_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 LINT_TO_***
 BOOL EN ENO BOOL
 LINT IN OUT ***

 Input EN: executes the function in case of 1

 IN: long integer value to convert

 Output ENO: without an error, it will be 1.
 OUT: type converted data

 Function

It converts input IN type and produces output OUT.

 Function Output type Description
 LINT_TO_SINT SINT If input is -128 ∼ 127, normal conversion. Otherwise an error occurs.

 LINT_TO_INT INT
If input is –32,768∼ 32,767, normal conversion.
Otherwise an error occurs.

 LINT_TO_DINT DINT If input is -231 ∼ 231-1, normal conversion. Otherwise an error occurs.
 LINT_TO_USINT USINT If input is 0∼ 255, normal conversion. Otherwise an error occurs.
 LINT_TO_UINT UINT If input is 0∼ 65,535, normal conversion. Otherwise an error occurs.
 LINT_TO_UDINT UDINT If input is 0 ∼ 232-1, normal conversion. Otherwise an error occurs.
 LINT_TO_ULINT ULINT If input is 0 ∼ 263-1, normal conversion. Otherwise an error occurs.
 LINT_TO_BOOL BOOL Takes the lower 1 bit and converts into BOOL type.
 LINT_TO_BYTE BYTE Takes the lower 8 bits and converts into BYTE type.
 LINT_TO_WORD WORD Takes the lower 16 bits and converts into WORD type.
 LINT_TO_DWORD DWORD Takes the lower 32 bits and converts into DWORD type.
 LINT_TO_LWORD LWORD Converts into LWORD type without changing the internal bit array.

 LINT_TO_BCD LWORD
If input is 0~9,999,999,999,999,999, normal conversion.
Otherwise an error occurs.

 LINT_TO_REAL REAL
Converts LINT into REAL type.
During the conversion, an error caused by the precision may occur.

 LINT_TO_LREAL LREAL
Converts LINT into LREAL type.
During the conversion, an error caused by the precision may occur.

 Error

If a conversion error occurs, _ERR and _LER flags will be set.
If an error occurs, take as many lower bits as the bit number of the output type and produces an output
without changing the Internal bit array.

LINT type conversion

8. Basic Function/Function Block Library

8-48

 Program Example
LD IL

 LD %I0.0.0

 JMPN AAA
 LD IN_VAL
 LINT_TO_DINT
 ST OUT_VAL
 AAA:

(1) If the input condition (%I0.0.0) is on, LINT_TO_DINT function will be executed.
(2) If input variable IN_VAL (LINT) = 123_456_789, output variable OUT_VAL (DINT) = 123_456_789.

 Input (IN1): IN_VAL (LINT) = 123,456,789
 (16#75BCD15)

 (LINT_TO_DINT)
 Output (OUT): OUT_VAL (DINT) = 123,456,789

 (16#75BCD15)

1 1 0 0 1 1 0 1 0 0 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 1

0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 1

1 1 0 0 1 1 0 1 0 0 0 1 0 1 0 1

8. Basic Function/Function Block Library

8-49

LN
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 LN
 BOOL EN ENO BOOL
ANY_REAL IN OUT ANY_REAL

 Input EN: executes the function in case of 1
 IN: input value of natural logarithm operation

 Output ENO: without an error, it will be 1.
 OUT: natural logarithm value

 IN, OUT should be the same data type.

 Function

It finds a natural logarithm value of IN and produces output OUT.
OUT = ln IN

 Error
If an input is 0 or a negative number, _ERR and _LER flags will be set.

 Program Example
LD IL

 LD %M0

 JMPN AE
 LD INPUT
 LN
 ST RESULT
 AE:

(1) If the transition condition (%M0) is on, LN function will be executed.
(2) If input variable INPUT is 2.0, output variable RESULT will be 0.6931
 ln (2.0) = 0.6931...

 Input (IN1): INPUT (REAL) = 2.0
 (LN)
 Output (OUT): RESULT (REAL) = 6.93147182E-01

Natural logarithm operation

8. Basic Function/Function Block Library

8-50

LOG
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 LOG
 BOOL EN ENO BOOL
ANY_REAL IN OUT ANY_REAL

 Input EN: executes the function in case of 1
 IN: input value of common logarithm operation

 Output END: without an error, it will be 1.
 OUT: the value of common logarithm operation

 IN, OUT should be the same data type.

 Function

It finds the value of Base 10 Logarithm of IN and produces output OUT.
OUT = log10 IN = log IN

 Error
If input value IN is 0 or a negative number, _ ERR and _LER flags will be set.

 Program Example
LD IL

 LD %M0

 JMPN BB
 LD INPUT
 LOG
 ST RESULT
 BB:

(1) If the transition condition (%M0) is on, LOG function will be executed.
(2) If input variable INPUT is 2.0, output variable RESULT will be 0.3010 ..…
 log10 (2.0) = 0.3010...

 Input (IN1): INPUT (REAL) = 2.0
 (LOG)
 Output (OUT): RESULT (REAL) = 3.01030010E-01

Base 10 Logarithm operation

8. Basic Function/Function Block Library

8-51

LREAL_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 LREAL_TO_***
 BOOL EN ENO BOOL
 LREAL IN OUT ***

 Input EN: executes the function in case of 1
 IN: LREAL value to convert
 Output ENO: without an error, it will be 1.
 OUT: type converted data

 Function
It converts input IN type and produces output OUT.

 Function Output type Description

 LREAL_TO_SINT SINT
If integer number of input is -128 ∼ 127, normal conversion.
Otherwise an error occurs (decimal round off).

 LREAL_TO_INT INT
If integer number of input is -32768 ∼ 32767, normal conversion.
Otherwise an error occurs (decimal round off).

 LREAL_TO_DINT DINT
If integer number of input is -231

∼ 231-1, normal conversion.
Otherwise an error occurs (decimal round off).

 LREAL_TO_LINT LINT
If integer number of input is -263

∼ 263-1, normal conversion.
Otherwise an error occurs (decimal round off).

 LREAL_TO_USINT USINT
If integer number of input is 0 ∼ 255, normal conversion.
Otherwise an error occurs (decimal round off).

 LREAL_TO_UINT UINT
If integer number of input is 0 ∼ 65,535, normal conversion.
Otherwise an error occurs (decimal round off).

 LREAL_TO_UDINT UDINT
If integer number of input is 0 ∼ 232-1, normal conversion.
Otherwise an error occurs (decimal round off).

 LREAL_TO_ULINT ULINT
If integer number of input is 0 ∼ 264-1, normal conversion.
Otherwise an error occurs (decimal round-off).

 LREAL_TO_LWORD LWORD Converts into LWORD type without changing the internal bit array.

 LREAL_TO_REAL REAL
Converts LREAL into REAL type normally.
During the conversion, an error caused by the precision may occur.

 Error
If an overflow occurs because an input value is greater than the value available for the output type, _ERR
and _LER flags will be set. If an error occurs, an output will be 0.

LREAL type conversion

8. Basic Function/Function Block Library

8-52

 Program Example
LD IL

 LD LREAL_VAL
 LREAL_TO_REAL
 ST REAL_VAL

(1) If the input condition (%M0) is on, LREAL_TO_REAL function will be executed.
(2) If input variable LREAL_VAL (LREAL) = -1.34E-12, output variable REAL_VAL (REAL)= -1.34E-12.

 Input (IN1): LREAL_VAL (LREAL) = -1.34E-12
 (LREAL_TO_REAL)
 Output (OUT): REAL_VAL (REAL) = -1.34E-12

8. Basic Function/Function Block Library

8-53

LT
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 LT
 BOOL EN ENO BOOL
 ANY IN1 OUT BOOL
 ANY IN2

 Input EN: executes the function in case of 1
 IN1: the value to be compared
 IN2: the value to compare
 Input variable number can be extended up to 8.
 IN1, IN2, ...should be the same data type.

 Output ENO: without an error, it will be 1.
 OUT: comparison result value

 Function
If IN1 < IN2 < IN3... < INn (n: input number), output value OUT will be 1.
Otherwise output OUT will be 0.

 Program Example
LD IL

 LD %M0
 JMPN AA
 LD VALUE1
 LT IN1:= CURRENT RESULT
 IN2:= VALUE2
 IN3:= VALUE3
 ST %Q0.0.1
 AA:

(1) If the transition condition (%M0) is on, LT function will be executed.
(2) If input variable VALUE1 = 100, VALUE2 = 200, and VALUE3 = 300, output %Q0.0.1 = 1.

 Input (IN1): VALUE1 (INT) = 100 (16#0064)
 < (LT)
 (IN2): VALUE2 (INT) = 200 (16#00C8)
 < (LT)
 (IN3): VALUE3 (INT) = 300 (16#012C)

 Output (OUT): %Q0.0.1 (BOOL) = 1 (16#1)

0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

1

‘Less than’ comparison

8. Basic Function/Function Block Library

8-54

LWORD_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 LWORD_TO_***
 BOOL EN ENO BOOL
 LWORD IN OUT ***

 Input EN: executes the function in case of 1

IN: bit string to convert (64bit)

Output ENO: without an error, it will be 1.
 OUT: type-converted data

 Function
It converts input IN type and produces output OUT.

Function Output type Description

 LWORD _TO_SINT SINT Takes the lower 8 bits and converts into SINT type.

 LWORD _TO_INT INT Takes the lower 16bits and converts into INT type.

 LWORD _TO_DINT DINT Takes the lower 32bits and converts into DINT type.

 LWORD _TO_LINT LINT Converts into LINT type without changing the internal bit array.

 LWORD _TO_USINT USINT Takes the lower 8 bits and converts into USINT type.

 LWORD _TO_UINT UINT Takes the lower 16 bits and converts into UINT type.

 LWORD _TO_UDINT UDINT Takes the lower 32bits and converts into UDINT type.

 LWORD _TO_ULINT ULINT Converts into ULINT type without changing the internal bit array.

 LWORD _TO_BOOL BOOL Takes the lower 1 bit and converts into BOOL type.

 LWORD _TO_BYTE BYTE Takes the lower 8 bits and converts into BYTE type.

 LWORD _TO_WORD WORD Takes the lower 16 bits and converts into WORD type.

 LWORD _TO_DWORD DWORD Takes the lower 32 bits and converts into DWORD type.

 LWORD _TO_LREAL LREAL Converts LWORD into LREAL type.

 LWORD _TO_DT DT Converts into DT type without changing the internal bit array.

 LWORD _TO_STRING STRING Converts input value into STRING type.

LWORD type conversion

8. Basic Function/Function Block Library

8-55

 Program Example
LD IL

 LD %M0

 JMPN PPP
 LD IN_VAL
 LWORD_TO_LINT
 ST OUT_VAL
 PPP:

(1) If the input condition (%M0) is on, LWORD_TO_LINT function will be executed.
(2) If input variable IN_VAL (LWORD) = 16#FFFFFFFFFFFFFFFF, output variable OUT_VAL (LINT) will be

-1 (16#FFFFFFFFFFFFFFFF).

 Input (IN1): IN_VAL (LWORD) = 16#FFFFFFFFFFFFFFFF
 (LWORD_TO_LINT)

 Output (OUT): OUT_VAL (LINT) = -1

8. Basic Function/Function Block Library

8-56

MAX
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 MAX
 BOOL EN ENO BOOL
 ANY IN1 OUT ANY
 ANY IN2

 Input EN: executes the function in case of 1
 IN1: the value to be compared
 IN2: the value to compare
 Input variable number can be extended up to 8.

 Output ENO: without an error, it will be 1.
 OUT: maximum value among input

 IN1, IN2,…, OUT should be the same data type.

 Function

It produces the maximum value among input IN1, IN2,..., INn (n: input number).

 Program Example
 LD IL

 LD %M0

 JMPN GG
 LD VALUE1
 MAX IN1:= CURRENT RESULT
 IN2:= VALUE2
 ST OUT_VALUE
 GG:

(1) If the transition condition (%M0) is on, MAX function will be executed.
(2) As the result of comparing input variable (VALUE1 = 100 and VALUE2 = 200), maximum value is 200.

 Output OUT_VAL will be 200.

 Input (IN1): VALUE1 (INT) = 100 (16#0064)
 (MAX)

 (IN2): VALUE2 (INT) = 200 (16#00C8)

Output (OUT): OUT_VAL (INT) = 200 (16#00C8)

0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0

Maximum value

8. Basic Function/Function Block Library

8-57

MID
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 MID
 BOOL EN ENO BOOL
 STRING IN OUT STRING
 INT L
 INT P

 Input EN: executes the function in case of 1
 IN: input character string
 L: the length of character string to output
 P: starting location of character string to output

 Output ENO: without an error, it will be 1.
 OUT: output character string

 Function
It produces a character string (L) of IN from the P character.

 Error
If (character number of variable IN) < P, P <= 0 or L < 0, then _ERR and _LER flags will be set.

 Program Example
 LD IL

 LD %I0.0.0

 JMPN MM
 LD IN_TEXT
 MID IN:= CURRENT RESULT
 L: = LENGTH
 P: = POSITION
 ST OUT_TEXT
 MM:

(1) If the transition condition (%I0.0.0) is on, MID function will be executed.
(2) If input character string IN_TEXT = ‘ABCDEFG’, the length of character string LENGTH = 3, and starting

location of character starting POSITION = 2, output variable OUT_TEXT = ‘BCD’.

 Input (IN): IN_TEXT1 (STRING) = ‘ABCDEFG’

 (L): LENGTH (INT) = 3
 (P): POSITION (INT) = 2
 (MID)
 Output (OUT): OUT_TEXT = ‘BCD’

Takes the middle part of a character string

8. Basic Function/Function Block Library

 8-58

MIN
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 MIN
 BOOL EN ENO BOOL
 ANY IN1 OUT ANY
 ANY IN2

 Input EN: executes the function in case of 1
 IN1: value to be compared
 IN2: value to compare

Input variable number can be extended up to 8

 Output ENO: without an error, it will be 1
 OUT: minimum value among input values

 IN1, IN2, ..., OUT should be all the same data type.

 Function

Produces the minimum value among input IN1, IN2, ... , INn (n: input number).

 Program Example
LD IL

 LD %M100

 JMPN BBB
 LD VALUE1
 MIN IN1:= CURRENT RESULT
 IN2:= VALUE2
 ST OUT_VALUE
 BBB:

(1) If the transition condition (%M100) is ON, MIN function is executed.
(2) The output is OUT_VALUE = 100 because its minimum value is 100 as the result of comparing VALUE1 =

100 to VALUE2 = 200.

 Input (IN1): VALUE1 (INT) = 100 (16#0064)
 (MIN)
 (IN2): VALUE2 (INT) = 200 (16#00C8)

 Output (OUT): OUT_VAL (INT) = 100 (16#0064)

0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

Minimum value

8. Basic Function/Function Block Library

 8-59

MOD
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 MOD
 BOOL EN ENO BOOL
 ANY_INT IN1 OUT ANY_INT
 ANY_INT IN2

 Input EN: executes the function in case of 1
 IN1: dividend
 IN2: divisor

 Output ENO: without an error, it will be 1
 OUT: dividing result (remainder)

 IN1, IN2, ..., OUT should be all the same data type.

 Function

Divides IN1 by IN2 and outputs its remainder as OUT.
OUT = IN1 - (IN1/IN2) ×IN2 (if IN2 = 0, OUT = 0)

IN1 IN2 OUT
 7
 7
-7
-7
 7

 2
-2
 2
-2
 0

 1
 1
-1
-1
 0

 Program Example

LD IL

 LD %M100
 JMPN BB
 LD VALUE1
 MOD IN1:= CURRENT RESULT
 IN2:= VALUE2
 ST OUT_VAL
 BB:

(1) If the transition condition (%M100) is ON, MOD function is executed.
(2) If the dividend VALUE1 = 37 and the divisor VALUE2 = 10, the remainder value OUT_VAL is 7 as a result

of dividing 37 by 10.

 Input (IN1): VALUE1 (INT) = 37 (16#0025)
 (MOD)
 (IN2): VALUE2 (INT) = 10 (16#000A)

 Output (OUT): OUT_VAL (INT) = 7 (16#0007)

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Dividing result (remainder)

8. Basic Function/Function Block Library

 8-60

MOVE
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 MOVE
 BOOL EN ENO BOOL
 ANY IN OUT ANY

 Input EN: executes the function in case of 1
 IN: value to be moved

 Output ENO: without an error, it will be 1
 OUT: moved value

 Variables connected to IN and OUT are the same type.

 Function
Moves an IN value to OUT.

 Program Example
This is a program that transfers the 8-contact inputs %I0.0.0∼%I0.0.7 to the variable D and then moves them
to output %Q0.4.0∼%Q0.4.7.

LD IL

 LD %M100
 JMPN AAA
 LD %IB0.0.0
 MOVE
 ST D
 LD D
 MOVE
 ST %QB0.4.0
 AAA:

(1) If the transition condition (%M100) is ON, MOVE function is executed.
(2) It moves 8-contact input module data to the variable D by the first MOVE function and moves them
to %Q0.4.0∼%Q0.4.7.

 Input (IN1): %IB0.0.0 (BYTE) = 16#18
 (MOVE)
 D (BYTE) = 16#18
 (MOVE)
 Output (OUT): %QB0.4.0 (BYTE) = 16#18

0 0 0 1 1 0 0 0

0 0 0 1 1 0 0 0

0 0 0 1 1 0 0 0

Data movement (Copy data)

8. Basic Function/Function Block Library

 8-61

MUL
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 MUL
 BOOL EN ENO BOOL
 ANY_NUM IN1 OUT ANY_NUM
 ANY_NUM IN2

 Input EN: executes the function in case of 1
 IN1: multiplicand
 IN2: multiplier
 Input is available to extend up to 8.

 Output ENO: without an error, it will be 1
 OUT: multiplied value

 Variables connected to IN1, IN2, ..., OUT are all the same
data type.

 Function
Multiplies an IN1, IN2,..., INn (n: input number) and outputs the result as OUT.
OUT = IN1 ×IN2 ×... ×INn

 Error
If an output value is out of its data-type range, _ERR and _LER flags are set.

 Program Example
LD IL

 LD %M0
 JMPN ABC
 LD VALUE1
 MUL IN1:= CURRENT RESULT
 IN2:= VALUE2
 IN3:= VALUE3
 ST OUT_VAL
 ABC:

(1) If the transition condition (%M0) is ON, MUL function is executed.
(2) If input variables of MUL function, VALUE1 = 30, VALUE2 = 20, VALUE3 = 10, then the output variable

OUT_VAL = 30 ×20 ×10 = 6000.

 Input (IN1): VALUE1 (INT) = 30 (16#001E)
 + (MUL)

 (IN2): VALUE2 (INT) = 20 (16#0014)
 + (MUL)
 (IN3): VALUE3 (INT) = 10 (16#000A)

 Output (OUT): OUT_VAL (INT) = 6000 (16#1770)

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0

Multiplication

8. Basic Function/Function Block Library

 8-62

MUL_TIME
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 MUL_TIME
 BOOL EN ENO BOOL
 TIME IN1 OUT TIME
ANY_NUM IN2

 Input EN: executes the function in case of 1
 IN1: time to be multiplied
 IN2: multiplying value

 Output ENO: without an error, it will be 1
 OUT: multiplied result

 Function

Multiplies the IN1 (time) by IN2 (number) and outputs the result time as OUT.

 Error
If an output value is out of its TIME-data range, _ERR and _LER flags are set.

 Program Example
This is the program that sets the required working time: the average estimated time per unit product is 20min
2sec and the number of product to produce a day is 20 in one product line.

LD IL

 LD %M0
 JMPN ABC
 LD UNIT_TIME
 MUL_TIME IN1:= CURRENT RESULT
 IN2:= PRODUCT_COUNT
 ST TOTAL_TIME
 ABC:

(1) Write input variable (IN1: the estimated time per unit product) UNIT_TIME: T#20M2S.
(2) Write input variable (IN2: quantity of production) PRODUCT_COUNT: 20.
(3) Write TOTAL_TIME to the output variable (OUT: total required working time).
(4) If the transition condition (%M0) is on, T#6H40M40S will be produced in output TOTAL_TIME.

 Input (IN1): UNIT_TIME (TIME) = T#20MS2S
 (MUL_TIME)
 (IN2): PRODUCT_COUNT (INT) = 16#18

 Output (OUT): TOTAL_TIME (TIME) = T#6H40M40S

Time multiplication

8. Basic Function/Function Block Library

 8-63

MUX
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 MUX
 BOOL EN ENO BOOL
 INT K OUT ANY
 ANY IN0
 ANY IN1

 Input EN: executes the function in case of 1
 K: selection
 IN0: the value to be selected
 IN1: the value to be selected
 Input variable number can be extended up to 8

 Output ENO: without an error, it will be 1.
 OUT: the selected value

 IN0, IN1, ..., OUT should be the same time.

 Function
Selects one among several inputs (IN0, IN1, …, INn) with K value and produces it.
If K = 0, IN0 will be an output; if K = 1, IN1 will be an output; if K = n, INn will be an output.

 Error
If K is greater than or equal to the number of input variable INn, then IN0 will be an output and _ERR, _LER
flags will be set.

 Program Example
 LD IL

 LD %M0

 JMPN ABC
 LD S
 MUX K:= CURRENT RESULT
 IN0:= VALUE0
 IN1:= VALUE1
 IN2:= VALUE2
 ST OUT_VAL
 ABC:

(1) If the transition condition (%M0) is on, MUX function will be executed.
(2) Input variable is selected by selection variable S and is moved to OUT.
 Input (K): S (INT) = 2
 (IN0): VALUE0 (WORD) = 16#11
 (IN1): VALUE1 (WORD) = 16#22
 (IN2): VALUE2 (WORD) = 16#33
 (MUX)

 Output (OUT): OUT_VAL (WORD) = 16#33

Selection from multiple inputs

8. Basic Function/Function Block Library

 8-64

NE
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 NE
 BOOL EN ENO BOOL
 ANY IN1 OUT BOOL
 ANY IN2

 Input EN: executes the function in case of 1
 IN1: The value to be compared
 IN2: The value to be compared
 IN1, IN2 should be the same data type.

 Output ENO: without an error, it will be 1.
 OUT: the compared result value

 Function
If IN1 is not equal to IN2, output OUT will be 1.
If INI is equal to IN2, output OUT will be 0.

 Program Example
LD IL

 LD %I0.0.0

 JMPN PP
 LD VALUE1
 NE IN1:= CURRENT RESULT
 IN2:= VALUE2
 ST %Q0.0.1
 PP:

(1) If the transition condition (%I0.0.0) is on, NE function will be executed.
(2) If input variable VALUE1 = 300, VALUE2 = 200 (the compared result VALUE1 and VALUE2 are different),

output result value will be %Q0.0.1 = 1.

 Input (IN1): VALUE1 (INT) = 300 (16#012C)
 (NE)
 (IN2): VALUE2 (INT) = 200 (16#0C8)

 Output (OUT): %Q0.0.1 (BOOL) = 1 (16#1)

0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0

1

0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

‘Not equal to’ comparison

8. Basic Function/Function Block Library

 8-65

NOT
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 NOT
 BOOL EN ENO BOOL
 ANY_BIT IN OUT ANY_BIT

 Input EN: executes the function in case of 1
 IN: the value to be logically inverted

 Output ENO: without an error, it will be 1
 OUT: the inversed (NOT) value

 IN, OUT should be the same data type.

 Function

It inverts the IN (by bit) and produces output OUT.
 IN 1100 1010
 OUT 0011 0101

 Program Example
 LD IL

 LD %M0

 JMPN AAA
 LD %MB10
 NOT IN:= CURRENT RESULT
 ST %QB0.0.0
 AAA:

(1) If the transition condition (%M0) is on, NOT function will be executed.
(2) If NOT function is executed, input data value of %MB10 will be inversed and will be written in %QB0.0.0.

 Input (IN1): %MB10 (BYTE) = 16#CC
 (NOT)
 Output (OUT): %QB0.0.0 (BYTE) = 16#33

1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1

Reverse Logic (Logic inversion)

8. Basic Function/Function Block Library

 8-66

NUM_TO_STRING
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 NUM_TO_STRING
 BOOL EN ENO BOOL
 ANY_NUM IN OUT STRING

 Input EN: executes the function in case of 1
 IN: input data to be converted to STRING

 Output ENO: without an error, it will be 1.
 OUT: converted data (character)

 Function

It converts the numeric data of IN to the character data and produces output OUT.

 Program Example
LD IL

 LD %M0

 JMPN AAA
 LD IN_VALUE
 NUM_TO_STRING
 ST OUT_STRING

(1) If the transition condition (%M0) is ON, function NUM_TO_STRING will be executed.
(2) If IN_VALUE (INT) = 123, OUT_STRING will be ‘123’; if IN_VALUE (REAL) = 123.0, OUT_STRING will be

‘1.23E2’.

 Input (IN1): IN_VALUE (INT) = 123
 (NUM_TO_STRING)

 Output (OUT): OUT_STRING (STRING) = ‘123’

Converts number to a character string

8. Basic Function/Function Block Library

 8-67

OR
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 OR
 BOOL EN ENO BOOL
 ANY_BIT IN1 OUT ANY_BIT
 ANY_BIT IN2

 Input EN: executes the function in case of 1
 IN1: input 1
 IN2: input 2
 Input variables can be extended up to 8.

 Output ENO: without an error, it will be 1.
 OUT: OR result

 IN1, IN2, OUT should be all the same data type.

 Function

It performs a logical OR on the input variables by bit and produces output OUT.
 IN1 1111 0000
 OR
 IN2 1010 1010
 OUT 1111 1010

 Program Example
LD IL

 LD %M0

 JMPN AAA
 LD %MB10
 OR IN1:= CURRENT RESULT
 IN2:= ABC
 ST %QB0.0.0

(1) If the transition condition (%M0) is on, function OR will be executed.
(2) The result of a logic sum (OR) for %MB10 = 11001100 and ABC = 11110000 will be produced

in %QB0.0.0 = 11111100.

 Input (IN1): %MB10 (BYTE) = 16#CC
 Logical OR operation
 (IN2): ABC (BYTE) = 16#F0

 Output (OUT): %QB0.0.0 (BYTE) = 16#FC

1 1 0 0 1 1 0 0

1 1 1 1 0 0 0 0

1 1 1 1 1 1 0 0

Logical OR

8. Basic Function/Function Block Library

 8-68

REAL_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 REAL_TO_***
 BOOL EN ENO BOOL
 REAL IN OUT ***

 Input EN: executes the function in case of 1
 IN: the REAL value to be converted
 Output ENO: without an error, it will be 1.
 OUT: type-converted data

 Function

It converts the IN type and outputs it as OUT.

 Function Output type Description
 REAL_TO_SINT SINT If integer part of input is -128 ∼ 127, normal conversion. Otherwise an

error occurs. (Decimals round-off)
 REAL_TO_INT INT If integer part of input is -32768 ∼ 32767, normal conversion.

Otherwise an error occurs. (Decimals round-off)
 REAL_TO_DINT DINT If integer part of input is -231

∼ 231-1, normal conversion. Otherwise an
error occurs. (Decimals round-off)

 REAL_TO_LINT LINT If integer part of input is -263
∼ 263-1, normal conversion. Otherwise an

error occurs. (Decimals round-off)
 REAL_TO_USINT USINT If integer part of input is 0 ∼ 255, normal conversion. Otherwise an

error occurs. (Decimals round-off)
 REAL_TO_UINT UINT If integer part of input is 0 ∼ 65,535, normal conversion. Otherwise an

error occurs. (Decimals round-off)
 REAL_TO_UDINT UDINT If integer part of input is 0

∼ 232-1, normal conversion. Otherwise an
error occurs. (Decimals round-off)

 REAL_TO_ULINT ULINT If integer part of input is 0
∼ 264-1, normal conversion. Otherwise an

error occurs. (Decimals round-off)
 REAL_TO_DWORD DWORD Converts into DWORD type without changing the internal bit array.
 REAL_TO_LREAL LREAL Converts REAL into LREAL type normally.

 Error
If overflow occurs (an input value is greater than the value to be stored in output type), _ERR, _LER flags will
be set. If an error occurs, the output will be 0.

REAL type conversion

8. Basic Function/Function Block Library

 8-69

 Program Example
LD IL

 LD %M0

 JMPN AAA
 LD REAL_VAL
 REAL_TO_DINT
 ST DINT_VAL

(1) If the transition condition (%M0) is ON, function REAL_TO_DINT will be executed.
(2) If REAL_VAL (REAL type) = 1.234E4, DINT_VAL (DINT) = 12340.

 Input (IN1): REAL_VAL(REAL) = 1.234E4
 (REAL_TO_DINT)
 Output (OUT): DINT_VAL(DINT) = 12340

8. Basic Function/Function Block Library

 8-70

REPLACE
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 REPLACE
 BOOL EN ENO BOOL
 STRING IN1 OUT STRING
 STRING IN2
 INT L
 INT P

 Input EN: executes the function in case of 1
 IN1: character string to be replaced
 IN2: character string to replace
 L: the length of character string to be replaced
 P: position of character string to be replaced

 Output ENO: without an error, it will be 1.
 OUT: output character string

 Function
Its function is to remove the L-length charter from IN1 (starting from P) and put IN2 in the removed position
as output OUT.

 Error
_ERR, _LER flags will be set if:
▷ P ≤ 0 or L < 0
▷ P > (input character number of IN1)
▷ character number of result > 30

 Program Example
LD IL

 LD %M0
 JMPN MBC
 LD IN_TEXT1
 REPLACE IN1:= CURRENT RESULT
 IN2: = IN_TEXT2
 L: = LENGTH
 P: = POSITION
 ST OUT_TEXT
 ABC:

Replace a string (Character string replacement)

8. Basic Function/Function Block Library

 8-71

(1) If the transition condition (%M0) is ON, function REPLACE (character string replacement) will be executed.
(2) If input variable of character string to be replaced IN_TEXT1 = `ABCDEF`, input variable of character

string to replace IN_TEXT2 = `X`, input variable of character string length to be replaced LENGTH = 3
and input variable of character string position designation to be replaced POSITION = 2, then ‘BCD’ of
IN_TEXT will be replaced with ‘X’ of IN_TEXT2 and output variable OUT_TEXT will be ‘AXET’.

 Input (IN1): IN_TEXT1 (STRING) = `ABCDEF`
 (IN2): IN_TEXT2 (STRING) = `X`
 (L): LENGTH (INT) = 3
 (P): POSITION (INT) = 2

 Output (OUT): OUT_TEXT (STRING) = `AXET`

8. Basic Function/Function Block Library

 8-72

RIGHT
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 RIGHT
 BOOL EN ENO BOOL
 STRING IN OUT STRING
 INT L

 Input EN: If EN is 1, function executes.
 IN: input character string
 L: length of character string

 Output ENO: without an error, it will be 1.
 OUT: output character string

 Function
It takes a right L-length character string of IN and produces output OUT.

 Error
If L < 0, _ERR and _LER flags will be set.

 Program Example
 IL

 LD %I0.0.0

 JMPN AAA
 LD IN_TEXT
 RIGHT IN:= CURRENT RESULT
 L: = LENGTH
 ST OUT_TEXT
 AAA:

(1) If the transition condition (%I0.0.0) is on, function RIGHT (to take the right of character string) will be
executed.

(2) If character string declared as input variable IN_TEXT = `ABCDEFG` and the length of character string to
output LENGTH = 3, output character string variable OUT_TEXT = `EFG`.

 Input (IN1): IN_TEXT (STRRING) = `ABCDEFG`
 (L): LENGTH (INT) = 3
 (RIGHT)
 Output (OUT): OUT_TEXT (STRRING) = `EFG`

To take the right of character string

8. Basic Function/Function Block Library

 8-73

ROL
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 ROL
 BOOL EN ENO BOOL
 ANY_BIT IN OUT ANY_BIT
 INT N

 Input EN: executes the function in case of 1
 IN: the value to be rotated
 N: bit number to rotate

 Output ENO: without an error, it will be 1
 OUT: the rotated value

 Function
It rotates input IN to the left as many as N bit number.

 1 0 1 0 0 0 1 1

 1 0 0 0 1 1 1 0
 N

 Program Example
This is the program that rotates the value of input data (1100_1100_1100_1100:16#CCCC) to the left by 3
bits if input %I0.0.0 is on.

LD IL

 LD %I0.0.0

 JMPN PPP
 LD IN_VALUE
 ROL IN:= CURRENT RESULT
 N:= 3
 ST OUT_VALUE
 PPP:

 (1) Set input variable IN_VALUE to rotate.
 (2) Set the value to be rotated (3).
 (3) Set output variable to output the rotated data value as OUT_VALUE.

 (4) If the transition condition (%I0.0.0) is ON, function ROL will be executed and a data bit set as input
variable will be rotated to the left by 3 bits and produces output OUT_VALUE.

 Input (IN1): IN_VALUE (WORD) = 16#CCCC
 (N): 3 (ROL)
 Output (OUT): OUT_VALUE (WORD) = 16#6666

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

Rotate to left

8. Basic Function/Function Block Library

 8-74

 ROR
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 ROR
 BOOL EN ENO BOOL
 ANY_BIT IN OUT ANY_BIT
 INT N

 Input EN: executes the function in case of 1
 IN: the value to be rotated
 N: bit number to rotate

 Output ENO: without an error, it will be 1.
 OUT: the rotated value

 Function
It rotates input IN to the right as many as N bit number.

 1 0 1 0 0 0 1 1

 1 0 0 0 1 1 1 0
 N

 Program Example
This is the program that rotates input data value (1110001100110001: 16#E331) to the right by 3 bits if
input %I0.0.0 is ON.

LD IL

 LD %I0.0.0
 JMPN PO
 LD IN_VALUE1
 ROR IN1:= CURRENT RESULT
 N:= 3
 ST OUT_VALUE
 PO

 (1) Set input variable of a data value to rotate as IN_VALUE1.
 (2) Insert bit number 3 into bit number input N.
 (4) If the transition condition (%I0.0.0) is ON, function ROR (rotate Right) will be executed and data bit set as

input variable will be rotated to the right by 3 bits and produces output OUT_VALUE.

 Input (IN1): IN_VALUE1 (WORD) = 16#E331
 (N): 3 (ROR)
 Output (OUT): OUT_VALUE(WORD) = 16#3C66

1 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1

0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0

Rotate to right

8. Basic Function/Function Block Library

 8-75

SEL
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 SEL
 BOOL EN ENO BOOL
 BOOL G OUT ANY
 ANY IN0
 ANY IN1

 Input EN: executes the function in case of 1
 G: selection
 IN0: the value to be selected
 IN1: the value to be selected

 Output ENO: without an error, it will be 1
 OUT: the selected value

 IN1, IN2, OUT should be all the same type.

 Function

If G is 0, IN0 will be an output and if G is 1, IN1 will be an output.

 Program Example
 LD IL

 LD %M0

 JMPN PPP

 LD S
 SEL G:= CURRENT RESULT
 IN1:= VALUE1
 IN2:= VALUE2
 ST %QW0.0.0
 PPP:

 (1) If the transition condition (%M0) is ON, function SEL will be executed.
 (2) If S = 1 and VALUE1 = 16#1110, VALUE2 = 16#FF00, then output variable %QW0.0.0 = 16#FF0.

 Input (G): S = 1
 (IN0): VALUE1 (WORD) = 16#1110
 (IN1): VALUE2(WORD) = 16#FF00
 (SEL)
 Output (OUT): %QW0.0.0 (WORD) = 16#FF00

Selection from two inputs

8. Basic Function/Function Block Library

 8-76

SHL
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 SHL
 BOOL EN ENO BOOL
 ANY_BIT IN OUT ANY_BIT
 INT N

 Input EN: If EN is 1, function is executed.
 IN: bit string to be shifted
 N: bit number to be shifted

 Output ENO: without an error, it will be 1
 OUT: the shifted value

 Function
It shifts input IN to the left as many as N bit number.
N number bit on the rightmost of input IN will be filled with 0.

 1 0 1 0 0 0 1 1

 1 0 0 0 1 1 0 0
 N will be filled with 0.

 Program Example
This is the program that shifts input data value (1100_1100_1100_1100:16#CCCC) to the left by 3 bits if
input %I0.0.0 is ON.

LD IL

 LD %I0.0.0

 JMPN ABC
 LD IN_VALUE
 SHL IN:= CURRENT RESULT
 N:= 3
 ST OUT_VALUE
 ABC:

(1) Set the input variable IN_VALUE (11001110:16#CE).
(2) Insert bit number 3 into N.
(3) If the transition condition (%Z0.0.0) is ON, function SHL (shift Left) will be executed and data bit set as

input variable shifts to the left by 3 bits and produces output OUT_VALUE.

 Input (IN1): IN_VALUE (WORD) = 16#CCCC
 (N): 3 (ROL)
 Output (OUT): OUT_VALUE (WORD) =16#6660

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0

Shift Left

8. Basic Function/Function Block Library

 8-77

SHR
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 SHR
 BOOL EN ENO BOOL
 ANY_BIT IN OUT ANY_BIT
 INT N

 Input EN: executes the function in case of 1
 IN: bit string to be shifted
 N: bit number to be shifted

 Output ENO: without an error, it will be 1.
 OUT: the shifted value

 Function
It shifts input IN to the right as many as N bit number.
N number bit on the leftmost of input IN will be filled with 0.

 1 0 1 1 1 0 1 1

 0 0 1 0 1 1 1 0
 N will be filled with 0.

 Program Example
 LD IL

 LD %M0

 JMPN AAA
 LD IN_VALUE
 SHR IN:= CURRENT RESULT
 N:= SHIFT_NUM
 ST OUT_VALUE

(1) If the transition condition (%M0) is on, function SHL (Shift Left) will be executed.
(2) Data bit set as input variable shift to the right by 3 bits and produces outputs OUT_VALUE.

 Input (IN1): IN_VALUE (WORD) = 16#E331
 (N): 3 (ROR)
 Output (OUT): OUT_VALUE (WORD) = 16#1C66

1 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1

0 0 0 1 1 1 0 0 0 1 1 0 0 1 1 0

Shift Right

8. Basic Function/Function Block Library

 8-78

SIN
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 SIN
 BOOL EN ENO BOOL
ANY_REAL IN OUT ANY_REAL

 Input EN: executes the function in case of 1
 IN: input value of Sine operation (radian)

 Output ENO: without an error, it will be 1

OUT: Sine operation result value

 IN, OUT should be the same data type.

 Function
Finds the Sine operation value of IN and produces output OUT.
OUT = SIN (IN)

 Program Example
 LD IL

 LD %I0.0.0

 JMPN PPP
 LD INPUT
 SIN
 ST RESULT
 PPP:

(1) If the transition condition (%I0.0.0) is ON, function SIN (Sine operation) will be executed.
(2) If the value of input variable INPUT is 1.0471 (π/3 rad = 60°), RESULT declared as output variable will

be 0.8660 (√ 3 /2).
 SIN (π/3) = √ 3 /2 = 0.8660

 Input (IN1): INPUT (REAL) = 1.0471
 (SIN)
 Output (OUT): RESULT (REAL) = 8.65976572E-01

Sine operation

8. Basic Function/Function Block Library

 8-79

SINT_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 SINT_TO_***
 BOOL EN ENO BOOL
 SINT IN OUT ***

 Input EN: executes the function in case of 1
 IN: short Integer value

 Output ENO: without an error, it will be 1.
 OUT: type-converted data

 Function
It converts the IN type and outputs it as OUT.

 Function Output type Description

 SINT_TO_INT INT Converts into INT type normally.

 SINT_TO_DINT DINT Converts into DINT type normally.

 SINT_TO_LINT LINT Converts into LINT type normally.

 SINT_TO_USINT USINT If input is 0 ∼ 127, normal conversion. Otherwise an error occurs.

 SINT_TO_UINT UINT If input is 0 ∼ 127, normal conversion. Otherwise an error occurs.

 SINT_TO_UDINT UDINT If input is 0 ∼ 127, normal conversion. Otherwise an error occurs.

 SINT_TO_ULINT ULINT If input is 0 ∼ 127, normal conversion. Otherwise an error occurs.

 SINT_TO_BOOL BOOL Takes the lower 1 bit and converts into BOOL type.

 SINT_TO_BYTE BYTE Converts into BYTE type without changing the internal bit array.

 SINT_TO_WORD WORD Converts into WORD type filling the upper bits with 0.

 SINT_TO_DWORD DWORD Converts into DWORD type filling the upper bits with 0.

 SINT_TO_LWORD LWORD Converts into LWORD type filling the upper bits with 0.

 SINT_TO_BCD BYTE If input is 0 ~ 99, normal conversion. Otherwise an error occurs.

 SINT_TO_REAL REAL Converts SINT into REAL type normally.

 SINT_TO_LREAL LREAL Converts SINT into LREAL type normally.

 Error
If a conversion error occurs, _ERR and _LER flags will be set. If an error occurs, take the lower bits as many
as bit number of output type and output it without changing the internal bit array.

SINT type conversion

8. Basic Function/Function Block Library

 8-80

 Program Example
LD IL

 LD %M0

 JMPN AAA
 LD IN_VAL
 SINT_TO_BCD
 ST BCD_VAL
 AAA:

(1) If the input condition (% M0) is ON, function SINT_TO_BCD will be executed.
(2) If input variable IN_VAL (SINT) = 64 (2#0100_0000), output variable OUT_VAL (BCD type) = 16#64
(2#0110_0100).

 Input (IN1): IN_VAL(SINT) = 64(16#40)
 (SINT_TO_BCD)
 Output (OUT): OUT_VAL(BCD) = 16#64(16#64)

0 1 0 0 0 0 0 0

0 1 1 0 0 1 0 0

8. Basic Function/Function Block Library

 8-81

SQRT
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 SQRT
 BOOL EN ENO BOOL
ANY_REAL IN OUT ANY_REAL

 Input EN: executes the function in case of 1
 IN: input value of square root operation

 Output ENO: without an error, it will be 1.
 OUT: square root value

 IN, OUT should be the same data type.

 Function

It finds the square root value of IN and output it as OUT.
OUT = √ IN

 Error
If the value of IN is a negative number, _ERR and _LER flag will be set.

 Program Example
LD IL

 LD %M0

 JMPN AAA
 LD INPUT
 SQRT
 ST RESULT
 AAA:

(1) If the transition condition (%M0) is ON, function SQRT (square root operation) will be executed.
(2) If the value of input variable declared as INPUT is 9.0, RESULT declared as output variable will be 3.0.
 √ 9.0 = 3.0

 Input (IN1): INPUT (REAL) = 9.0
 (SQRT)
 Output (OUT): RESULT (REAL) = 3.0

Calculate SQRT (Square root operation)

8. Basic Function/Function Block Library

 8-82

STOP
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 STOP
 BOOL EN ENO BOOL
 BOOL REQ OUT BOOL

 Input EN: executes the function in case of 1
 RE: requires the operation stop by program

 Output ENO: without an error, it will be 1.
 OUT: If STOP function is executes, it will be 1.

 Function
▷ If EN and REQ are 1, stop running and return to STOP mode.
▷ If function 'STOP' is executed, the program stops after completing scan program in executing.
▷ Program restarts in case of power re-supply or the change of operation mode from STOP to RUN.

 Program Example
 LD IL

 LD %I0.0.0

 JMPN PT
 LD LOG_OUT
 STOP
 ST SHUT_OFF
 PT:

(1) If the transition condition (%I0.0.0) and LOG_OUT is 1, it becomes to STOP mode after completing the
scan program in executing.

(2) It is recommended to turn off the power of PLC in the stable state after executing 'STOP' function
declared as input variable.

Stop running by program

8. Basic Function/Function Block Library

 8-83

STRING_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 STRING_TO_***

BOOL EN ENO BOOL
STRING IN OUT ***

 Input EN: If EN is 1, function converts.
 IN: character string

 Output ENO: without an error, it will be 1.
 OUT: type-converted data

 Function
Converts the IN type and outputs it as OUT.
 Function Output type Description

 STRING _TO_SINT SINT Converts STRING into SINT type.

 STRING _TO_INT INT Converts STRING into INT type.

 STRING _TO_DINT DINT Converts STRING into DINT type.

 STRING _TO_LINT LINT Converts STRING into LINT type.

 STRING _TO_USINT USINT Converts STRING into USINT type.

 STRING _TO_UINT UINT Converts STRING into UINT type.

 STRING _TO_UDINT UDINT Converts STRING into UDINT type.

 STRING _TO_ULINT ULINT Converts STRING into ULINT type.

 STRING _TO_BOOL BOOL Converts STRING into BOOL type.

 STRING _TO_BYTE BYTE Converts STRING into BYTE type.

 STRING _TO_WORD WORD Converts STRING into WORD type.

 STRING _TO_DWORD DWORD Converts STRING into DWORD type.

 STRING _TO_LWORD LWORD Converts STRING into LWORD type.

 STRING _TO_REAL REAL Converts STRING into REAL type.

 STRING _TO_LREAL LREAL Converts STRING into LREAL type.

 STRING _TO_DT DT Converts STRING into DT type.

 STRING _TO_DATE DATE Converts STRING into DATE type.

 STRING _TO_TOD TOD Converts STRING into TOD type.

 STRING _TO_TIME TIME Converts STRING into TIME type.

 Error
If input character type does not match with output data type, _ERR and _LER flags will be set.

STRING type conversion

8. Basic Function/Function Block Library

 8-84

 Program Example

LD IL

 LD %M0
 JMPN ZZ
 LD IN_VAL
 STRING_TO_REAL
 ST OUT_VAL
 ZZ:

(1) If the input condition (%M0) is ON, function STRING_TO_REAL will be executed.
(2) If input variable IN_VAL (STRING) = ‘-1.34E12’, output variable OUT_VAL (REAL) = -1.34E12.

 Input (IN1): IN_VAL (STRING) = ‘-1.34E12’
 (STRING_TO_REAL)

 Output (OUT): OUT_VAL (REAL) = -1.34E12

8. Basic Function/Function Block Library

 8-85

STRING_TO_ARY
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input EN: If EN is 1, function converts.
 IN: string input

 Output ENO: without an error, it will be 1.
 OUT: dummy output

In/Out IN2: converted byte array output

 Function
It converts a string into 30 byte arrays.

 Program Example
LD

(1) If the transition condition (%M2) is on, STRING_BYTE function is executed.
(2) If input variable INPUT is “GM4-CPUA”, In/Out variable BYTE_ARY is as follows:

16#{22(“), 47(G), 4D(M), 34(4), 2D(-), 43(C), 50(P), 55(U), 41(A), 22(“)}.

Convert a string into a byte array

STRING_TO_ARYSTRING_TO_ARYSTRING_TO_ARYSTRING_TO_ARY

ENO EN
IN1
IN2IN2IN2IN2

OUT

BOOL BOOL

BYTE_ARY
STRING BOOL

8. Basic Function/Function Block Library

 8-86

SUB
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 SUB
 BOOL EN ENO BOOL
ANY_NUM IN1 OUT ANY_NUM
ANY_NUM IN2

 Input EN: executes the function in case of 1
 IN1: the value to be subtracted
 IN2: the value to subtract

 Output ENO: without an error, it will be 1.
 OUT: the subtracted result value

 The variables connected to IN1, IN2 and OUT should be all
the same data type.

 Function
It subtracts IN2 from IN1 and outputs it as OUT.
OUT = IN1 —IN2

 Error
If output value is out of range of related data type, _ERR and _LER flags will be set.

 Program Example
 LD IL

 LD %M0
 JMPN AAA
 LD VALUE1
 SUB IN1:= CURRENT RESULT
 IN2:= VALUE2
 ST OUT_VAL
 AAA:

(1) If the transition condition (%M0) is ON, function SUB will be executed.
(2) If input variables VALUE1 = 300, VALUE2 = 200, OUT_VAL will be 100 after operation.

 Input (IN1): VALUE1 (INT) = 300 (16#012C)
 - (SUB)
 (IN2): VALUE2 (INT) = 200 (16#00C8)

 Output (OUT): OUT_VAL (INT) = 100 (16#0064)

0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0

Subtraction

8. Basic Function/Function Block Library

 8-87

SUB_DATE
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 SUB_DATE
 BOOL EN ENO BOOL
 DATE IN1 OUT TIME
 DATE IN2

 Input EN: executes the function in case of 1
 IN1: standard date
 IN2: the date to subtract

 Output ENO: without an error, it will be 1.
 OUT: produces the difference between two dates

 as time data.

 Function

It subtracts IN2 (specific date) from IN1(standard date) and outputs the difference between two dates as OUT.

 Error
If output value is out of range (TIME data type), _ERR and _LER flags will be set.
An error occurs: 1) when date difference exceeds the range of TIME data type (T#49D17H2M47S295MS); 2)
the result of date operation is a negative number.

 Program Example
LD IL

 LD %I0.0.0

 JMPN PPP
 LD CURRENT_DATE
 SUB_DATE IN1:= CURRENT RESULT
 IN2:= START_DATE
 ST WORK_DAY
 PPP:

(1) If the transition condition (%I0.0.0) is ON, function SUB_DATE will be executed.
(2) If input variable CURRENT_DATE is D#1995-12-15 and START_DATE is D#1995-11-1, the working days

declared as output variable WORK_DAY will be T#44D.

 Input (IN1): CURRENT_DATE (DATE) = D#1995-12-15
 (SUB_DATE)
 (IN2): START_DATE (DATE) = D#1995-11-1

 Output (OUT): WORK_DAY (TIME) = T#44D

Date subtraction

8. Basic Function/Function Block Library

 8-88

SUB_DT
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 SUB_DT
 BOOL EN ENO BOOL
DATE_AND_TIME IN1 OUT TIME
DATE_AND_TIME IN2

 Input EN: executes the function in case of 1
 IN: standard date and time of day
 IN2: date and time of day to subtract

 Output ENO: without an error, it will be 1.
 OUT: the subtracted result time

 Function

It subtracts IN2 (specific date and time of day) from IN1 (standard date and time of day) and outputs the time
difference as OUT.

 Error
If output value is out of range of TIME data type, _ERR and _LER flags will be set.
If the result of date and time of day subtraction operation is a negative number, an error occurs.

 Program Example
LD IL

 LD %M0
 JMPN PPP
 LD CURRENT_DT
 SUB_DT IN1:= CURRENT RESULT
 IN2:= START_DT
 ST WORK_TIME
 PPP:

(1) If the transition condition (%M0) is ON, function SUB_DT (Time and Date subtraction) will be executed.
(2) If the current date and time of day CURRENT_DT is DT#1995-12-15-14:30:00 and the starting date and

the time of day to work START_DT is DT#1995-12-13-12:00:00, the continuous working time declared as
output variable WORK_TIME will be T#2D2H30M.

 Input (IN1): CURRENT_DT (DT) = DT#1995-12-15-14:30:00
 (SUB_DATE)
 (IN2): START_DT (DT) = DT#1995-12-13-12:00:00

 Output (OUT): WORK_TIME (TIME) = T#2D2H30M

Date and Time subtraction

 8. Basic Function/Function Block Library

 8-89

SUB_TIME
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 SUB_TIME
 BOOL EN ENO BOOL
TIME,TOD,DT IN1 OUT TIME,TOD,DT
 TIME IN2

 Input EN: executes the function in case of 1
 IN1: standard time of day
 IN2: the time to subtract
 Output ENO: without an error, it will be 1.
 OUT: the subtracted result time or time of day

OUT data type is the same as the input IN1 type.
 That is, if IN1 type is TIME, OUT type should be TIME.

 Function
▷ If IN1 is TIME, it subtracts the time from the standard time and produces OUT (time difference).
▷ If IN1 is TIME_OF_DAY, it subtracts the time from the standard time of day and outputs the time of a day

as OUT.
▷ If IN1 is DATE_AND_TIME, it subtracts the time from the standard date and the time of day and produces

the date and the time of day as OUT.

 Error
If the output value is out of range of related data type, _ERR and _LER flags will be set.
If the result subtracting the time from the standard time is a negative number or the result subtracting the
time from the time of day is a negative number, an error occurs.

 Program Example
LD IL

 LD %I0.0.0
 JMPN AAA
 LD TARGET_TIME
 SUB_TIME IN1:= CURRENT RESULT
 IN2:= ELAPSED_TIME
 ST TIME_TO_GO
 AAA:

(1) If the transition condition (%I0.0.0) is ON, function SUB_TIME (time subtraction) will be executed.
(2) If total working time declared as input variable TARGET_TIME is T#2H30M, the elapsed time

 ELAPSED_TIME is T#1H10M30S300MS, the remaining working time declared as output variable
TIME_TO_GO will be T#1H19M29S700MS.

 Input (IN1): TARGET_TIME (TIME) = T#2H30M
 (SUB_TIME)
 (IN2): ELAPSED_TIME (TIME) = T#1H10M30S300MS

 Output (OUT): TIME_TO_GO (TIME) = T#1H19M29S700MS

Time subtraction

8. Basic Function/Function Block Library

 8-90

SUB_TOD
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 SUB_TOD
 BOOL EN ENO BOOL
TIME_OF_DAY IN1 OUT TIME
TIME_OF_DAY IN2

 Input EN: executes the function in case of 1
 IN1: standard time of day
 IN2: the time of day to subtract

 Output ENO: without an error, it will be 1.
 OUT: the subtracted result time

 Function

It subtracts the IN2 (specific time of day) from IN1 (standard time of day) and outputs the time difference as
OUT.

 Error
If the result subtracting the time of day from the time of day is a negative number, an error occurs.

 Program Example
LD IL

 LD %I0.0.0
 JMPN AAA
 LD END_TIME
 SUB_TOD IN1:= CURRENT RESULT
 IN2:= START_TIME
 ST WORK_TIME
 AAA:

(1) If the transition condition (%I0.0.0) is ON, function SUB_TOD (time of day subtraction) will be executed.
(2) If END_TIME declared as input variable is TOD#14:20:30.5 and the starting time to work START_TIME is

TOD#12:00:00, the required time to work WORK_TIME declared as output variable will be
T#2H20M30S500MS.

 Input (IN1): END_TIME (TOD) = TOD#14:20:30.5
 (SUB_TOD)
 (IN2): START_TIME (TOD) = TOD#12:00:00

 Output (OUT): WORK_TIME (TIME) = T#2H20M30S500MS

TOD Subtraction

 8. Basic Function/Function Block Library

 8-91

TAN
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 TAN
 BOOL EN ENO BOOL
ANY_REAL IN OUT ANY_REAL

 Input EN: executes the function in case of 1
 IN: tangent input value (radian)

 Output ENO: without an error, it will be 1
 OUT: the result value of Tangent operation

 IN, OUT should be the same data type.

 Function

It performs Tangent operation of IN and produces output OUT.
OUT = TAN (IN)

 Program Example
LD IL

 LD %M0
 JMPN BBB
 LD INPUT
 TAN
 ST RESULT
 BBB:

(1) If the transition condition (%M0) is ON, function TAN (Tangent operation) will be executed.
(2) If the value of input variable declared as INPUT is 0.7853... (π/4 rad = 45°), RESULT declared as output

variable will be 1.0000.

 TAN (π/4) = 1

 Input (IN1): INPUT (REAL) = 0.7853
 (TAN)
 Output (IN2): RESULT (REAL) = 9.99803722E-01

Tangent Operation

8. Basic Function/Function Block Library

 8-92

TIME_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 TIME_TO_***
 BOOL EN ENO BOOL
 TIME IN OUT ***

 Input EN: executes the function in case of 1
 IN: time data to be converted

 Output ENO: without an error, it will be 1
 OUT: type-converted data

 Function

It converts the IN type and produces OUT.

 Function Output type Description
 TIME_TO_UDINT UDINT Converts TIME into UDINT type. It converts only data type without

changing the data (internal bit array state).
 TIME_TO_DWORD DWORD Converts TIME into DWORD type. It converts only data type without

changing the data (internal bit array state).
 TIME_TO_STRING STRING Converts TIME into STRING type.

 Program Example

 LD IL

 LD %M0

 JMPN AA

 LD IN_VAL

 TIME_TO_UDINT

 ST OUT_VAL

 AA:

(1) If the transition condition (%M0) is ON, function TIME_TO_UDINT will be executed.
(2) If input variable IN_VAL (TIME) = T#120MS, output variable OUT_VAL (UDINT) = 120.

 Input (IN1): IN_VAL (TIME) = T#120MS (16#78)
 (TIME_TO_UDINT)
 Output (OUT): OUT_VAL (UDINT) = 120 (16#78)

0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0

TIME type conversion

 8. Basic Function/Function Block Library

 8-93

TOD_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 TOD_TO_***
 BOOL EN ENO BOOL
 TOD IN OUT ***

 Input EN: executes the function in case of 1
 IN: time of a day data to be converted

 Output ENO: without an error, it will be 1
 OUT: type-converted data

 Function

It converts the IN type and outputs it as OUT.

 Function Output type Description
 TOD_TO_UDINT UDINT Converts TOD into UDINT type.

Converts only data type without changing a data (internal bit array state).
 TOD_TO_DWORD DWORD Converts TOD into DWORD type.

Converts only data type without changing a data (internal bit array state).
 TOD_TO_STRING STRING Converts TOD into STRING type.

 Program Example

 LD IL

 LD % M0

 JMPN AA

 LD IN_VAL

 DATE_TO_STRING

 ST OUT_VAL

 AA:

(1) If the transition condition (%M0) is ON, function TOD_TO_STRING will be executed.
(2) If input variable IN_VAL (TOD) = TOD#12:00:00, output variable OUT_VAL (STRING) = ‘TOD#12:00:00’.

 Input (IN1): IN_VAL (TOD) = TOD#12:00:00
 (TOD_TO_STRING)

 Output (IN2): OUT_VAL (STRING) = ‘TOD#12:00:00’

TOD type conversion

8. Basic Function/Function Block Library

 8-94

TRUNC
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 TRUNC
 BOOL EN ENO BOOL
ANY_REAL IN OUT ANY_INT

 Input EN: executes the function in case of 1
 IN: REAL value to be converted

 Output ENO: without an error, it will be 1.
 OUT: the Integer converted value

 Function

 Function Input type Output type Description
 TRUNC REAL

 LREAL
 DINT
 LINT

Round off the decimal fraction of input IN and outputs
the Integer value as OUT.

 Error

_ERR, _LER flags will be set: 1) if the converted value is greater than maximum value of data type connected
to OUT; 2) if the variable connected to OUT is Unsigned Integer and the converted output value is a negative
number, the output is 0.

 Program Example

LD IL

 LD REAL_VALUE

 TRUNC

 ST INT_VALUE

(1) If the transition condition (%M0) is ON, function TRUNC will be executed.
(2) If input variable REAL_VALUE (REAL) = 1.6, output variable INT_VALUE (INT) = 1.

If REAL_VALUE (REAL) = -1.6, INT_VALUE (INT) = -1.

 Input (IN1): REAL_VALUE (REAL) = 1.6
 (TRUNC)
 Output (OUT): INT_VALUE (INT) = 1

Set TRUNC (Round off the decimal fraction of IN and
converts into integer number)

 8. Basic Function/Function Block Library

 8-95

UDINT_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 UDINT_TO_***
 BOOL EN ENO BOOL
 UDINT IN OUT ***

 Input EN: executes the function in case of 1
 IN: Unsigned Double Integer value to be converted

 Output ENO: without an error, it will be 1
 OUT: type-converted data

 Function
It converts the IN type and outputs it as OUT.

 Function Output type Description
 UDINT_TO_SINT SINT If input is 0~127, normal conversion. Otherwise an error occurs.
 UDINT_TO_INT INT If input is 0~32767, normal conversion. Otherwise an error occurs.
 UDINT_TO_DINT DINT If input is 0~2,147,483,64, normal conversion. Otherwise an error

occurs.
 UDINT_TO_LINT LINT Converts UDINT into LINT type normally.
 UDINT_TO_USINT USINT If input is 0~255, normal conversion. Otherwise an error occurs.
 UDINT_TO_UINT UINT If input is 0~65535, normal conversion. Otherwise an error occurs.
 UDINT_TO_ULINT ULINT Converts UDINT into ULINT type normally.
 UDINT_TO_BOOL BOOL Takes the lower 1 bit and converts into BOOL type.
 UDINT_TO_BYTE BYTE Takes the lower 8 bits and converts into BYTE type.
 UDINT_TO_WORD WORD Takes the lower 16 bits and converts into WORD type.
 UDINT_TO_DWORD DWORD Converts into DWORD type without changing the internal bit array.
 UDINT_TO_LWORD LWORD Converts into LWORD type filling the upper bits with 0.
 UDINT_TO_BCD DWORD If input is 0 ~ 99,999,999, normal conversion.

Otherwise an error occurs.
 UDINT_TO_REAL REAL Converts UDINT into REAL type.

 During the conversion, an error caused by the precision may occur.
 UDINT_TO_LREAL LREAL Converts UDINT into LREAL type.

 During the conversion, an error caused by the precision may occur.
 UDINT_TO_TOD TOD Converts into TOD type without changing the internal bit array.
 UDINT_TO_TIME TIME Converts into TIME type without changing the internal bit array.

 Error
If a conversion error occurs, _ERR and _LER flags will be set. If an error occurs, take the lower bits as many
as a bit number of an output data type and produces the output without changing the internal bit array.

UDINT type conversion

8. Basic Function/Function Block Library

 8-96

 Program Example

LD IL

 LD %M0

 JMPN ZZ

 LD IN_VAL

 UDINT_TO_TIME

 ST OUT_VAL

 ZZ:

(1) If the input condition (%M0) is ON, function UDINT_TO_TIME will be executed.
(2) If input variable IN_VAL (UDINT) = 123, output variable OUT_VAL (TIME) = T#123MS.

 Input (IN1): IN_VAL (UDINT) = 123

 Output (OUT): OUT_VAL (TIME) = T#123MS

 8. Basic Function/Function Block Library

 8-97

UINT_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 UINT_TO_***
 BOOL EN ENO BOOL
 UINT IN OUT ***

 Input EN: executes the function in case of 1
 IN: Unsigned Integer value to be converted

 Output ENO: without an error, it will be 1
 OUT: type-converted data

 Function
It converts the IN type and outputs it as OUT.
 Function Output type Description
 UINT_TO_SINT SINT If input is 0~127, normal conversion. Otherwise an error occurs.
 UINT_TO_INT INT If input is 0~32,767, normal conversion. Otherwise an error occurs.
 UINT_TO_DINT DINT Converts UINT into UDINT type normally.
 UINT_TO_LINT LINT Converts UINT into ULINT type normally.
 UINT_TO_USINT USINT If input is 0~255, normal conversion. Otherwise an error occurs.
 UINT_TO_UDINT UDINT Converts UINT into UDINT type normally.
 UINT_TO_ULINT ULINT Converts UINT into ULINT type.
 UINT_TO_BOOL BOOL Takes the lower 1 bit and converts into BOOL type.
 UINT_TO_BYTE BYTE Takes the lower 8 bits and converts into BYTE type.
 UINT_TO_WORD WORD Converts into WORD type without changing the internal bit array.
 UINT_TO_DWORD DWORD Converts into DWORD type filling the upper bits with 0.
 UINT_TO_LWORD LWORD Converts into LWORD type filling the upper bits with 0.
 UINT_TO_BCD BCD If input is 0~99,999,999, normal conversion. Otherwise an error occurs.
 UINT_TO_REAL REAL Converts UINT into REAL type.
 UINT_TO_LREAL LREAL Converts UINT into LREAL type.
 UNIT_TO_DATE DATE Converts into DATE type without changing the internal bit array.

 Error

If a conversion error occurs, _ERR and _LER flags will be set. If error occurs, it takes as many lower bits as a
bit number of output type and produces an output without changing its internal bit array.

UINT type conversion

8. Basic Function/Function Block Library

 8-98

 Program Example
LD IL

 LD %M0

 JMPN PO

 LD IN_VAL

 UINT_TO_WORD

 ST OUT_VAL

 PO:

(1) If the input condition (%M0) is ON, function UINT_TO_WORD will be executed.
(2) If input variable IN_VAL (UINT) = 255 (2#0000_0000_1111_1111),

output variable OUT_VAL (WORD) = 2#0000_0000_1111_1111.

 Input (IN1): IN_VAL (UINT) = 255
 (UINT_TO_WORD)
 Output (OUT): OUT_VAL (WORD) = 16#FF

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

 8. Basic Function/Function Block Library

 8-99

ULINT_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 ULINT_TO_***

BOOL EN ENO BOOL
 ULINT IN OUT ***

 Input EN: executes the function in case of 1
 IN: Unsigned Long Integer value to be converted

 Output ENO: without an error, it will be 1
 OUT: type-converted data

 Function

It converts the IN type and outputs it as OUT.

 Function Output type Description
 ULINT_TO_SINT SINT If input is 0~127, normal conversion. Otherwise an error occurs.
 ULINT_TO_INT INT If input is 0~32,767, normal conversion. Otherwise an error occurs.
 ULINT_TO_DINT DINT If input is 0~231-1, normal conversion. Otherwise an error occurs.
 ULINT_TO_LINT LINT If input is 0~263-1, normal conversion. Otherwise an error occurs.
 ULINT_TO_USINT USINT If input is 0~255, normal conversion. Otherwise an error occurs.
 ULINT_TO_UINT UINT If input is 0~65,535, normal conversion. Otherwise an error occurs.
 ULINT_TO_UDINT UDINT If input is 0~232-1, normal conversion. Otherwise an error occurs.
 ULINT_TO_BOOL BOOL Takes the lower 1 bit and converts into BOOL type.
 ULINT_TO_BYTE BYTE Takes the lower 8 bits and converts into BYTE type.
 ULINT_TO_WORD WORD Takes the lower 16 bits and converts into WORD type.
 ULINT_TO_DWORD DWORD Takes the lower 32 bits and converts into DWORD type.
 ULINT_TO_LWORD LWORD Converts into LWORD type without changing the internal bit array.

 ULINT_TO_BCD BCD
 If input is 0~9,999,999,999,999,999, normal conversion. Otherwise an
error occurs.

 ULINT_TO_REAL REAL
 Converts ULINT into REAL type.
 During the conversion, an error caused by the precision may occur.

 ULINT_TO_LREAL LREAL
 Converts ULINT into LREAL type.
 During the conversion, an error caused by the precision may occur.

 Error

If a conversion error occurs, _ERR and _LER flags will be set. If error occurs, it takes as many lower bits as a
bit number of output type and produces an output without changing its internal bit array.

ULINT type conversion

8. Basic Function/Function Block Library

 8-100

 Program Example
LD IL

 LD %M0

 JMPN PP
 LD IN_VAL
 ULINT_TO_LINT
 ST OUT_VAL
 PP:

(1) If the input condition (%M0) is ON, function ULINT_TO_LINT will be executed.
(2) If input variable IN_VAL (ULINT) = 123,567,899, then output variable OUT_VAL (LINT) = 123,567,899.

 Input (IN1): IN_VAL (ULINT) = 123,567,899
 (ULINT_TO_LINT)
 Output (OUT): OUT_VAL (LINT) = 123,567,899

 8. Basic Function/Function Block Library

 8-101

USINT_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 USINT_TO_***
 BOOL EN ENO BOOL
 USINT IN OUT ***

 Input EN: executes the function in case of 1

 IN: Unsigned Short Integer value to be converted

 Output ENO: without an error, it will be 1
 OUT: type-converted data

 Function
It converts the IN type and outputs it as OUT.

 Function Output type Description
 USINT_TO_SINT SINT If input is 0~127, normal conversion. Otherwise an error occurs.
 USINT_TO_INT INT Converts USINT into INT type normally.
 USINT_TO_DINT DINT Converts USINT into DINT type normally.
 USINT_TO_LINT LINT Converts USINT into LINT type normally.
 USINT_TO_UINT UINT Converts USINT into UINT type normally.
 USINT_TO_UDINT UDINT Converts USINT into UDINT type normally.
 USINT_TO_ULINT ULINT Converts USINT into ULINT type normally.
 USINT_TO_BOOL BOOL Takes the lower 1 bit and converts into BOOL type.
 USINT_TO_BYTE BYTE Converts into BYTE type without changing the internal bit array.
 USINT_TO_WORD WORD Converts into WORD type filling the upper bits with 0.
 USINT_TO_DWORD DWORD Converts into DWORD type filling the upper bits with 0.
 USINT_TO_LWORD LWORD Converts into LWORD type filling the upper bits with 0.
 USINT_TO_BCD BCD If input is 0 ~ 99, normal conversion. Otherwise an error occurs.
 USINT_TO_REAL REAL Converts USINT into REAL type.
 USINT_TO_LREAL LREAL Converts USINT into LREAL type.

 Error

If a conversion error occurs, _ERR and _LER flags will be set. If error occurs, it takes as many lower bits as a
bit number of output type and produces an output without changing its internal bit array.

USINT type conversion

8. Basic Function/Function Block Library

 8-102

 Program Example
LD IL

 LD %M0

 JMPN LL

 LD IN_VAL

 USINT_TO_SINT

 ST OUT_VAL

 LL:

(1) If the input condition (%M0) is ON, function ULINT_TO_SINT will be executed.
(2) If input variable IN_VAL (USINT) = 123, output variable OUT_VAL (SINT) = 123.

 Input (IN1): IN_VAL (USINT) = 123 (16#7B)
 (ULINT_TO_SINT)
 Output (OUT): OUT_VAL (SINT) = 123 (16#7B)

0 1 1 1 1 0 1 1

0 1 1 1 1 0 1 0

 8. Basic Function/Function Block Library

 8-103

WDT_RST
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 WDT_RST
 BOOL EN ENO BOOL
 BOOL REQ OUT BOOL

 Input EN: executes the function in case of 1
 REQ: requires to initialize watchdog timer

 Output ENO: without an error, it will be 1
 OUT: After Watch_Dog timer initialization,

output will be 1.

 Function
▷ It resets Watch-Dog Timer among the programs.
▷ Available to use in case that scan time exceeds Watch-Dog Time set by the condition in the program.
▷ If scan time exceeds the scan Watch_Dog Time, please, change the scan time with the setting value of

scan Watch_Dog Timer in the ‘Basic Parameters’ of GMWIN.
▷ Care must be taken so that either the time from 0 line of program to WDT_RST function T1 or the time

from WDT_RST function to the time by the end of program T2 does not exceed the setting value of scan
Watch_Dog Timer.

 Program starting WDT-RST Program Ending

 T1 T2

WDT_RST function is available to use several times during 1 scan.

Initialize Watch_Dog timer

8. Basic Function/Function Block Library

 8-104

 Program Example
This is the program that the time to execute the program becomes 300ms according to the transition
condition in the program of which scan Watch_Dog timer is set as 200ms.

LD IL

 LD %M0

 JMPN FG

 LD 1

 WDT_RST

 ST WDT_OK

 FG:

(1) If the transition condition (%M0) is ON, function WDT-RST will be executed.
(2) If WDT-RST function is executed, it is available to set the program that extends the scan time to 300ms

according to the transition condition of program within the scan Watch_Dog Time (200mg).

Program that has 300MS scan time.

Program that has 150MS scan time.

Program that has 150MS scan time.

Program that has 150MS scan time.
Program that has 150MS scan time.

Program that has 300MS scan time.

 8. Basic Function/Function Block Library

 8-105

WORD_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 WORD_TO_***
 BOOL EN ENO BOOL
WORD IN OUT ***

 Input EN: executes the function in case of 1
 IN: Bit string to be converted (16 bit)

 Output ENO: without an error, it will be 1
 OUT: type-converted data

 Function
It converts the IN type and outputs it as OUT.
 Function Output type Description
 WORD _TO_SINT SINT Takes the lower 8 bits and converts into SINT type.
 WORD _TO_INT INT Converts into INT type without changing the internal bit array.
 WORD _TO_DINT DINT Converts into DINT type filling the upper bits with 0.
 WORD _TO_LINT LINT Converts into LINT type filling the upper bits with 0.
 WORD _TO_USINT USINT Takes the lower 8 bits and converts into SINT type.
 WORD _TO_UINT UINT Converts into INT type without changing the internal bit array.
 WORD _TO_UDINT UDINT Converts into DINT type filling the upper bits with 0.
 WORD _TO_ULINT ULINT Converts into LINT type filling the upper bits with 0.
 WORD _TO_BOOL BOOL Takes the lower 1 bit and converts into BOOL type.
 WORD _TO_BYTE BYTE Takes the lower 8 bits and converts into SINT type.
 WORD _TO_DWORD DWORD Converts into DWORD type filling the upper bits with 0.
 WORD _TO_LWORD LWORD Converts into LWORD type filling the upper bits with 0.
 WORD _TO_DATE DATE Converts into DATE type without changing the internal bit array.
 WORD _TO_STRING STRING Converts WORD into STRING type.

 Program Example
LD IL

 LD %M0

 JMPN P0

 LD IN_VAL

 WORD_TO_INT

 ST OUT_VAL

 PO:

(1) If the input condition (%M0) is ON, function WORD-TO-INT will be executed.
(2) If input variable IN_VAL (WORD) = 2#0001_0001_0001_0001, output variable OUT_VAL (INT) = 4096 +

256 + 16 + 1 = 4,369.
 Input (IN1): IN_VAL (WORD) = 16#1111
 (WORD-TO-INT)
 Output(OUT): OUT_VAL(INT) = 4,369 (16#1111)

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

WORD type conversion

8. Basic Function/Function Block Library

 8-106

XOR
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 XOR
 BOOL EN ENO BOOL

ANY_BIT IN1 OUT ANY_BIT
 ANY_BIT IN2

 Input EN: executes the function in case of 1
 IN1: the value to be XOR
 IN2: the value to be XOR
 Input variable number can be extended up to 8.

 Output ENO: without an error, it will be 1.
 OUT: the result of XOR operation

 IN1, IN2, OUT should be all the same data type.

 Function

Do XOR operation for IN1 and IN2 per bit and produces OUT.
 IN1 1111 0000
 XOR
 IN2 1010 1010
 OUT 0101 1010
■ Program Example

LD IL

 LD %M0

 JMPN ZZ

 LD %MB10

 XOR IN1:= CURRENT RESULT

 IN2:= ABC

 ST %QB0.0.0

 ZZ:

(1) If the transition condition (%M0) is ON, function XOR will be executed.
(2) If input variable %MB10 = 11001100, ABC = 11110000, the result of XOR operation for two inputs will

be %QB0.0.0 = 00111100.

 Input (IN1): %MB10 (BYTE) = 16#CC
 (XOR)
 (IN2): ABC (BYTE) = 16#F0

 Output (OUT): %QB0.0.0 (BYTE) = 16#3C

1 1 0 0 1 1 0 0

1 1 1 1 0 0 0 0

0 0 1 1 1 1 0 0

Exclusive OR

8. Basic Function/Function Block Library

 8-107

8.2 Application Function Library

This chapter describes application function library (MASTER-K and others).

8. Basic Function/Function Block Library

 8-108

ARY_ASC_TO_BCD
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1
 IN1: ASCII Array input

 Output
 ENO: without an error, it will be 1
 OUT: Dummy output

 In/Out
 IN2: BCD Array output

 Function

It converts a word array input (ASCII data) to a byte array output (BCD data).

 Error

 ▷ If the number of each input array is different, there’s no change in IN2 data, and _ERR and _LER flags are set.
 ▷ If the elements of IN1 array are not between 0 and 9 (hexadecimal), its responding elements of IN2 array are

16#00 (while other elements of IN1 are normally converted), and _ERR and _LER flags are set.

 Program example
LD

(1) If the transition condition (%M0) is on, ARY_ASC_TO_BCD function is executed.
(2) If the input ASC_ARY data is:

ASC_ARY[0] 3031H
ASC_ARY[1] 3839H
ASC_ARY[2] 3334H

8 9

0 1 IN2[0]

IN2[1]

3 4

…

IN2[n]

B0 B3 B4 B7

3 9 3 8

3 4 3 3

3 1 3 0

…

IN1[0]

IN1[1]

IN1[n]

B0 B3 B4 B7 B8 B11 B12 B15

‘1’

BOOL

ARY_ASC_TARY_ASC_TARY_ASC_TARY_ASC_T

O_BCDO_BCDO_BCDO_BCD

ENO EN
IN1
IN2

OUT

BOOL BOOL
WORD_ARY
BYTE_ARY

Converts ASCII array into BCD array

8. Basic Function/Function Block Library

 8-109

In/Out BCD_ARY data is as follows:

BYTE_ARY[0] 01H
BYTE_ARY[1] 89H
BYTE_ARY[2] 34H

8. Basic Function/Function Block Library

 8-110

ARY_ASC_TO_BYTE
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1
 IN1: ASCII Array input

 Output
 ENO: without an error, it will be 1
 OUT: Dummy Output

 In/Out
 IN2: BYTE Array Output

 Function

It converts a word array input (ASCII data) to a byte array output (hexadecimal).

 Error

 ▷ If the number of each input array is different, there’s no change in IN2 data, and _ERR and _LER flags are set.
▷ If the elements of IN1 array are not between 0 and F (hexadecimal), its responding elements of IN2 array are 0

(while other elements of IN1 are normally converted), and _ERR and _LER flags are set.

 Program example
LD

(1) If the transition condition is (%M0) is on, ARY_ASC_TO_BYTE function is executed.
(2) If Input ASC_ARY is as below:

ASC_ARY[0] 3441H
ASC_ARY[1] 3346H
ASC_ARY[2] 3239H

3 F

4 A IN2[0]

IN2[1]

2 9

…

IN2[n]

B0 B3 B4 B7

4 6 3 3

3 9 3 2

4 1 3 4

…

IN1[0]

IN1[1]

IN1[n]

B0 B3 B4 B7 B8 B11 B12 B15

‘A’

BOOL

ARY_ASC_TARY_ASC_TARY_ASC_TARY_ASC_T

O_BYTEO_BYTEO_BYTEO_BYTE

ENO EN
IN1
IN2

OUT

BOOL BOOL
WORD_ARY
BYTE_ARY

Converts ASCII array into BYTE array

8. Basic Function/Function Block Library

 8-111

In/Out BYTE_ARY data is as follows:

BYTE_ARY[0] 4AH
BYTE_ARY[1] 3FH
BYTE_ARY[2] 29H

8. Basic Function/Function Block Library

 8-112

ARY_AVE_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input

EN: executes the function in case of 1
IN: data array for average
INDX: starting point to average in an array
LEN: number of array elements for average

 Output
 ENO: without an error, it will be 1
 OUT: average of an array

 Function

 ▷ ARY_AVE_*** function finds an average for a specified length of an array .
 ▷ Input and output array is the same type.
 ▷ If LEN is a minus value, it finds an average between INDX (Array index) and ‘INDX – |LEN|’.
 ▷ Its output is rounded off.

Function Output type Description
ARY_AVE_SINT SINT Finds an average for SINT value (decimal is rounded off)
ARY_AVE_INT INT Finds an average for INT value (decimal is rounded off)
ARY_AVE_DINT DINT Finds an average for DINT value (decimal is rounded off)
ARY_AVE_LINT LINT Finds an average for LINT value (decimal is rounded off)
ARY_AVE_USINT USINT Finds an average for USINT value (decimal is rounded off)
ARY_AVE_UINT UINT Finds an average for UINT value (decimal is rounded off)
ARY_AVE_UDINT UDINT Finds an average for UDINT value (decimal is rounded off)
ARY_AVE_ULINT ULINT Finds an average for ULINT value (decimal is rounded off)
ARY_AVE_REAL REAL REAL.
ARY_AVE_LREAL LREAL LREAL.

 Error

 ▷ If it is designated beyond the array range, _ERR and _LER flags are set.
 ▷ If an error occurs, the output is 0.

※ An error occurs when:

 INDX < 0 or INDX > max. number of IN
 INDX + LEN > max. number of IN

ANY_NUM

ARY_AVEARY_AVEARY_AVEARY_AVE

ENO EN
IN OUT

BOOL BOOL
ANY_NUM_ARY

INDX
LEN

INT
INT

Finds an average of an array

8. Basic Function/Function Block Library

 8-113

 Program example
LD

(1) If input transition condition (%I1.1.6) is on, ARY_AVE_INT function is executed.
(2) If an array is as the above, it finds an average between INDX 3 and 9.
(3) The output value is rounded off.

1604583.16044
6

1004821004292157765187649563 ==+++++

8. Basic Function/Function Block Library

 8-114

ARY_BCD_TO_ASC
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1
 IN1: BCD array input

 Output
 ENO: without an error, it will be 1
 OUT: dummy output

 In/Out
 IN2: ASCII array output

 Function

It converts a byte array input (BCD) to a word array (ASCII).

 Error
 ▷ If the number of each input array is different, there's no change in IN2 data, and _ERR and _LER flags are set.
 ▷ If the elements of IN1 array are not between 0 and 9 (hexadecimal), its responding elements of IN2 array are

16#3030 ("00") (while other elements of IN1 are normally converted), and _ERR and _LER flags are set.

 Program example
LD

(1) If the transition condition (%M0) is on, ARY_BCD_TO_ASC function is executed.
(2) If the input BCD_ARY is as below:

BYTE_ARY[0] 01H
BYTE_ARY[1] 89H
BYTE_ARY[2] 45H

8 9

0 1 IN1[0]

IN1[1]

4 5

…

IN1[n]

B0 B3 B4 B7

3 9 3 8

3 5 3 4

3 1 3 0

…

IN2[0]

IN2[1]

IN2[n]

B0 B3 B4 B7 B8 B11 B12 B15

‘1’

BOOL

ARY_BCD_TARY_BCD_TARY_BCD_TARY_BCD_T

O_ASCO_ASCO_ASCO_ASC

ENO EN
IN1
IN2

OUT

BOOL BOOL
BYTE_ARY
WORD_ARY

Converts BCD array into ASCII array

8. Basic Function/Function Block Library

 8-115

The In/out ASC_ARY is as follows:

ASC_ARY[0] 3031H
ASC_ARY[1] 3839H
ASC_ARY[2] 3435H

8. Basic Function/Function Block Library

 8-116

ARY_BYTE_TO_ASC
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1
 IN1: BYTE array input

 Output
 ENO: without an error, it will be 1
 OUT: Dummy output

 In/Out
 IN2: ASCII Array Output

 Function

It converts a byte array input (HEX) to a word array (ASCII).

 Error
If the number of each input array is different, there's no change in IN2 data, and _ERR and _LER flags are
set.

 Program example
LD

(1) If the transition condition (%M0) is on, ARY_BYTE_TO_ASC function is executed.
(2) If the input BYTE_ARY is as below:

BYTE_ARY[0] 4AH
BYTE_ARY[1] 3FH
BYTE_ARY[2] 29H

2 9

…

IN1[n]

3 F

4 A IN1[0]

IN1[1]

B0 B3 B4 B7

4 6 3 3

3 9 3 2

4 1 3 4

…

IN2[0]

IN2[1]

IN2[n]

B0 B3 B4 B7 B8 B11 B12 B15

‘A’

BOOL

ARY_BYTE_ARY_BYTE_ARY_BYTE_ARY_BYTE_

TO_ASCTO_ASCTO_ASCTO_ASC

ENO EN
IN1
IN2

OUT

BOOL BOOL
BYTE_ARY
WORD_ARY

Converts BYTE array into ASCII array

8. Basic Function/Function Block Library

 8-117

The output ASC_ARY is as follows:

ASC_ARY[0] 3441H
ASC_ARY[1] 3346H
ASC_ARY[2] 3239H

8. Basic Function/Function Block Library

 8-118

ARY_CMP_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1
 IN1: first array to compare
 IN1_INDX : starting point in 1st array for comparison
 IN2: second array to compare
 IN2_INDX : starting point in 2nd array for comparison
 LEN: number of elements to compare

 Output
 ENO: without an error, it will be 1
 OUT: if two arrays are equal, it will be 1

 Function

 ▷ It compare two arrays whether they have the same value.

 ▷ If LEN is minus, it compare two arrays between IN*_INDX (Array INDX) and “Array INDX – |LEN|”.

Function Input array
type Description

ARY_CMP_BOOL BOOL Compares two BOOL Arrays.
ARY_CMP_BYTE BYTE Compares two BYTE Arrays.
ARY_CMP_WORD WORD Compares two WORD Arrays.
ARY_CMP_DWORD DWORD Compares two DWORD Arrays.
ARY_CMP_LWORD LWORD Compares two LWORD Arrays.
ARY_CMP_SINT SINT Compares two SINT Arrays.
ARY_CMP_INT INT Compares two INT Arrays.
ARY_CMP_DINT DINT Compares two DINT Arrays.
ARY_CMP_LINT LINT Compares two LINT Arrays.
ARY_CMP_USINT USINT Compares two USINT Arrays.
ARY_CMP_UINT UINT Compares two UINT Arrays.
ARY_CMP_UDINT UDINT Compares two UDINT Arrays.
ARY_CMP_ULINT ULINT Compares two ULINT Arrays.
ARY_CMP_REAL REAL Compares two REAL Arrays.
ARY_CMP_LREAL LREAL Compares two LREAL Arrays.
ARY_CMP_TIME TIME Compares two TIME Arrays.
ARY_CMP_DATE DATE Compares two DATE Arrays.
ARY_CMP_TOD TOD Compares two TOD Arrays.
ARY_CMP_DT DT Compares two DT Arrays.

BOOL

ARY_CMPARY_CMPARY_CMPARY_CMP

ENO EN
IN1
IN1_INDX

OUT

BOOL BOOL
ANY_ARY
INT

IN2
IN2_INDX
LEN

INT

INT

ANY_ARY

Array comparison

8. Basic Function/Function Block Library

 8-119

 Error

 ▷ If it is designated beyond the array range, _ERR and _LER flags are set.

※ An error occurs when:
 IN1_INDX < 0 or IN1_INDX > max. number of IN1
 IN2_INDX < 0 or IN2_INDX > max. number of IN2

IN1_INDX + LEN ≥ max. number of IN1
IN2_INDX + LEN ≥ max. number of IN2

 Program example

LD

(1) If the input transition condition (%M0) is on, ARY_CMP_TIME function is executed.
(2) When IN_ARY1 is a time array with 100 elements and IN_ARY2 is a time array with 10 elements, if the

elements from 11th to 20th of IN_ARY1 and the elements of IN_ARY 2 are equal, the output %Q1.3.2 is on.

8. Basic Function/Function Block Library

 8-120

ARY_FLL_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1
 DATA: the data to fill an array
 INDX: starting point of an array to be filled
 LEN: number of array elements to be filled

 Output
 ENO: without an error, it will be 1
 OUT: without an error, it will be 1

 In/Out
 IN: an array to be filled

 Function

 ▷ It fills an array with the input data.
 ▷ If LEN is minus, it fills an array from INDX to “INDX – |LEN|”.

Function In/Out Array type Description
ARY_FLL_BOOL BOOL Fills a BOOL Array with the input data.
ARY_FLL_BYTE BYTE Fills a BYTE Array with the input data.
ARY_FLL_WORD WORD Fills a WORD Array with the input data.
ARY_FLL_DWORD DWORD Fills a DWORD Array with the input data.
ARY_FLL_LWORD LWORD Fills a LWORD Array with the input data.
ARY_FLL_SINT SINT Fills a SINT Array with the input data.
ARY_FLL_INT INT Fills a INT Array with the input data.
ARY_FLL_DINT DINT Fills a DINT Array with the input data.
, ARY_FLL_LINT LINT Fills a LINT Array with the input data.
ARY_FLL_USINT USINT Fills a USINT Array with the input data.
ARY_FLL_UINT UINT Fills a UINT Array with the input data.
ARY_FLL_UDINT UDINT Fills a UDINT Array with the input data.
ARY_FLL_ULINT ULINT Fills a ULINT Array with the input data.
ARY_FLL_REAL REAL Fills a REAL Array with the input data.
ARY_FLL_LREAL LREAL Fills a LREAL Array with the input data.
ARY_FLL_TIME TIME Fills a TIME Array with the input data.
ARY_FLL_DATE DATE Fills a DATE Array with the input data.
ARY_FLL_TOD TOD Fills a TOD Array with the input data.
ARY_FLL_DT DT Fills a DT Array with the input data.

BOOL

ARY_FLL_***ARY_FLL_***ARY_FLL_***ARY_FLL_***

ENO EN
DATA
IN

OUT

BOOL BOOL
ANY

INDX
LEN

INT
INT

ANY_ARY

Filling an array with data

8. Basic Function/Function Block Library

 8-121

 Error

 ▷ If it is designated beyond the array range, _ERR and _LER flags are set.
 ▷ If an error occurs, there’s no change in arrays and OUT is off.

※ An error occurs when:
 INDX < 0 or INDX > max. element number of IN
 INDX + LEN ≥ max. element number of IN

 Program example
LD

(1) If input condition (%M0) is on, ARY_FLL_INT function is executed.
(2) It fills 4 elements of IN_ARY starting from INDX with 34.
(3) If LEN is 9, it is beyond the array range and an error occurs; _ERR and _LER flags are set and the output

(%Q1.13.15) is on.

8. Basic Function/Function Block Library

 8-122

ARY_MOVE
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

펑 션 설 명

 Input

EN : executes the function in case of 1
 MOVE_NUM: array number to move

IN1: array variable to move (STRING type, unavailable)
IN2: array variable to be moved

(STRING type, unavailable)
 IN1_INDX: starting pointer of array to move
 IN2_INDX: starting pointer of array to be moved

Output

ENO: without an error, it will be 1
 OUT: without an error, it will be 1

 Function
▷ If EN is 1, it moves IN1 data to IN2.
▷ It copies MOVE_NUM elements of IN1 (from IN1_INDX) and pastes it in IN2 (from IN2_INDX).
▷ IN1 and IN2 are the same data type (The number of each array can be different).
▷ The data size is as follows:

Data size Variable type
1 Bit BOOL
8 Bit BYTE, SINT, USINT
16 Bit WORD / INT / UINT / DATE
32 Bit DWORD / DINT / UDINT / TIME / TOD
64 Bit DT

 Error
▷ An error occurs when IN1 and IN2 data size are different.
▷ An error occurs when:

1) the array number of IN1 Array < (IN1_INDX + MOVE_NUM)
2) the array number of IN2 Array < (IN2_INDX + MOVE_NUM)

Then ARY_MOVE function is not executed, OUT is 0, ENO is off and _ERR and _LER flags are set.

BOOL

ARY_MOVEARY_MOVEARY_MOVEARY_MOVE

ENO EN
MOVE_NUM
IN1

OUT

BOOL BOOL
INT

IN2
IN1_INDX

ANY_ARRAY
INT
INT IN2_INDX

ANY_ARRAY

Array move

8. Basic Function/Function Block Library

 8-123

 Program example
LD

Variable name Variable type Array number
ARY_SRC INT 10
ARY_DES WORD 15

(1) If the transition condition (A) is on, ARY_MOVE function is executed.
(2) It moves 5 elements from ARY_SRC[5] to ARY_DES[10].
 Now the data type of ARY_DES is WORD, it’s hexadecimal.

Before After
ARY_SRC[0] 0 ARY_DES[0] 16#0 ARY_SRC[0] 0 ARY_DES[0] 16#0
ARY_SRC[1] 11 ARY_DES[1] 16#1 ARY_SRC[1] 11 ARY_DES[1] 16#1
ARY_SRC[2] 22 ARY_DES[2] 16#2 ARY_SRC[2] 22 ARY_DES[2] 16#2
ARY_SRC[3] 33 ARY_DES[3] 16#3 ARY_SRC[3] 33 ARY_DES[3] 16#3
ARY_SRC[4] 44 ARY_DES[4] 16#4 ARY_SRC[4] 44 ARY_DES[4] 16#4
ARY_SRC[5] 55 ARY_DES[5] 16#5 ARY_SRC[5] 55 ARY_DES[5] 16#5
ARY_SRC[6] 66 ARY_DES[6] 16#6 ARY_SRC[6] 66 ARY_DES[6] 16#6
ARY_SRC[7] 77 ARY_DES[7] 16#7 ARY_SRC[7] 77 ARY_DES[7] 16#7
ARY_SRC[8] 88 ARY_DES[8] 16#8 ARY_SRC[8] 88 ARY_DES[8] 16#8
ARY_SRC[9] 99 ARY_DES[9] 16#9 ARY_SRC[9] 99 ARY_DES[9] 16#9
 ARY_DES[10] 16#A ARY_DES[10] 16#37
 ARY_DES[11] 16#B ARY_DES[11] 16#42
 ARY_DES[12] 16#C ARY_DES[12] 16#4D
 ARY_DES[13] 16#D ARY_DES[13] 16#58
 ARY_DES[14] 16#E ARY_DES[14] 16#63

8. Basic Function/Function Block Library

 8-124

ARY_ROT_C_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1
 STRT: starting bit to rotate
 END: ending bit to rotate
 N: number to rotate

 Output
 ENO: without an error, it will be 1
 OUT: without an error, it will be 1

 In/Out
 SRC: Source Array to rotate
 CYO: output Carry bit Array

 Function

 ▷ It rotates as many bits of array elements as they’re specified.

 ▷ Setting:

 - Scope: it sets a rotation scope with STRT and END.

 - Rotation direction and time: it rotates N times from STRT to END.

- Output: the result is stored in ANY_BIT_ARY and a bit array data from END to STRT is written at CYO.

Function In/out Array type Description
ARY_ROT_C_BYTE BYTE
ARY_ROT_C_WORD WORD
ARY_ROT_C_DWORD DWORD
ARY_ROT_C_LWORD LWORD

It rotates elements of an array as many bits as they’re
specified.

After

Before

BOOL

ARY_ROT_C_***ARY_ROT_C_***ARY_ROT_C_***ARY_ROT_C_***

ENO EN
SRC OUT

BOOL BOOL

STRT
END UINT

UINT
ANY_BIT_ARY

N
CYO

UINT
BOOL_ARY

Bit rotation of array with carry

8. Basic Function/Function Block Library

 8-125

 Error
 ▷ If the number of SRC and CYO Arrays are different, _ERR and _LER flags are set.
 ▷ If STRT and END are out of bit range of SRC, an error occurs.
 ▷ When an error occurs, there’s no change in SRC and CYO.

 Program example
LD

(1) If the input condition (%M2) is on, ARY_ROT_C_WORD function is executed.
(2) It rotates 2 times the bit (from 4 to 13 bit) arrays of SRC_ARY from STRT to END.
(3) The result is stored at SRC_ARY and the carry bit arrays are written in CYO BOOL Array.

(Before)
SRC_ARY : 16#F7F7
 16#E3E3
 16#C1C1
 16#8080
(N) : 2
(After)
SRC_ARY : 16#FDF7
 16#E8F3
 16#C071
 16#8020
CYO : 2#1100

Before

After

8. Basic Function/Function Block Library

 8-126

ARY_SCH_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1
 DATA: data to search
 IN: array to search

 Output
 ENO: without an error, it will be 1
 OUT: if it finds, it will be 1

 In/Out

P: first position of an object array
N: total number of array elements equal to an

object

 Function

It finds an equal value of input in arrays and produces its first position and total number. When it finds at least one
which is equal to an object in arrays, OUT is 1.

Function Input Array type Description

ARY_SCH_BOOL BOOL Search in BOOL Array.
ARY_SCH_BYTE BYTE Search in BYTE Array.
ARY_SCH_WORD WORD Search in WORD Array.
ARY_SCH_DWORD DWORD Search in DWORD Array.
ARY_SCH_LWORD LWORD Search in LWORD Array.
ARY_SCH_SINT SINT Search in SINT Array.
ARY_SCH_INT INT Search in INT Array.
ARY_SCH_DINT DINT Search in DINT Array.
ARY_SCH_LINT LINT Search in LINT Array.
ARY_SCH_USINT USINT Search in USINT Array.
ARY_SCH_UINT UINT Search in UINT Array.
ARY_SCH_UDINT UDINT Search in UDINT Array.
ARY_SCH_ULINT ULINT Search in ULINT Array.
ARY_SCH_REAL REAL Search in REAL Array.
ARY_SCH_LREAL LREAL Search in LREAL Array.
ARY_SCH_TIME TIME Search in TIME Array.
ARY_SCH_DATE DATE Search in DATE Array.
ARY_SCH_TOD TOD Search in TOD Array.
ARY_SCH_DT DT Search in DT Array.

BOOL

ARY_SCHARY_SCHARY_SCHARY_SCH

ENO EN
DATA
IN

OUT

BOOL BOOL
ANY

P
N

INT
INT

ANY_ARY

Array search

8. Basic Function/Function Block Library

 8-127

 Program example
LD

(1) If the input condition (%M1) is on, ARY_SCH_BYTE function is executed.
(2) When IN_ARY is a 10-byte array, if you search for “22h” in this array, three bytes are found as the above.
(3) The result is: 1) 1, the first position of an array, is stored at POS; 2) 3, the total number, is stored at NUM.

The total number is 3, so the output %Q1.3.0 is on.

8. Basic Function/Function Block Library

 8-128

ARY_SFT_C_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1
 CYI: Input Carry bit Array
 STRT: starting bit to shift
 END: ending bit to shift
 N: bit number to shift

 Output
 ENO: without an error, it will be 1
 OUT: without an error, it will be 1

 In/Out
 SRC: Source Array to shift
 CYO: Output Carry bit Array after shift

 Function

 ▷ It shifts as many bits of array elements as they’re specified.

 ▷ Setting:
 - Scope: it sets a shifting scope with STRT and END.
 - Shifting direction and time: it shifts N times from STRT to END.
 - Input data: it fills the empty bits with input data (CYI).

- Output: the result is stored in ANY_BIT_ARY and an overflowing bit array data from END is written
at CYO.

Function In/Out Array type Description
ARY_SFT_C_BYTE BYTE

ARY_SFT_C_WORD WORD
ARY_SFT_C_DWORD DWORD
ARY_SFT_C_LWORD LWORD

It shifts as many bits of array elements as they’re specified.

Before

After

BOOL

ARY_SFT_C_***ARY_SFT_C_***ARY_SFT_C_***ARY_SFT_C_***

ENO EN
CY1
SRC

OUT

BOOL BOOL
BOOL_ARY

STRT
END

UINT
UINT

ANY_BIT_ARY

N
CYO

UINT
UINT

Array bit shift left with carry

8. Basic Function/Function Block Library

 8-129

 Error

 ▷ If the number of CYI, SRC and CYO Array are different, _ERR and _LER flags are set.
 ▷ An error occurs if STRT and END are out of SRC range.
 ▷ When an error occurs, there’s no change in SRC and CYO.

 Program example
LD

(1) If input condition (%M2) is on, ARY_SFT_C_WORD function is executed.
(2) It shifts a bit array (from 4 to 13 bit) of SRC 3 times from STRT to END.
(3) The bit array after shifting is filled with CYI (2#0011).
(4) It produces its shifting result at SRC_ARY and a carry bit array is written at CYO.

(Before)
CYI: 2#0011
SRC_ARY: 16#F7F7
 16#E3E3
 16#C1C1
 16#8080

(N): 3

(After)
SRC_ARY: 16#C6F7
 16#C473
 16#F831
 16#B810
CYO: 2#1110

Before

After

8. Basic Function/Function Block Library

 8-130

ARY_SWAP_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1
 IN1: array input

 Output
 ENO: without an error, it will be 1
 OUT: Dummy output

 In/Out
 IN2: array output after swapping

 Function

It swaps upper/lower elements after dividing an array.

Function Input type Description
ARY_SWAP_BYTE BYTE Swaps upper/lower nibble of byte elements.
ARY_SWAP_WORD WORD Swaps upper/lower byte of WORD elements.
ARY_SWAP_DWORD DWORD Swaps upper/lower WORD of DWORD elements.
ARY_SWAP_LWORD LWORD Swaps upper/lower DWORD of LWORD elements.

 Error

_ERR and _LER flags are set if two arrays are different; there’s no change in an IN2 array.

 Program example
LD

(1) If the transition condition (%M0) is on, ARY_SWAP_WORD function is executed.
(2) If IN_ARY data is as below:

IN_ARY[0] 12ABH
IN_ARY[1] 23BCH
IN_ARY[2] 34CDH

BOOL

ARY_SWAP_***ARY_SWAP_***ARY_SWAP_***ARY_SWAP_***

ENO EN
IN1
IN2

OUT

BOOL BOOL
ANY_BIT_ARY
ANY_BIT_ARY

Upper/lower elements swapping of an array

8. Basic Function/Function Block Library

 8-131

OUT_ARY data is as follows:
OUT_ARY[0] AB12H
OUT_ARY[1] BC23H
OUT_ARY[2] CD34H

8. Basic Function/Function Block Library

 8-132

ASC_TO_BCD
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN: ASCII input

 Output
 ENO: without an error, it will be 1
 OUT: BCD output

 Function

It converts two ASCII data into two-digit BCD (Binary Coded Decimal) data.

 Error
If IN is not hexadecimal number between 0 ~ 9, the output is 16#00 and _ERR and _LER flags will be set.

 Program example
LD

(1) If the transition condition (%M0) is on, ASC_TO_BCD function is executed.
(2) If input variable ASCII_VAL (WORD) = 16#3732 = “72”, output variable BCD_VAL (BYTE) = 16#72.

BYTE

ASC_TO_BCDASC_TO_BCDASC_TO_BCDASC_TO_BCD

ENO EN
IN1 OUT

BOOL BOOL
WORD

Converts ASCII to BCD

8. Basic Function/Function Block Library

 8-133

ASC_TO_BYTE
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN : executes the function in case of 1.
 IN : ASCII input

 Output
 ENO : without an error, it will be 1
 OUT : BYTE Output

 Function

It converts two ASCII data to 2-digit hexadecimal (HEX).

 Error
If IN is not between ‘0’ and ‘F’, its output is 0 and _ERR/_LER flags are set.

 Program example
LD

(1) If the transition condition (%M0) is on, ASC_TO_BYTE function is executed.
(2) If input ASCII_VAL (WORD) = 16#4339, output BYTE_VAL (BYTE) = 16#C9.

BYTE

ASC_TO_BYTEASC_TO_BYTEASC_TO_BYTEASC_TO_BYTE

ENO EN
IN1 OUT

BOOL BOOL

WORD

Converts ASCII to BYTE data

8. Basic Function/Function Block Library

 8-134

BCD_TO_ASC
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN: BCD input

 Output
 ENO: without an error, it will be 1
 OUT: ASCII Output

 Function

It converts two BCD data to two ASCII data.

 Error
If IN is not between 0 and 9, its output is 16#3030 (“00”) and _ERR/_LER flags are set.

 Program example
LD

(1) If the transition condition (%M0) is on, BCD_TO_ASC function is executed.
(2) If input BCD_VAL (BYTE) = 16#85, output ASCII_VAL (WORD) = 16#3835 = “85”.

WORD

BCD_TO_ASCBCD_TO_ASCBCD_TO_ASCBCD_TO_ASC

ENO EN
IN1 OUT

BOOL BOOL
BYTE

Converts BCD to ASCII data

8. Basic Function/Function Block Library

 8-135

BIT_BYTE
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN1 ~ IN8: Bit input

 Output
 ENO: without an error, it will be 1

OUT: Byte output

 Function

It combines 8 bits into one byte.
IN8: MSB (Most Significant Bit), IN1: LSB (Least Significant Bit)

 Program example
LD

(1) If the transition condition (%M3) is on, BIT_BYTE function is executed.
(2) If 8 input are (from INPUT1 to INPUT 8) {0,1,1,0,1,1,0,0}, OUTPUT (BYTE) = 2#00110110.

BYTE

BIT_BYTEBIT_BYTEBIT_BYTEBIT_BYTE

ENO EN
IN1 OUT

BOOL BOOL
BOOL

IN1 BOOL
IN1 BOOL
IN1 BOOL
IN1 BOOL
IN1 BOOL
IN1 BOOL

IN1 BOOL

Combines 8 bits into BYTE

8. Basic Function/Function Block Library

 8-136

BMOV_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input

EN : executes the function in case of 1.
 IN1: String data having bit data to be combined
 IN2: String data having bit data to be combined
 IN1_P: Start bit position on IN1 set data
 IN2_P: Start bit position on IN2 set data
 N: Bit number to be combined
 Output

 ENO: without an error, it will be 1
 OUT: Combined bit string data output

 Function
▷If EN is 1, it takes N bits of IN1 starting from the IN1_P bit and moves it to IN2 starting from IN2_P bit.
▷If N1 = 1111 0000 1111 0000, IN2 = 0000 1010 1010 1111, IN1_P = 4, IN2_P = 8, N = 4, then output data

is 0000 1111 1010 1111. Input data types are B (BYTE), W (WORD), D (DWORD), L (LWORD);
L (LWORD) are available for GM1/2. You can use one of functions (‘ENCO_B’, ‘ENCO_W’, ‘ENCO_D’,
‘ENCO_L’) according to input data.

 Error
If IN1_P and IN2_P exceed the data range or N is negative or N bit of IN1_P and IN2_P exceeds the data
range, _ERR and _LER flags are set.

 Program example
 LD IL

 LD %M0
 JMPN LSB
 LD SOURCE
 BMOV_W IN1:= CURRENT RESULT
 IN2:= DESTINE
 IN1_P:= 0
 IN2_P:= 8
 N:= 4
 ST DESTINE
 LSB :

B,W,D,L

BMOV_***BMOV_***BMOV_***BMOV_***

ENO EN

IN2
OUT

BOOL BOOL

IN1_P
IN2_P

INT
INT

N INT

B,W,D,L
IN1 B,W,D,L

Moves part of a bit string

8. Basic Function/Function Block Library

 8-137

(1) If the transition condition (%M0) is on, BMOV_W function is executed.
(2) If input SOURCE = 2#0101 1111 0000 1010, DESTINE = 2#0000 0000 0000 0000, IN1_ P = 0, IN2_P = 8,

N = 4, then the result DESTINE is 2#0000 1010 0000 0000.

 Input (IN1): SOURCE (WORD) = 16#5F0A
 (IN2): DESTINE (WORD) = 16#0000
 (IN1_ P) = 0
 (IN2_P) = 8
 (N) = 4

 Output (OUT): DESTINE (WORD) = 16#0A00
 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 1 1 1 1 0 0 0 0 1 0 1 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(BMOV_W)

8. Basic Function/Function Block Library

8-138

BSUM_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

 Function Description

 Input

EN: executes the function in case of 1.
IN: input data to detect ON bit

 Output

ENO: without an error, it will be 1
OUT: Result data (sum of on-bit number)

 Function
If EN is 1, it counts bit number of 1 among IN bit string and produces output OUT. Input data types are
BYTE, WORD, DWORD, LWORD. LWORD is available only for GM1/2.

FUNCTION IN type Description

BSUM_BYTE BYTE
BSUM _WORD WORD
BSUM _DWORD DWORD
BSUM _LWORD LWORD

You can select one of these functions according to input data.

■ Program example
 LD IL

 LD %I0.0.0
 JMPN AAA
 LD SWITCHS
 BSUM_WORD
 ST ON_COUNT
 AAA:

(1) If the transition condition (%M0) is on, BSUM_WORD function is executed.
(2) If input SWITCHS (WORD) = 2#0000 0100 0010 1000, then it counts on-bit number, 3. So the output

ON_COUNT (INT) = 3.

INT

BSUM_*BSUM_*BSUM_*BSUM_*

ENO EN
IN OUT

BOOL BOOL
B,W,D,L

Counts on-bit number of input

8. Basic Function/Function Block Library

 8-139

BYTE_BIT
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN: byte input

 Output
 ENO: without an error, it will be 1
 OUT: Dummy output

 In/Out
 QO1~8: bit output

 Function

It divides one byte into 8 bits (QO1~QO2).
 QO8: MSB (Most Significant Bit), QO1: LSB (Least Significant Bit)

 Program example
LD

(1) If the transition condition (%M0) is on, BYTE_BIT function is executed.
(2) If INPUT = 16#AC = 2#10101100, it distributes INPUT from Q01 to Q08 in order.

The order is 2#{0, 0, 1, 1, 0, 1, 0, 1}.

BOOL

BYTE_BITBYTE_BITBYTE_BITBYTE_BIT

ENO EN
IN OUT

BOOL BOOL
BYTE

Q02 BOOL
Q03 BOOL
Q04 BOOL
Q05 BOOL
Q06 BOOL
Q07 BOOL

Q08 BOOL

Q01 BOOL

Divides byte into 8 bits

8. Basic Function/Function Block Library

8-140

BYTE_TO_ASC
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN: BYTE input

 Output
 ENO: without an error, it will be 1
 OUT: ASCII output

 Function
▷ It converts 2-digit hexadecimal into two ASCII data.
 Ex) 16#12 -> 3132

 ▷ In case of 16#A~F, it produces ASCII data for character.

 Program example
LD

(1) If the transition condition (%M0) is on, BYTE_TO_ASC function is executed.
(2) If input BYTE_VAL (BYTE) = 16#3A, output ASCII_VAL (WORD) = 16#3341 = ‘3’, ‘A’.

WORD

BYTE_TO_ASCBYTE_TO_ASCBYTE_TO_ASCBYTE_TO_ASC

ENO EN
IN1 OUT

BOOL BOOL
BYTE

Converts byte into ASCII

8. Basic Function/Function Block Library

8-141

BYTE_WORD
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 LOW: lower BYTE Input
 HIGH: upper BYTE Input

 Output
 ENO: without an error, it will be 1
 OUT: WORD output

 Function

It combines two bytes into one word.
 LOW: lower byte input, HIGH: upper byte input

 Program example
LD

(1) If the transition condition (%M3) is on, BYTE_WORD function is executed.
(2) If input BYTE_IN1 = 16#56 and BYTE_IN2 = 16#AD, output variable OUTPUT = 16#AD56.

WORD

BYTE_WORDBYTE_WORDBYTE_WORDBYTE_WORD

ENO EN
LOW
HIGH

OUT

BOOL BOOL

BYTE
BYTE

Combines 2 bytes into WORD

8. Basic Function/Function Block Library

8-142

DEC_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function 설 명

 Input

EN: executes the function in case of 1.
 IN: input data to decrease

 Output

ENO: without an error, it will be 1
 OUT: result data

■ Function
If EN is 1, it produces an output after decreasing bit-string data of IN by 1.
Even though the underflow occurs, an error won’t occur and if the result is 16#0000, then the output result
data is 16#FFFF.
Input data types are BYTE, WORD, DWORD and LWORD. LWORD is available only for GM1/2.

FUNCTION IN/OUT type Description
DEC_BYTE BYTE
DEC_WORD WORD
DEC_DWORD DWORD
DEC_LWORD LWORD

You can select one of these functions according to in/out data type.

■ Program example
 LD IL

 LD %M0
 JMPN KKK
 LD %MW100
 DEC_WORD
 ST %MW20
 KKK:

(1) If the transition condition (%M0) is on, DEC_WORD function is executed.
(2) If input variable %MW100 = 16#0007 (2#0000 0000 0000 0111), output variable %MW20 = 16#0006
(2#0000 0000 0000 0110).

ANY_BIT

DEC_***DEC_***DEC_***DEC_***

ENO EN
IN OUT

BOOL BOOL
ANY_BIT

Decrease IN data by 1 bit

8. Basic Function/Function Block Library

8-143

DECO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
EN: executes the function in case of 1.

 IN: input data for decoding

 Output

ENO: without an error, it will be 1
 OUT: decoding result data

■ Function
If EN is 1, it turns on ‘the designated position bit of output bit-string data’ according to the value of IN, and
produces an output. Output data types are BYTE, WORD, DWORD and LWORD. LWORD is available only
for GM1/2.

FUNCTION OUT type Description
DECO_BYTE BYTE
DECO_WORD WORD
DECO_DWORD DWORD
DECO_LWORD LWORD

You can select one of these functions according to output data type.

■ Error
If input data is a negative number or bit position data is out of output-type range, (in case of DECO_WORD,

it’s more than 16), then OUT is 0 and _ERR/_LER flags are set.

■ Program example
 LD IL

 LD %M0
 JMPN AAA
 LD ON_POSITION
 DECO_WORD
 ST RELAYS
 AAA:

(1) If the transition condition (%M0) is on, DECO_WORD function is executed.
(2) If ON_POSITON (INT) = 5, then RELAYS (WORD) = 2#0000 0000 0010 0000.

ANY_BIT

DECO_***DECO_***DECO_***DECO_***

ENO EN
IN OUT

BOOL BOOL

INT

Decodes the designated bit position

8. Basic Function/Function Block Library

8-144

DEG_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

Input

 EN: executes the function in case of 1.
 IN: radian input

 Output
 ENO: without an error, it will be 1
 OUT: degree output

 Function

It converts radian input into degree output.

Function Input type Output type Description
DEG_REAL REAL REAL
DEG_LREAL LREAL LREAL It converts input (radian) into output (degree).

 Program example

LD

(1) If the transition condition (%M0) is on, DEG_LREAL function is executed.
(2) If input variable RAD_VAL = 1.0, then output variable DEG_VAL = 5.7295779513078550e+001.

ANY_REAL

DEGDEGDEGDEG

ENO EN
IN OUT

BOOL BOOL
ANY_REAL

Converts radian into degree

8. Basic Function/Function Block Library

8-145

DIS_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN1: input data
 SEG: designated bit array for data distribution

 Output
 ENO: without an error, it will be 1
 OUT: Dummy Output

 In/Out
 IN2: distributed WORD-array Output

 Function

It distributes input data over IN2 after segmenting input data by bit number set by SEG.

Function Input type Description
DIS_BYTE BYTE
DIS_WORD WORD
DIS_DWORD DWORD
DIS_LWORD LWORD

It segments IN1 input by bit number set by SEG and produces IN2 array.

 Error
If the sum of designated number of SEG exceeds input variable bit number, _ERR/_LER flags are set.

BOOL

DIS_***DIS_***DIS_***DIS_***

ENO EN
IN1 OUT

BOOL BOOL
ANY_BIT

SEG

IN2

INT_ARY
ANY_BIT_ARY

Data distribution

8. Basic Function/Function Block Library

8-146

 Program example
LD

(1) If the transition condition (%M0) is on, DIS_WORD function is executed.
(2) If input variable WORD_IN = 16#3456, SEG_ARY = {3, 4, 5, 4}, then, output variable DIS_DATA is:

DIS_DATA[0] = 16#0006
DIS_DATA[1] = 16#000A
DIS_DATA[2] = 16#0008
DIS_DATA[3] = 16#0003

8. Basic Function/Function Block Library

8-147

DWORD_LWORD
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 LOW: lower DWORD Input
 HIGH: upper DWORD Input

 Output
 ENO: without an error, it will be 1.
 OUT: LWORD Output

 Function

It combines 2 DWORD data into one LWORD data.
LOW: lower DWORD Input, HIGH: upper DWORD Input

 Program example
LD

(1) If the transition condition (%M11) is on, DWORD_LWORD function is executed.
(2) If input variable INPUT1 = 16#1A2A3A4A5A6A7A8A and INPUT2 = 16#8C7C6C5C4C3C2C1C, then,
output variable RESULT = 16#8C7C6C5C4C3C2C1C1A2A3A4A5A6A7A8A.

LWORD

DWORD_LWORDDWORD_LWORDDWORD_LWORDDWORD_LWORD

ENO EN
LOW
HIGH

OUT

BOOL BOOL
DWORD
DWORD

Combines two DWORD data into LWORD

8. Basic Function/Function Block Library

 8-148

DWORD_WORD
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN: DWORD Input

 Output
 ENO: without an error, it will be 1.
 OUT: Dummy Output

 In/Out
 LOW: lower WORD Output
 HIGH: upper WORD Output

 Function

It divides one DWORD into two WORD data.
 LOW: lower WORD Output, HIGH: upper WORD Output

 Program example
LD

(1) If the transition condition (%M5) is on, DWORD_WORD function is executed.
(2) If input variable INPUT = 16#11223344AABBCCDD, then,

WORD_OUT1 = 16#AABBCCDD and WORD_OUT2 = 16#11223344.

BOOL

DWORD_WORDDWORD_WORDDWORD_WORDDWORD_WORD

ENO EN
IN
LOW

OUT

BOOL BOOL

DWORD

HIGH WORD
WORD

Divides DWORD into 2 WORD data

8. Basic Function/Function Block Library

8-149

ENCO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input

EN: executes the function in case of 1.
 IN: input data to be encoded

 Output

ENO: without an error, it will be 1
 OUT: result data after encoding

■ Function
If EN is 1, the output is the highest on-bit position among IN bit string. Input data types are BYTE, WORD,
DWORD and LWORD. LWORD is available only for GM1/2.

FUNCTION IN type Description
ENCO_BYTE BYTE
ENCO_WORD WORD
ENCO_DWORD DWORD
ENCO_LWORD LWORD

You can select one of these functions according to the input data type.

■ Error
_ERR and _LER flags are set and OUT is –1 if no bit is 1.

■ Program example
 LD IL

 LD %M0
 JMPN AAA
 LD SWITCHS
 ENCO_W
 ST ON_POSITION
 AAA:

(1) If the transition condition (%M0) is on, ENCO_WORD function is executed.
(2) If SWITCHS (WORD) = 2#0000 1000 0000 0010, then, the highest on-bit position is 11. Therefore, output
ON_POSITON (INT) is ‘11’.

INT

ENCO_***ENCO_***ENCO_***ENCO_***

ENO EN
IN OUT

BOOL BOOL
ANY_BIT

Encodes the on-bit position of IN

8. Basic Function/Function Block Library

 8-150

GET_CHAR
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN: STRING input
 N: position in a character STRING

 Output
 ENO: without an error, it will be 1.
 OUT: Byte Output

 Function

It extracts one byte from a character STRING starting from N.

 Error
▷ _ERR/_LER flags are set if N exceeds the number of byte in STRING.
▷ If an error occurs, the output is 16#00.

 Program example
LD

(1) If the transition condition (%M0) is on, GET_CHAT function is executed.
(2) When input INPUT (STRING) = “LG GLOFA PLC”, if you extract 4th character from this string, output

variable OUTPUT is 16#47 (“G”).

INT

GET_CHARGET_CHARGET_CHARGET_CHAR

ENO EN
IN
N

OUT

BOOL BOOL
STRING BYTE

Gets one character from a character string

8. Basic Function/Function Block Library

8-151

INC_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input

EN: executes the function in case of 1.
 IN: Input data to increase

 Output

ENO: without an error, it will be 1
 OUT: result data after increase

■ Function
If EN is 1, it increases IN bit string data by 1 and produces an output.
An error does not occur when there’s an overflow; the result is 16#0000 in case of 16#FFFF.
Input data types are BYTE, WORD, DWORD and LWORD. LWORD is available only for GM1/2.

FUNCTION IN/OUT type Description
INC_BYTE BYTE
INC_WORD WORD
INC_DWORD DWORD
INC_LWORD LWORD

You can select one of these functions according to the data type.

■ Program example
 LD IL

 LD %M0
 JMPN BBB
 LD %MW100
 INC_WORD
 ST %MW100
 AAA:

(1) If the transition condition (%M0) is on, INC_WORD function is executed.
(2) If input variable %MW100 = 16#0007 (2#0000 0000 0000 0111), then

output variable %MW100 = 16#0008(2#0000 0000 0000 1000).

ANY_BIT

INC_***INC_***INC_***INC_***

ENO EN
IN OUT

BOOL BOOL
ANY_BIT

Increase IN data by 1

8. Basic Function/Function Block Library

8-152

LWORD_DWORD
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN: LWORD Input

 Output
 ENO: without an error, it will be 1.
 OUT: Dummy Output

 In/Out
 LOW: lower DWORD Output
 HIGH: upper DWORD Output

 Function

 ▷ It divides one LWORD into two DWORD data.
 LOW: lower DWORD Output, HIGH: upper DWORD Output

 Program example
LD

(1) If the transition condition (%M10) is on, LWORD_DWORD function is executed.
(2) If the input variable INPUT = 16#AAAABBBBCCCCDDDDABCDABCDABCDABCD, then,

DWO_OUT1 = 16#ABCDABCDABCDABCD
DWO_OUT2 = 16#AAAABBBBCCCCDDDD.

BOOL

LWORD_DWORDLWORD_DWORDLWORD_DWORDLWORD_DWORD

ENO EN
IN OUT

BOOL BOOL
LWORD

LOW

HIGH

DWORD
DWORD

Divides LWORD into two DWORD data

8. Basic Function/Function Block Library

8-153

MCS
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

Input
EN: executes the function in case of 1.
NUM: Nesting (0~15)

Output

ENO: If MCS is executed, it will be 1
 OUT: Dummy (always 0)

 Function
▷ If EN is on, MCS function is executed and the program between MCS and MCSCLR function is

normally executed.
▷ If EN is off, the program between MCS and MCSCLR function is executed as follows:

Instruction Description
Timer Current value (CV) becomes 0 and the output (Q) becomes off.
Counter Output (Q) becomes off and CV retains its present state.
Coil All becomes off.
Negated coil All becomes off.
Set coil, reset coil All retains its current value.
Function, function block All retains its current value.

▷ Even when EN is off, scan time is not shortened because the instructions between MCS and MCSCLR
function are executed as the above.
▷ Nesting is available in MCS. That is to say, Master Control is divided by Nesting (NUM). You can set up
Nesting (NUM) from 0 to 15 and if you set it more than 16, MCS is not executed normally.
Note: if you use MSC without ‘MCSCLR’, MCS function is executed till the end of the program.

BOOL

MCSMCSMCSMCS

ENO EN
NUM OUT

BOOL BOOL

INT

Master Control

8. Basic Function/Function Block Library

8-154

 Program example

If A is on, it’s executed.

If A and B are on, it’s
executed

If A, B, and C are on, it’s
executed.

If A and B are on, it’s executed

If A is on, it’s executed.

If A, B, and C are on, it’s
executed.

8. Basic Function/Function Block Library

8-155

MCSCLR
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
EN: executes the function in case of 1.

 NUM: Nesting (0~15)

 Output

ENO: if MCSCLR is executed, it will be 1
 OUT: if MCSCLR is executed, it will be 1

 Function
▷ It clears Master Control instruction. And it indicates the end of Master Control.
▷ If MCSCLR function is executed, it clears all the MCS instructions which are less than or equal to
Nesting (NUM).

* There’s no contact before MCSCLR function.

 Program example
Refer to the MCS function example.

BOOL

MCSCLRMCSCLRMCSCLRMCSCLR

ENO EN
NUM OUT

BOOL BOOL

INT

Master Control Clear

8. Basic Function/Function Block Library

8-156

MEQ_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN1: Input1
 IN2: Input2
 MASK: input data to mask

 Output
 ENO: without an error, it will be 1.
 OUT: when equal, it will be 1

 Function

 ▷ It compares whether two input variables are equal after masking. If it masks an 8-bit variable with 2#11111100,

then, lower 2 bits are excluded when it compares input values.

 ▷ It’s available to see whether or not specific bits are on in a variable. For example, in case of comparing 8-bit

variables, IN1 is an input variable, IN2 is 16#FF, and MASK for masking is a bit array 2#00101100. If IN1 and

IN2 after masking are equal, then output OUT is 1.

Function Input type Description

MEQ_BYTE BYTE

MEQ_WORD WORD

MEQ_DWORD DWORD

MEQ_LWORD LWORD

It compares whether two variables are equal after making.

BOOL

MEQMEQMEQMEQ

ENO EN
IN1 OUT

BOOL BOOL
ANY_BIT

IN2

MASK

ANY_BIT
ANY_BIT

Masked Equal

8. Basic Function/Function Block Library

8-157

 Program example

LD

(1) If the transition condition (%M0) is on, MEQ_BYTE function is executed.

(2) Input variable INPUT1 (BYTE) = 2#01011100

 INPUT2 (BYTE) = 2#01110101

MASK (BYTE) = 2#11010110

Then, the comparing bits of input variables after masking are as follows:

 INPUT1 (BYTE) = 2#01010100

 INPUT2 (BYTE) = 2#01010100

INPUT1 and INPUT2 are equal, therefore, output contact %Q1.3.20 is on.

8. Basic Function/Function Block Library

8-158

PUT_CHAR
Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 DATA: Byte input to insert a string
 IN: string input
 N: setting position in a string

 Output
 ENO: without an error, it will be 1.
 OUT: string output

■ Function

It overwrites one byte input on a specific position (N) string.

■ Error

 ▷ If N value exceeds a byte number of a string, _ERR/_LER flags are set.

 ▷ If an error occurs, the output is 16#00.

■ Program example

LD

(1) If the transition condition (%M1) is on, PUT_CHAR function is executed.

(2) If input variable INPUT = 16#41 (“A”) and STRING_IN = “TOKEN”, and N = 2, then, output RESULT is

“TAKEN”.

INT

PUT_CHARPUT_CHARPUT_CHARPUT_CHAR

ENO EN
DATA

N

OUT

BOOL BOOL
BYTE BYTE

IN STRING

Puts a character in a string

8. Basic Function/Function Block Library

8-159

RAD_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN: degree Input

 Output
 ENO: without an error, it will be 1.
 OUT: radian output

 Function

 ▷ It converts a degree value (°) into a radian value.
 ▷ If the degree is over 360°, its converts normally.

For example, if input is 370°, output is 370° - 360° = 10°.

Function Input type Output type Description
RAD_REAL REAL REAL
RAD_LREAL LREAL LREAL It converts a degree value (°) into a radian value.

 Program example

LD

(1) If the transition condition (%M0) is on, RAD_REAL function is executed.
(2) If input variable DEG_VAL = 127(°), its output RAD_VAL = 2.21656823.

ANY_REAL

RADRADRADRAD

ENO EN
IN OUT

BOOL BOOL
ANY_REAL

Converts degree into radian

8. Basic Function/Function Block Library

8-160

ROTATE_A_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 N: element number to rotate
 STRT: starting position to rotate in an array block
 END: ending position to rotate in an array block

 Output
 ENO: without an error, it will be 1
 OUT: overflowing data

 In/Out
 SRC: array block to rotate

 Function

▷ It rotates designated elements of an array block in the chosen direction.

▷ Setting:

 - Scope: STRT and END set a data array to rotate

 - Rotation direction and time: rotates N times in the chosen direction set by STRT and END (STRT END)

- Input data setting: fills an empty element after rotation with Input data (IN)

- Output: the result is written at ANY_ARY designated by SRC, and the data to rotate from END to
STRT is written at OUT.

STRT : 1

END : 7

ARRAY(0)

ARRAY(1)

ARRAY(2)

ARRAY(3)

ARRAY(4)

ARRAY(5)

ARRAY(6)

ARRAY(7)

ARRAY(8)

ARRAY(9)

ARRAY(0)

ARRAY(1)

ARRAY(2)

ARRAY(3)

ARRAY(4)

ARRAY(5)

ARRAY(6)

ARRAY(7)

ARRAY(8)

ARRAY(9)
OUT

N = 2

SRC SRC

After Before

STRING

ROTATE_A_***ROTATE_A_***ROTATE_A_***ROTATE_A_***

ENO EN
SRC OUT

BOOL BOOL

STRT
END

UINT

UINT
N INT

ANY_ARY

Rotates array elements

8. Basic Function/Function Block Library

8-161

Function In/Out array type Description
ROTATE_A_BOOL BOOL
ROTATE_A_BYTE BYTE
ROTATE_A_WORD WORD
ROTATE_A_DWORD DWORD
ROTATE_A_LWORD LWORD
ROTATE_A_SINT SINT
ROTATE_A_INT INT
ROTATE_A_DINT DINT
ROTATE_A_LINT LINT
ROTATE_A_USINT USINT
ROTATE_A_UINT UINT
ROTATE_A_UDINT UDINT
ROTATE_A_ULINT ULINT
ROTATE_A_REAL REAL
ROTATE_A_LREAL LREAL
ROTATE_A_TIME TIME
ROTATE_A_DATE DATE
ROTATE_A_TOD TOD
ROTATE_A_DT DT

It rotates designated elements of an array block in the chosen
direction.

 Error

 ▷ If STRT or END exceed the range of SRC array element, _ERR/_LER flags are set.
 ▷ If an error occurs, there’s no change in SRC and output OUT is the initial value of each variable type

(i.e. INT=0, TIME=T#0S).

 Program example
LD

(1) If input condition (%M2) is on, ROTATE_A_BYTE function is executed.
(2) It rotates designated elements (from 2nd to 8th elements) of SRC_ARY in the chosen direction set by

STRT and END (from index 8 to index 2): refer to the diagram on the opposite page.
(3) The overflowing data (16#44) is written at OUT.

8. Basic Function/Function Block Library

8-162

STRT : 8

END : 2

16#11

16#22

16#33

16#44

16#55

16#66

16#77

16#88

16#99

16#AA

16#11

16#22

16#55

16#66

16#77

16#88

16#99

16#33

16#44

16#AA

44

N = 3

OUT

SRC_ARY SRC_ARY

Before After

8. Basic Function/Function Block Library

8-163

ROTATE_C_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 STRT: starting bit position of SRC bit array to

rotate
 END: ending bit position of SRC bit array to

rotate
 N: bit number to shift

 Output
 ENO: without an error, it will be 1
 OUT: carry output

 In/Out
 SRC: variable for rotation

 Function

 ▷ It rotates a designated bit array of SRC bit arrays in the chosen direction.
 ▷ Setting:
 - Scope: STRT and END set a bit data to rotate.

 - Rotation direction and time: rotates N times in the chosen direction set by STRT and END (STRT END)
- Output: the result is written at ANY_ARY designated by SRC, and the data to rotate from END to STRT is
written at OUT.

Function SRC type Description
ROTATE_C_BYTE BYTE
ROTATE_C_WORD WORD
ROTATE_C_DWORD DWORD
ROTATE_C_LWORD LWORD

It rotates a designated bit array of SRC bit arrays N times in the
chosen direction.

 Error

 ▷ If STRT or END exceed the bit number of SRC variable type, _ERR and _LER flags are set.
 ▷ There’s no change in SRC data.

STRT:0

B1 B0 B3 B2 B5 B4 B7 B6 B9 B8 B11 B10 B13 B12 B15 B14

B1 B0 B3 B2 B5 B4 B7 B6 B9 B8 B11 B10 B13 B12 B15 B14

END:12

N=1

OUT

Before

After

BOOL

ROTATE_C_***ROTATE_C_***ROTATE_C_***ROTATE_C_***

ENO EN
SRC OUT

BOOL BOOL

STRT
END

UINT
UINT

N UINT

ANY_BIT

Rotates a designated bit array of SRC bit arrays

8. Basic Function/Function Block Library

8-164

 Program example

LD

(1) If the transition condition (%M2) is on, ROTATE_C_WORD function is executed.
(2) It rotates the designated bit array, from STRT (13) to END (3), of SRC (16#A5A5) 2 times in the chosen
direction set by STRT and END (from STRT to END): refer to the diagram as below.
(3) The result data after rotation is written at SRC (16#896D), and the overflowing bit (0) is written at OUT.

0 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0

0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0

STRT: 13

N=2

0

END: 3

OUT

Before

After

8. Basic Function/Function Block Library

8-165

RTC_SET
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input

REQ: executes the function with rising pulse input
 DATA: TIME data to input

 Output

DONE: without an error, it will be 1
 STAT: If an error occurs, an error code is written

 Function
▷ It writes RTC data to Clock Device with a rising pulse input.

Variable Content Example Variable Content Example
DATA[0] Last 2-digit number of years 16#01 DATA[4] Minutes 16#30
DATA[1] Months 16#03 DATA[5] Seconds 16#45
DATA[2] Dates 16#15 DATA[6] Days 16#03
DATA[3] Hours 16#18 DATA[7] First 2-digit number of years 16#20

 * The above example is “2001-03-15 18:30:45, Thursday”.
 * Days are indicated as follows: Mon (0), Tue (1), Wed (2), Thu (3), Fri (4), Sat (5), Sun (6).
▷ The above DATA variables are declared as array Byte variables and set as BCD data.

 Error

If CPU does not support RTC function or RTC data is out of range, the output is 0 and the error code is
written at STAT.

Error code Description
00 No error
01 No RTC module installed.

* GM6: GM6-CPUB and GM6-CPUC support RTC.
* GM7: G7E-RTCA should be installed.

02 Wrong RTC data. Example: 14 (Months) 32 (Dates) 25 (Hours)
* Modify RTC data.

 Program example

 Its RTC data is 1999-01-17 11:53:24, Sunday.

(1) When SET_SW is on, RTC_SET function block renews or modifies the SET_data (RTC data).

BOOL
USINT

RTC_SETRTC_SETRTC_SETRTC_SET

DONE REQ
DATA STAT

BOOL

ANY

Writes Time data

8. Basic Function/Function Block Library

8-166

(2) Variable setting is shown as below.

(3) You can set each TIME data using MOVE function.

8. Basic Function/Function Block Library

8-167

(4) Use the following flags to read RTC data.
 e.g. 1998-12-22 19:37:46, Tuesday

Flag Type Description Data
_RTC_TOD TOD Current time of RTC TOD#19:37:46

_RTC_WEEK
UINT Current day of RTC

*(0: Mon, 1: Tue, 2: Wed, 3: Thu, 4: Fri,
5: Sat, 6: Sun)

1

_RTC_DATE DATE Current date of RTC
(1984-01-01 ~ 2083-12-31) D#1998-12-22

 _RTC_ERR BOOL When RTC data is wrong, it is 1. 0

_RTC_TIME[n]
* n: 0 ~ 7

ARRAY
OF
BYTE

BCD data of current time of RTC
_RTC _TIME[0]: Last 2-digit number of years
_RTC _TIME[1]: Months
_RTC _TIME[2]: Dates
_RTC _TIME[3]: Hours
_RTC _TIME[4]: Minutes
_RTC _TIME[5]: Seconds
_RTC _TIME[6]: Days
_RTC _TIME[7]: First 2-digit number of years
Days (0: Mon, 1: Tue, 2: Wed, 3: Thu, 4: Fri,

5: Sat, 6: Sun)

_RTC _TIME[0]: 16#98
_RTC _TIME[1]: 16#12
_RTC _TIME[2]: 16#22
_RTC _TIME[3]: 16#19
_RTC _TIME[4]: 16#37
_RTC _TIME[5]: 16#46
_RTC _TIME[6]: 16#1
_RTC _TIME[7]: 16#19

8. Basic Function/Function Block Library

8-168

SEG
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input

EN: executes the function in case of 1.
 IN: Input data to covert into 7 segment code

 Output

ENO: without an error, it will be 1.
 OUT: result data converted into 7 segment data

 Function

If EN is 1, it converts BCD or HEX (hexadecimal) of IN into 7 segment display code as below and produces
output OUT. If an input is BCD type, it is available to display a number between 0000 and 9999. And in case
of HEX input, it's available to display a number between 0000 and FFFF on 4-digit 7 segment display.

Display example
1) 4-digit BCD -> 4-digit 7 segment code: use SEG function
2) 4-digit HEX -> 4-digit 7 segment code: use SEG function
3) INT -> 4-digit BCD-type 7 segment code: use INT_TO_BCD function first and SEG function
4) INT -> 4-digit HEX-type 7 segment code: use INT_TO_WORD function first and SEG function
5) When 7 segment display digits are more than 4,
 A) in case of BCD, HEX type, use SEG function, after dividing them into 4 digits.
 B) INT -> 8-digit BCD-type 7 segment code:
 Divide INT by 10,000 and convert ‘quotient’ and ‘remainder’ into upper/lower 4-digit 7 segment code

using INT_TO_BCD and SEG function.

 Program example
 LD IL

 LD %M0
 JMPN BBB
 LD BCD_DATA
 SEG
 ST SEG_PATTERN
 BBB:

DWORD

SEGSEGSEGSEG

ENO EN
IN OUT

BOOL BOOL
WORD

Converts BCD or HEX into 7 segment display code

8. Basic Function/Function Block Library

8-169

(1) If the transition condition (%M0)이 On하면 SEGfunction is executed.
(2) If input variable BCD_DATA (WORD) = 16#1234,
the output is ‘2#00000110_01011011_01001111_01100110’ which is displayed as a 7 segment code (1234)
and written at SEG_PATTERN (DWORD).

 Input (IN1): BCD_DATA (WORD) = 16#1234

 (SEG)
Output (OUT): SEG_PATTERN (DWORD) = upper

 16#065B4F66 lower

7 segment configuration

Conversion table for 7 segment code

Input
(BCD)

Input
(HEX) INT Output

B7 B6 B5 B4 B3 B2 B1 B0
Display

Data
0 0 0 0 0 1 1 1 1 1 1 0
1 1 1 0 0 0 0 0 1 1 0 1
2 2 2 0 1 0 1 1 0 1 1 2
3 3 3 0 1 0 0 1 1 1 1 3
4 4 4 0 1 1 0 0 1 1 0 4
5 5 5 0 1 1 0 1 1 0 1 5
6 6 6 0 1 1 1 1 1 0 1 6
7 7 7 0 0 1 0 0 1 1 1 7
8 8 8 0 1 1 1 1 1 1 1 8
9 9 9 0 1 1 0 1 1 1 1 9
 A 10 0 1 1 1 0 1 1 1 A
 B 11 0 1 1 1 1 1 0 0 B
 C 12 0 0 1 1 1 0 0 1 C
 D 13 0 1 0 1 1 1 1 0 D
 E 14 0 1 1 1 1 0 0 1 E
 F 15 0 1 1 1 0 0 0 1 F

B0

B1

B2
B3

B4

B5

B6

0 0 0 0 0 1 1 0 0 1 0 1 1 0 1 1

0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0

0 1 0 0 1 1 1 1 0 1 1 0 0 1 1 0

8. Basic Function/Function Block Library

8-170

SHIFT_A_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN: Input data to empty element after shifting
 N: number to shift
 STRT: starting position to shift in an array block

END: ending position to shift in an array block

 Output
 ENO: without an error, it will be 1
 OUT: overflowing data

 In/Out
 SRC: array block to shift

 Function

 ▷ It shifts designated elements of an array block in the chosen direction.

 ▷ Setting

 - Scope: STRT and END set a data array to rotate.

 - Shifting direction and time: rotates N times in the chosen direction set by STRT and END (STRT END)

 - Input data setting: fills an empty element after shifting with input data (IN).

- Output: the result is written at ANY_ARY designated by SRC, and the overflowing data by shifting from
END to STRT is written at OUT.

STRT : 1

END : 7

ARRAY(0)

ARRAY(1)

ARRAY(2)

ARRAY(3)

ARRAY(4)

ARRAY(5)

ARRAY(6)

ARRAY(7)

ARRAY(8)

ARRAY(9)

ARRAY(0)

ARRAY(1)

ARRAY(2)

ARRAY(3)

ARRAY(4)

ARRAY(5)

ARRAY(6)

ARRAY(7)

ARRAY(8)

ARRAY(9)

IN

OUT

N = 2

SRC SRC

After Before

ANY

SHIFT_A_***SHIFT_A_***SHIFT_A_***SHIFT_A_***

ENO EN

SRC
OUT

BOOL BOOL

STRT
END

UINT
UINT

N UINT

ANY_ARY
IN ANY

Shifts array elements

8. Basic Function/Function Block Library

8-171

Function In/Out Array Type Description

SHIFT_A_BOOL BOOL
SHIFT_A_BYTE BYTE
SHIFT_A_WORD WORD
SHIFT_A_DWORD DWORD
SHIFT_A_LWORD LWORD
SHIFT_A_SINT SINT
SHIFT_A_INT INT
SHIFT_A_DINT DINT
SHIFT_A_LINT LINT
SHIFT_A_USINT USINT
SHIFT_A_UINT UINT
SHIFT_A_UDINT UDINT
SHIFT_A_ULINT ULINT
SHIFT_A_REAL REAL
SHIFT_A_LREAL LREAL
SHIFT_A_TIME TIME
SHIFT_A_DATE DATE
SHIFT_A_TOD TOD
SHIFT_A_DT DT

It shifts designated elements of an array block in the chosen
direction.

 Error

 ▷ If STRT or END exceed the range of SRC array element, _ERR and _LER flags are set.
 ▷ If an error occurs, there’s no change in SRC and output OUT is the initial value of each variable type

(i.e. INT=0, TIME=T#0S).

 Program example
LD

(1) If the input condition (%M2) is on, SHIFT_A_INT function is executed.
(2) It shifts designated elements (from 2nd to 8th elements) of SRC_ARY.
(3) It shifts three times the designated elements.
(4) The empty elements after shifting, from array index 2 to array index 3, are filled with input ‘555’.
(5) The overflowing data (1234), carry output, is written at OUT.

8. Basic Function/Function Block Library

8-172

STRT : 2

END : 8

000

111

222

333

444

555

1234

777

888

999

000

111

555

555

555

222

333

444

555

999

555

1234

N = 3

IN

OUT

SRC_ARY SRC_ARY

Before After

8. Basic Function/Function Block Library

8-173

SHIFT_C_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 CYI: Carry Input
 STRT: starting bit position of SRC bit array to shift
 END: ending bit position of SRC bit array to shift
 N: bit number to shift

 Output
 ENO: without an error, it will be 1
 OUT: carry output

 In/Out
 SRC: variable for shifting

 Function

 ▷ It shifts a designated bit array of SRC bit arrays N times in the chosen direction.
 ▷ Setting:
 - Scope: STRT and END set a bit data to shift.
 - Shifting direction and time: shifts N times from STRT to END.

- Input data setting: fills empty bit after shifting with input data (CYI).
- Output: the result is written at ANY_BIT designated by SRC, and the overflowing bit data by shifting from
END to STRT is written at OUT.

Function SRC type Description
SHIFT_C_BYTE BYTE
SHIFT_C_WORD WORD
SHIFT_C_DWORD DWORD
SHIFT_C_LWORD LWORD

It shifts a designated bit array of SRC bit arrays N times.

ANY

SHIFT_C_***SHIFT_C_***SHIFT_C_***SHIFT_C_***

ENO EN

SRC
OUT

BOOL BOOL

STRT
END

UINT
UINT

N UINT

ANY_BIT
CY1 BOOL

Shift with Carry

8. Basic Function/Function Block Library

8-174

 Error

 ▷ If STRT or END exceed the bit number of SRC variable type, _ERR and _LER flags are set.
 ▷ There’s no change in SRC data.

 Program example
LD

(1) If the transition condition (%M2) is on, SHIFT_C_WORD function is executed.
(2) 16#A5A5 is shifted from STRT to END by 2 bits and the empty bits after shifting are filled with 1 (CYI).
(3) SRC after shifting is 16#969D and the overflowing bit data (0) is written at OUT after 2-bit shifting.

0 1 1 1 0 1 1 0 1 0 0 1 0 1 1 0

0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0

END: 13

N=2

CYI

0

STRT: 3

After

Before

8. Basic Function/Function Block Library

8-175

SWAP_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN: Input

 Output
 ENO: without an error, it will be 1.
 OUT: swapped data

 Function

It swaps upper data for lower data.

Function Input type Description
SWAP_BYTE BYTE Swaps upper nibble for lower nibble data.
SWAP_WORD WORD Swaps upper byte for lower byte data.
SWAP_DWORD DWORD Swaps upper word for lower word data.
SWAP_LWORD LWORD Swaps upper double word for lower double word data.

 Program example

LD

(1) If the transition condition (%M0) is on, SWAP_BYTE function is executed.
(2) If INPUT (BYTE) = 16#5F, RESULT (BYTE) = 16#F5.

BOOL
ANY_BIT

SWAPSWAPSWAPSWAP

ENO EN
IN OUT

BOOL

ANY_BIT

Swaps upper data for lower data

8. Basic Function/Function Block Library

8-176

UNI_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN: input data array
 SEG: bit-number-designate array to unite data

 Output
 ENO: without an error, it will be 1
 OUT: united data

 Function

 It unites an input data array from the lower bit to a designated bit set by SEG and produces an output.

Function Input type Output type Description
UNI_BYTE BYTE BYTE
UNI_WORD WORD WORD
UNI_DWORD DWORD DWORD
UNI_LWORD LWORD LWORD

It cuts an input array into bit data set by SET and produces an
output (united data) with the same array type of input.

 ▷ If the sum of value set by SEG exceeds the bit number of input data type, _ERR and _LER flags are set.
▷ If the number of arrays of IN and SEG is different, output OUT is 0 and _ERR and _LER flags are set.

UNI_***UNI_***UNI_***UNI_***

ENO EN
IN
SEG

OUT

BOOL BOOL

INT_ARY
ANY_BIT_ARY ANY_BIT

Unites data

8. Basic Function/Function Block Library

8-177

 Program example
LD

(1) If the transition condition (%M0) is on, UNI_WORD function is executed.
(2) If input IN_ARY and SEG_ARY are as below,

output RESULT = 2#00 1010111 0110 101 = 16#2BB5.

7

2

3

4

C 5 D 7

D 6 E 8

A 3 B 5

B 4 C 6

SEG_ARY[3] IN_ARY[3]

IN_ARY[0]

IN_ARY[1]

IN_ARY[2]

SEG_ARY[1]

SEG_ARY[2]

SEG_ARY[0]

8. Basic Function/Function Block Library

 8-178

WORD_BYTE
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN: WORD Input

 Output
 ENO: without an error, it will be 1.
 OUT: dummy output

 In/Output
 LOW: lower BYTE output
 HIGH: upper BYTE output

 Function

 ▷ It divides one word data into two byte data.
 LOW: lower byte output, HIGH: upper byte output

 Program example
LD

(1) If the transition condition (%M3) is on, WORD_BYTE function is executed.
(2) If input variable INPUT is 16#ABCD, then BYTE_OUT1 = 16#CD and BYTE_OUT2 = 16#AB.

BOOL

WORD_BYTEWORD_BYTEWORD_BYTEWORD_BYTE
ENO EN

IN OUT

BOOL BOOL
WORD

L0W
HIGH

BYTE

BYTE

Divides WORD into two bytes

8. Basic Function/Function Block Library

8-179

WORD_DWORD
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 LOW: lower WORD input
 HIGH: upper WORD input

 Output
 ENO: without an error, it will be 1.
 OUT: DWORD output

 Function
It combines two WORD data into one DWORD.

 LOW: lower WORD input, HIGH: upper WORD input

 Program example
LD

(1) If the transition condition (%IX1.1.5) is on, WORD_DWORD function is executed.
(2) If input variable INPUT1 = 16#10203040 and INPUT2 = 16#A0B0C0D0,

output variable RESULT = 16#A0B0C0D010203040.

WORD_DWORDWORD_DWORDWORD_DWORDWORD_DWORD

ENO EN
LOW
HIGH

OUT

BOOL BOOL

WORD

WORD DWORD

Combines two WORD data into DWORD

8. Basic Function/Function Block Library

 8-180

XCHG_ ***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 Output
 ENO: Without an error, it will be 1.
 OUT: Dummy Output
 In/Out
 IN1: In/Output 1
 IN2: In/Output 2

 Function

Exchanges input1 data with input2 data.

 Function In/Out type Description

XCHG_BOOL BOOL Exchanges two BOOL input data.

XCHG_BYTE BYTE Exchanges two BYTE input data.

XCHG_WORD WORD Exchanges two WORD input data.

XCHG_DWORD DWORD Exchanges two DWORD input data.

XCHG_LWORD LWORD Exchanges two LWORD input data.

XCHG_SINT SINT Exchanges two SINT input data.

XCHG_INT INT Exchanges two INT input

XCHG_DINT DINT Exchanges two DINT input data.

XCHG_LINT LINT Exchanges two LINT input data.

XCHG_USINT USINT Exchanges two USINT input data.

XCHG_UINT UINT Exchanges two UINT input data.

XCHG_UDINT UDINT Exchanges two UDINT input data.

XCHG_ULINT ULINT Exchanges two ULINT input data.

XCHG_REAL REAL Exchanges two REAL input data.

XCHG_LREAL LREAL Exchanges two LREAL input data.

XCHG_TIME TIME Exchanges two TIME input data.

XCHG_DATE DATE Exchanges two DATE input data.

XCHG_TOD TOD Exchanges two TOD input data.

XCHG_DT DT Exchanges two DT input data.

XCHG_STRING STRING Exchanges two STRING input data.

XCHGXCHGXCHGXCHG

ENO EN
IN1
IN2

OUT

BOOL BOOL

ANY

ANY BOOL

Exchanges two input data

8. Basic Function/Function Block Library

8-181

 Program example

LD

(1) If the transition condition (%M0) is on, XCHG_BOOL function is executed.

(2) If INPUT1 = 0 and INPUT2 = 1, it will exchange two input data. After the function execution, INPUT1 = 1

and INPUT2 = 0.

8. Basic Function/Function Block Library

 8-182

8.3 Basic Function Block Library
1. This chapter describes basic function blocks respectively.
2. It’s much easier to apply function block library to your program after grasping the general of function

blocks.

8. Basic Function/Function Block Library

 8-183

CTD
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function block Description

 CTD

 BOOL CD Q BOOL

 BOOL LD

 INT PV CV INT

 Input CD: down counter pulse input

 LD: loads a preset value

 PV: preset value

 Output Q: down counter output

 CV: current value

 Function
▷ Down counter function block CTD decreases the current value (CV) by 1 with every rising pulse input.
▷ CV decreases only when CV is more than the minimum value of INT (-32768); after reaching it, CV does

not change its value.
▷ When LD is 1, PV is loaded into CV (CV=PV).
▷ Output Q is 1 when CV is 0 or a negative number.

 Time Chart

Down Counter (function block)

CD (down counter input)

Q (down counter output)

LD (preset value input)

CV (current value)

PV setting

Max. coefficient

(-32768)
0

8. Basic Function/Function Block Library

 8-184

 Program Example
This is the program that sets the output contact (%O0.3.0) when the down counter pulse input enters the
input contact (%I0.1.14) five times.

LD IL

 CAL CTD COUNT_0
 CD %I0.1.14
 LD _1ON
 PV 5
 LD COUNT_D.Q
 ST COUNT_Q
 LD COUNT_D.CV
 ST COUNT_CV
 LD COUNT_Q
 S %Q0.3.0

(1) Register the name of CTD function block (COUNT_D).

(2) Make the input contact (%I0.1.14) attached to CD.

(3) Make the flag _10N (1 scan ON contact) that loads PV into CV.

(4) Set the PV value as 5.

(5) Set the CV value as the random output variable (COUNT_CV).

(6) Set the Q value as the random output variable (COUNT_Q).

(7) Compile and write your program to the PLC after completing the program.

(8) After writing, change the PLC mode (Stop -> Run).

(9) If program runs, PV 5 will be loaded into CV (Count_CV).

(10) The current value CV (COUNT_CV) decreases by 1 when the pulse input enters the input contact

(%I0.1.14).

(11) When the down counter pulse input enters the input contact (%I0.1.14) five times, CV (COUNT_CV) will

be 0 and Q (COUNT_CV) 1

(12) If Q (COUNT_Q) is 1, the output contact (%Q0.3.0) will be set.

8. Basic Function/Function Block Library

 8-185

CTU
Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Block Description

 CTU

 BOOL CU Q BOOL

 BOOL R

 INT PV CV INT

 Input CU: up counter pulse input
 R: reset input
 PV: loads a preset value

 Output Q: increase counter output
 CV: current value

■ Function
▷ Up counter function block CTU increases the current value (CV) by 1 with every rising pulse input.
▷ CV increases only when CV is less than the maximum value of INT (32767); after reaching it, CV does not

change its value.
▷ When the reset input (R) is 1, CV is cleared (0).
▷ Output Q is 1 when CV is equal to or more than PV.

■ Time Chart

R (Reset input)

CU (CTU input) Max. coefficient (32767)

 PV (preset value)

CV (current value)

Q (CTU output)

■ Program Example
This is the program that sets the output contact (%O0.3.1) when the increase counter pulse input enters the
input contact (%I0.1.15) ten times.

LD IL

 CAL CTU COUNT_U
 CU %I0.1.15
 R %I0.1.5
 PV 10
 LD COUNT_V.Q
 ST COUNT_Q
 LD COUNT_CV.Q
 ST COUNT_CV
 LD COUNT_Q
 S %Q0.3.0

Up Counter (function block)

8. Basic Function/Function Block Library

 8-186

(1) Register the name of CTU function block (COUNT_U).

(2) Make the input contact %I0.1.15 attached to CU.

(3) Set the PV value as 10.

(4) Assign input contact %I0.1.5 to the reset input R.

(5) Set the CV value as the random output variable (COUNT_CV).

(6) Set the Q value as the random output variable (COUNT_Q).

(7) Compile and write your program to the PLC after completing the program.

(8) After writing, change the PLC mode (Stop - Run).

(9) The current value CV (COUNT_CV) increases by 1 when the pulse input enters the input contact

(%I0.1.15).

(10) When the up counter pulse input enters the input contact (%I0.1.15) ten times, CV (COUNT_CV) will be

10 and Q (COUNT_CV) 1

(12) If Q (COUNT_Q) is 1, the output contact (%Q0.3.0) will be set.

8. Basic Function/Function Block Library

 8-187

CTUD
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Block Description

 CTUD

 BOOL CU QU BOOL

 BOOL CD QD BOOL

 BOOL R

 BOOL LD

 INT PV CV INT

 Input CU: up counter pulse input

 CD: down counter pulse input

 R: reset

 LD: loads a preset value

 PV: preset value

 Output QU: up counter output

 QD: down counter output

 CV: current value

■ Function
▷ Up/Down counter function block CTUD increases the current value (CV) by 1 with every rising up-counter

pulse input (CU) and decreases CV by 1 with every rising down-counter pulse input (CD). Note that CV is
between -32768 and 32767 (INT).

▷ When LD is 1, PV is loaded into CV (CV=PV).
▷ When the reset input R is 1, CV is cleared (0).
▷ When CV reaches PV, the output QV is 1; when CV is 0 or a negative integer, the output QD is 1.
▷ The operation for each input signal is executed in order of R > LD > CU > CD. Note that if the input

signals are fed to the input (CU, CD, R, and LD) of CTUD at the same time, the operation of CTU follows
the above priority.

 Time Chart

LD (loading PV)

R (reset)

CU (CTU input)

CD (CTD input)

 PV(preset value)

CV (current value) 0

QU (CTU output)

QD (CTD output)

Up/Down Counter (function block)

8. Basic Function/Function Block Library

 8-188

 Program Example

LD IL

 CAL CTUD INS_CUD

 CU:= %I0.1.0

 CD:= %I1.1.0

 R := %M0

 LD:= %M1

 PV:= STACK_MAX

 LD INS_CUD.QU

 ST STACK_FULL

 LD INS_CUD.QD

 ST STACK_EMPTY

 LD INS_CU.CV

 ST STORED_NUMBER

Conditions are: the temporary loading part STACK_MAX is 100; IN is 1 with every material-input signal while

OUT is 1 with every material-output signal. If the material input process is faster than the material-output one

and every material is loaded so that the STACK_MAX is equal to or more than 100, then QU is 1

(STACK_FULL = 1); if there's no material left in the loading part, QD is 1 (STACK_EMPTY = 1). At the

STORED_NUMBER, the number of remaining material in the loading part is shown.

%M1

%M0

%I0.1.0

%I1.1.0

 STACK_MAX (100 EA)

STORED_NUMBER 0

STACK_FULL

STACK_EMPTY

8. Basic Function/Function Block Library

 8-189

F_TRIG

Model GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Block Description

 F_TRIG

 BOOL CLK Q BOOL

 Input CLK: input signal

 Output Q: falling edge detection result

 Function

The output Q of function block F_TRIG is 1 with the falling pulse input to CLK. And 1 scan later, without

further falling pulse input, the output Q is 0 ever after.

 Time Chart

 CLK

 Q

 → ← (1 scan or F_TRIG execution time)

 Program Example

 LD IL

 CAL F_TRIG INS_FT

 CLK:= %I0.0.0

 LD INS_FT.Q

 ST FALL_DETECT

If the input variable (%I0.0.0) changes from 1 to 0, while detecting its state, the output variable

FALL_DETECT will be 1. And 1 scan later, the output variable FALL_DETECT will be 0.

Falling Edge Detection (function block)

8. Basic Function/Function Block Library

 8-190

RS
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Block Description

 RS

 BOOL S Q1 BOOL

 BOOL R1

 Input R1: Reset condition

 S: Set condition

 Output Q1: Operation result

■ Function

 If R1 is 1, output Q1 will be 0 regardless of the state of S.
 The output variable Q1 is 1 when it maintains the previous state, R1 is 0, and S is 1, it will be 1.
 The initial state of Q1 is 0.

■ Time Chart

 R1

 S

 Q1

■ Program Example

LD IL

 CAL RS INS_R

 R1: = RESET1

 S: = SET1

 LD INS_R.Q1

 ST RESULT

(1) The output variable RESULT is 0 and maintains its value when the input variables SET1 and RESET1
become simultaneously ON.
(2) The output variable RESULT is 0 and maintains its value when RESET1 becomes ON and SET1 is OFF.
(3) The output variable RESULT is 1 and maintains its value when SET1 becomes ON and RESET1 is OFF,

SSSS

Q1Q1Q1Q1
≥≥≥≥1111

R1R1R1R1 &&&& Q1Q1Q1Q1

Reset Priority Bistable (function block)

 8. Basic Function/Function Block Library

 8-191

R_TRIG
Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Block Description

 R_TRIG

 BOOL CLK Q BOOL

 Input CLK: input signal

 Output Q: rising edge detection result

■ Function

 The output Q of function block R_TRIG is 1 with the rising pulse input to CLK. And 1 scan later, without

further falling pulse input, the output Q is 0 ever after.

■ Time Chart

 CLK

 Q

 → ← (1 scan or R_TRIG execution time)

■ Program Example

 LD IL

 CAL R_TRIG INS_RT

 CLK: = IN_SIGNAL

 LD INS_RT.Q

 ST RISE_DETECT

If the input variable IN_SIGNAL changes from 0 to 1, while detecting its state, the output variable

RISE_DETECT will be 1. And 1 scan later, the output variable RISE_DETECT will be 0.

Rising Edge Detection (function block)

8. Basic Function/Function Block Library

 8-192

SEMA
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Block Description

 SEMA

 BOOL CLAIM BUSY BOOL

 BOOL RELEASE

 Input CLAIM: signal to claim a resource monopoly

 RELEASE: release signal

 Output BUSY: waiting signal not to obtain the claimed

resource

■ Function

This function block is used to get an exclusive control right for system resources.

BUSY is 1 when SEMA function is executed (CLAIM = 1 or 0, RELEASE = 0) and other program is using the

resource. If you want to obtain the resource control right, wait until BUSY will be 0 after executing SEMA

function block (CLAIM = 1, RELEASE = 0). When BUSY is 0, it controls the associate resource and after

completing the control, it transfers the control right executing SEMA function block once again with CLAIM =

0 and RELEASE = 1. (At this time, the program that has the control right can execute SEMA function block

with CLAIM = 0 and RELEASE = 1)

 The instance of SEMA should be declared as "GLOBAL" so that its access is available in the programs

requiring the resource.

 Each program to claim the same resource should be designated as the same priority.

 Not available to use between multi-CPU modules in GM1.

 Internal execution structure of SEMA function block

 VAR X : BOOL : = 0 ; END_VAR

 BUSY : = X ;

 IF CLAIM THEN X : = 1 ;

 ELSIF RELEASE THEN BUSY : = 0; X : = 0 ;

 END_IF

■ Time Chart

The access right to control the same resource is transferred between the program block A and the program

block B.

CLAIM

RELEASE

BUSY

Control right

A

A

A

A

B used

B

B B

A used B used A used

Semaphore (System resource allocation)

8. Basic Function/Function Block Library

 8-193

■ Program Example

LD IL

 CAL SEMA PRINTER

 CLAIM:= START

 RELEASE:= END

 LD PRINTER.BUSY

 ST NOT_AVAIL

When you want to produce a printer output in different program blocks with the printer attached to the PLC
system, you can easily control it by declaring the instance 'PRINTER' 'GLOBAL' and using SEMA function
block named as 'PRINTER' in each program. If you execute SEMA function block (PRINTER), when START
is 1 and END is 0, and claim the right to control the printer, while the printer is used in other program block,
BUSY is 1. If the printer is not used in other program block, BUSY will be 0, which means you can start the
program to produce the printer output with it. After completing the print control, execute SEMA with START =
0 and END = 1 so that other program can get the right to control it.

CLAIM_PT; claim the printer control right

CAL SEMA PRINTER

CLAIM:= 1

RELEASE:= 0

T1 PT_AVAIL; printer control right check

LDN PRINTER.BUSY

ST TRANS

S2 PRINTING; printer output

Printer control program

If print is completed, PRINT_DONE:=1

T2 PRT_END; print completion check

LD PRINTER_DONE

ST TRANS

S3 REL_PRT; transfer printer control

CAL SEMA PRINTER

CLAIM:= 0

RELEASE:= 1

T3 RE_PRT; printer request again

LD PRT_REQ

ST TRANS

S1

S1 N CLAIM_PT

VAR_EXTERNAL

PRINTER: SEMA

END_VAR

T1 PT_AVAIL

S2 N PRINTING

T2 PRT_END

S3 P REL_PRT

T3 RE_PRT

8. Basic Function/Function Block Library

 8-194

 8. Basic Function/Function Block Library

 8-195

SR
Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Block Description

 SR

 BOOL S1 Q1 BOOL

 BOOL R

 Input S1: set condition

 R: reset condition

 Output Q1: operation result

■ Function

If S1 is 1, output Q1 will be 1 regardless of the state of R.
The output variable Q1 is 0 and it maintains the previous state when S1 is 0, and R is 1.
The initial state of Q1 is 0.

■ Time Chart

S1

R

Q1

■ Program Example

LD IL

 CAL SR INS_S

 S1: = SET1

 R: = RESET1

 LD INS_S.Q1

 ST RESULT

(1) If input variable SET1 becomes 1, output variable RESULT will be ON.

(2) The output variable RESULT becomes 0 when input variable SET1 becomes 0 and RESET1 ON.

Set Priority Bistable (function block)

RRRR

Q1Q1Q1Q1

≥≥≥≥1111 S1S1S1S1

&&&&

Q1Q1Q1Q1

8. Basic Function/Function Block Library

 8-196

TOF
Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Block Description

 TOF

 BOOL IN Q BOOL

 TIME PT ET TIME

 Input IN: timer operation condition

 PT: preset time

 Output Q: timer output

 ET: elapsed time

■ Function

If IN is 1, Q will be 1. And after IN becomes 0 and the preset time (PT) of TOF passes, Q becomes 0.

After IN becomes 0, the elapsed time (ET) will be shown. If IN becomes 1 before ET reaches the preset time,

ET will be 0 again.

■ Time Chart

IN

Q

 PT PT

Preset time PT

ET

■ Program Example

LD IL

 INS_TOF

 TOF

 T_OFF IN Q TIMER_OK

 T#10S PT ET ET_TIME

 CAL TOF INS_TOF

 IN: = T_OFF

 PT: = T#10S

 LD INS_TOF.Q

 ST TIMER_OK

 LD INS_TOF.ET

 ST ET_TIME

OFF Delay Timer (function block)

 8. Basic Function/Function Block Library

 8-197

T_OFF

TIMER_OK 10s

Preset time 10s

ET_TIME

(1) Output variable TIMER_OK is 1 when input variable T_OFF becomes 1.

(2) TIMER_OK is 0 only if 10 seconds passes after T_OFF becomes 0.

(3) If T_OFF becomes 1 again in 10 seconds after it turned OFF, TOF will be initialized (TIMER_OK is 1).

(4) After T_OFF becomes 0, the elapsed time (ET_TIME) will be measured and shown.

8. Basic Function/Function Block Library

 8-198

TON
Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Block Description

 TON

 BOOL IN Q BOOL

 TIME PT ET TIME

 Input IN: timer operation condition

 PT: preset time

 Output Q: timer output

 ET: elapsed Time

■ Function
Elapsed time (ET) is measured and shown after IN becomes 1. When IN becomes 0 before ET reaches the
preset time, ET will be 0. If IN becomes 0 after Q is 1, Q will be 0.

■ Time Chart

IN

Q

 PT

 Preset time PT

ET

■ Program Example

LD IL

 INS_TON

 TON

 T_ON IN Q TIMER_OK

 T#10S PT ET ET_TIME

 CAL TON INS_TON

 IN: = T_ON

 PT: = T#10S

 LD INS_TON.Q

 ST TIMER_OK

 LD INS_TON.ET

 ST ET_TIME

ON Delay Timer (function block)

 8. Basic Function/Function Block Library

 8-199

T_ON

TIMER_OK

 10s

 Preset time10s

ET_TIME

(1) The output TIMER_OK = 1 ten seconds later after the input T_ON is asserted (T_ON = 1).

(2) Elapsed time ET_TIME is measured and shown after the input T_ON becomes 1.

(3) When T_ON = 0 before ET_TIME reaches the preset time (10s), ET_TIME will be 0.

(4) If T_ON = 0 after TIMER_OK = 1, then TIMER_OK = 0 and ET_TIME = 0.

8. Basic Function/Function Block Library

 8-200

TP
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Block Description

 TP

 BOOL IN Q BOOL

 TIME P T ET TIME

 Input IN: timer operation condition

 PT: preset time

 Output Q: timer output

 ET: elapsed Time

■ Function
If IN = 1, Q will be 1 only during the preset time PT; if ET reaches PT, Q will be 0.
If IN = 1, elapsed time ET starts to be measured and maintains its value after when it reaches PT; if IN = 0
after ET reaches PT, ET = 0.
The state of IN doesn't matter while ET is measured (increased).

■ Time Chart

IN

Q

 PT

 Preset time PT

ET

■ Program Example

LD IL

 INS_TP

 TP

 T_TP IN Q TIMER_OK

 T#10S PT ET ET_TIME

 CAL TP INS_TP

 IN: = T_TP

 PT: = T#10S

 LD INS_TP.Q

 ST TIMER_OK

 LD INS_TP.ET
 ST ET_TIME

Pulse timer (function block)

 8. Basic Function/Function Block Library

 8-201

T_TP

TIMER_OK 10s Preset time 10s

ET_TIME

(1) TIMER_OK is 1 during 10 seconds after input T_TP was asserted (T_TP = 1). While ET_TIME increases

during 10 seconds, the state of input T_TP doesn't affect TIMER_OK.

(2) ET_TIME increases when it reaches T#10S and then it becomes 0 when T_TP = 0.

8. Basic Function/Function Block Library

 8-202

8.4 Application Function Block Library
1. This chapter describes each application function block library (MASTER-K and others).
2. It’s much easier to apply function block library to your program after grasping the general of function

blocks.

8. Basic Function/Function Block Library

 8-203

CTR
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Block Description

 Input
 CD: pulse input of Ring Counter
 PV: preset value
 RST: reset

 Output
 Q: Ring Counter output
 CV: current value

 Function
▷ CTR function block (Ring Counter) functions: current value (CV) increases with the rising pulse input (CD) and if,

after CV reaches PV, CD becomes 1, then CV is 1.
▷ When CV reaches PV, output Q is 1.
▷ If CV is less than PV or reset input (RST) is 1, output Q is 0.

 Timing Chart

CTRCTRCTRCTR

Q CD
PV
RST

CV
BOOL BOOL

INT
BOOL

INT

CD (Pulse input)

Q (CTR Output)

R (Reset)

CV (Current Value)

PV (Preset Value)

 Ring Counter

8. Basic Function/Function Block Library

 8-204

 Program Example

Output %Q1.3.1 is on with 10-time rising pulse input of %I1.1.0 is depicted as below.

LD

(1) Define CTR function block as INS_CTR.
(2) Set %I1.1.0 to the input contact of CD referring to the above.
(3) Set 10 to PV.
(4) Set %I1.1.10 to RST resetting CV.
(5) Set random variable COUNT_NUM to CV.
(6) Set random output variable COUNT_Q to Q.
(7) After a program is complete, compile and write it to PLC.
(8) When ‘Write’ is complete, do ‘Mode Change’ (Stop Run).
(9) CV (COUNT_NUM) increases by 1 in number with the rising input pulse of %I1.1.0, CD
(10) With 10-time rising input pulse of input contact, CV is 10 which is the same as PV and output variable

COUNT_Q is 1.
(11) If Q (COUNT_Q) is 1, output contact %Q1.3.0 is on.
(12) If the rising input pulse is loaded into input contact %I1.1.0, then Q (COUNT_Q) is 0 and output

contact %Q1.3.0 is off.

8. Basic Function/Function Block Library

 8-205

DUTY
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Block Description

 Input
 REQ: requires to execute the function block
 SON: scan number to turn on
 SOFF: scan number to turn off

 Output
 DONE: it is 1 when REQ is on and both input

variables are not less than 0.
 OUT: output is 1 during on scan time

 Function

 ▷ DUTY function block produces a pulse which is on during the SON scan time and off during the SOFF scan
time while REQ is on.

 ▷ If SON = 0, OUT is always off.
 ▷ If SON > 0 and SOFF = 0, OUT is always on.
 ▷ If REQ is off, OUT is off.
 ▷ If SON < 0 or SOFF < 0, then DONE is off and OUT is 0.

 Timing Chart

BOOL

DUTYDUTYDUTYDUTY

DONE REQ
SON
SOFF

OUT

BOOL BOOL

INT
INT

REQ

Timing Pulse

OUT

SON Scan SOFF Scan

 Scan setting On/Off

8. Basic Function/Function Block Library

 8-206

 Program Example

 If input contact %I1.1.0 is set, output contact %Q1.3.0 is on during 3 scan times and off during 4 scan times.

LD

 (1) Define DUTY function block as DUTY_C.
 (2) Set %I1.1.0 to REQ (the input contact) of DUTY.
 (3) Set 3 to SON.
 (4) Set 4 to SOFF.
 (5) Set %Q1.3.0 to output OUT.
 (6) After a program is complete, compile and write it to PLC.
 (7) When ‘Write’ is complete, do ‘Mode Change’ (Stop Run).
 (8) If input contact %I1.1.0 is on, output contact %Q1.3.0 is on during 3 scan times and off during 4 scan times.

8. Basic Function/Function Block Library

 8-207

FIFO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Block Description

 Input
 REQ: requires to execute the function block
 IN: input data to be stored at FIFO stack
 LOAD: FB is on the input mode, if it’s on.
 UNLD: FB is on the output mode, if it’s on,
 RST: pointer value reset

 Output
 DONE: it’s 1 after first execution
 OUT: on output mode, it’s the data from FIFO stack

 PNT: pointer for input data of FIFO stack
 FULL: if FIFO stack is full, it’s 1
 EMTY: if FIFO stack is empty, it’s 1

 In/Output
 FIFO: array used as FIFO stack

 Function

 ▷ It loads IN to FIFO or unloads data from FIFO.
 ▷ If Input and Output mode are set at the same time, it executes In/Output simultaneous.
 ▷ If data is unloaded from FIFO, then the output is the lowest element of stack, the rest elements are shifts, PNT

value is decreased by 1, and the element position of PNT is cleared (0).
 ▷ If RST is loaded to FIFO, PNT is initialized as 0, EMTY is on and all the data of FIFO stack are cleared as 0.
 ▷ The stack number is the input array number set by In/Output variable FIFO.
 ▷ If you want to keep the data of FIFO array variables and FIFO function block instance in case that power is off

or power failure occurs, set them as 'RETAIN'.
 ▷ Reset functions without REQ input.
 ▷ PNT shows the position of IN to be loaded next time, or the number of pointers to be loaded.
 ▷ If it’s on the input mode, output OUT is 0.

FIFOFIFOFIFOFIFO

DONE REQ
IN
FIFO

OUT
BOOL BOOL

ANY
ANY_ARY

ANY
PNT INT

LOAD BOOL

UNLD BOOL

RST BOOL

FULL BOOL
EMTY BOOL

 Load/Unload data to FIFO stack
 (First In First Out)

8. Basic Function/Function Block Library

 8-208

Function FIFO variable type Description

FIFO_Q BOOL It functions as FIFO for BOOL-type data
FIFO_B BYTE It functions as FIFO for BYTE-type data
FIFO_W WORD It functions as FIFO for WORD-type data
FIFO_DW DWORD It functions as FIFO for DWORD-type data
FIFO_LW LWORD It functions as FIFO for LWORD-type data
FIFO_SI SINT It functions as FIFO for SINT-type data
FIFO_I INT It functions as FIFO for INT-type data
FIFO_DI DINT It functions as FIFO for DINT-type data
FIFO_LI LINT It functions as FIFO for LINT-type data
FIFO_USI USINT It functions as FIFO for USINT-type data
FIFO_UI UINT It functions as FIFO for UINT-type data
FIFO_UDI UDINT It functions as FIFO for UDINT-type data
FIFO_ULI ULINT It functions as FIFO for ULINT-type data
FIFO_R REAL It functions as FIFO for REAL-type data
FIFO_LR LREAL It functions as FIFO for LREAL-type data
FIFO_TM TIME It functions as FIFO for TIME-type data
FIFO_DAT DATE It functions as FIFO for DATE-type data
FIFO_TOD TOD It functions as FIFO for TOD-type data
FIFO_DT DT It functions as FIFO for DT-type data

8. Basic Function/Function Block Library

 8-209

 Program Example

LD

FIFO_*** function block is used as the above. The two examples of the above execute the same operation.
The left one is a program which executes input and output functions at the same time to use only one
function block while the right one is a program which executes input and output functions independently to
use input function and output function respectively. Note that the instance name should be the same on the
right program.

(1) If the input conditions (%I1.1.0, %I1.1.1, %I1.1.15) are on, FIFO_INT is executed.
(2) If input contact %I1.1.0 is on, load function is executed. 5555 is loaded to FIFO stack and PNT_INDEX

increased by 1.
(3) If input contact %I1.1.1 is on, unload function is executed. 1111 is unloaded from FIFO stack and

PNT_INDEX decreased by 1.
(4) If input contact %I1.1.15 is on, reset function is executed. All the stack of FIFO is cleared as 0,

PNT_INDEX is initialized as 0 and EMTY_FLAG is on.

8. Basic Function/Function Block Library

 8-210

8. Basic Function/Function Block Library

 8-211

LIFO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Block Description

 Input
 REQ: requires to execute the function block
 IN: input data to be stored at LIFO stack
 LOAD: FB is on the input mode, if it’s on
 UNLD: FB is on the output mode, if it’s on
 RST: pointer value reset

 Output
 DONE: it’s 1 after first execution
 OUT: on output mode, it’s the data from LIFO stack

 PNT: pointer for input data of LIFO stack
 FULL: if LIFO stack is full, it’s 1
 EMTY: if LIFO stack is empty, it’s 1

 In/Output
 LIFO: array used as LIFO stack

 Function

 ▷ It loads IN to LIFO or unloads data from LIFO.
 ▷ If LOAD and UNLD are on at the same time, input IN is produced as output OUT.
 ▷ If data is unloaded from LIFO by unload function of LIFO_***, unloaded data is deleted in stack and initialized

as 0.
 ▷ If RST is loaded to LIFO, PNT is initialized as 0, EMTY is on and all the data of LIFO stack are cleared as 0.
 ▷ The stack number is the array number set by In/Output variable LIFO.
 ▷ If you want to keep the data of LIFO array variables and LIFO function block instance in case that power is off

or power failure occurs, set them as 'RETAIN'.
 ▷ Reset functions without REQ input.
 ▷ PNT shows the position of IN to be loaded next time, or the number of pointers to be loaded.
 ▷ If it's on the input mode, output OUT is 0.

LIFOLIFOLIFOLIFO

DONE REQ
IN
LIFO

OUT
BOOL BOOL

ANY
ANY_ARY

ANY
PNT INT

LOAD BOOL

UNLD BOOL

RST BOOL

FULL BOOL
EMTY BOOL

 Load/Unload data to LIFO stack
 (Last In First Out)

8. Basic Function/Function Block Library

 8-212

Function FIFO variable type Description

LIFO_Q BOOL It functions as LIFO for BOOL-type data
LIFO_B BYTE It functions as LIFO for BYTE-type data
LIFO_W WORD It functions as LIFO for WORD-type data
LIFO_DW DWORD It functions as LIFO for DWORD-type data
LIFO_LW LWORD It functions as LIFO for LWORD-type data
LIFO_SI SINT It functions as LIFO for SINT-type data
LIFO_I INT It functions as LIFO for INT-type data
LIFO_DI DINT It functions as LIFO for DINT-type data
LIFO_LI LINT It functions as LIFO for LINT-type data
LIFO_USI USINT It functions as LIFO for USINT-type data
LIFO_UI UINT It functions as LIFO for UINT-type data
LIFO_UDI UDINT It functions as LIFO for UDINT-type data
LIFO_ULI ULINT It functions as LIFO for ULINT-type data
LIFO_R REAL It functions as LIFO for REAL-type data
LIFO_LR LREAL It functions as LIFO for LREAL-type data
LIFO_TM TIME It functions as LIFO for TIME-type data
LIFO_DAT DATE It functions as LIFO for DATE-type data
LIFO_TOD TOD It functions as LIFO for TOD-type data
LIFO_DT DT It functions as LIFO for DT-type data

8. Basic Function/Function Block Library

 8-213

 Program Example

LD

 LIFO_*** function block is used as the above. The two examples of the above execute the same operation.
The left one is a program which executes input and output functions at the same time to use only one
function block while the right one is a program which executes input and output functions independently to
use input function and output function respectively. Note that the instance name should be the same on the
right program.

(1) If the input conditions (%I1.1.0, %I1.1.1, %I1.1.15) are on, LIFO_TM is executed.
(2) If input contact %I1.1.0 is on, load function is executed. T#55S is loaded to LIFO stack and PNT_INDEX

increased by 1.
(3) If input contact %I1.1.1 is on, unload function is executed. T#55S is unloaded from LIFO stack and

PNT_INDEX decreased by 1.
(4) If input contact %I1.1.15 is on, reset function is executed. All the stack of LIFO is cleared as T#0S,

PNT_INDEX is initialized as 0 and EMTY_FLAG is on.

8. Basic Function/Function Block Library

 8-214

8. Basic Function/Function Block Library

 8-215

SCON
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Block Description

 Input
 REQ: if it’s 1, the function block is executed
 S/O: if 0, SET function is enabled;

if 1, OUT function is enabled.
 SET: step number (0 ~ 99)

Output
 DONE: without an error, it will be 1
 S: produces an set bit array
 CUR_S: produces a current step number

 Function

 ▷ Setting of step controller group
- The instance name of function block is the name of step controlling group.
 (Examples of FB declaration: S00, G01, Manu1
 Examples of step contacts: S00.S[1], G01.S[1], Manu1.S[1])

 ▷ In case of SET function (ST_0/JP_1 = 0)
 - In the same step controller group, the present step number can be on when the previous step number is on.
 - If the present step number is on, it keeps its state even when the input is off.
 - Only one step number is on even when several input conditions are on at the same time.
 - If Sxx.S[0] is on, all the SET output is cleared.

 ▷ In case of JUMP function (ST_0/JP_1 = 1)
 - In the same step controller group, only one step number is on, even when several input conditions are on.
 - If input conditions are on at the same time, last programmed one is produced.

- If the present step number is on, it keeps its state even when the input is off.
- If Sxx.S[0] is on, it returns to its first step.

 Error

 ▷ An error occurs when step setting (SET) is out of its range (0 ~ 99).
 ▷ If an error occurs, DONE is off and step output maintains its previous step.

SCONSCONSCONSCON
DONE REQ

ST_0/JP_1
SET

S
BOOL BOOL

BOOL
INT

BOOL_ARY

CUR_S INT

 Step Controller

8. Basic Function/Function Block Library

 8-216

 Program Example
In case of SET function (ST_0/JP_1 = 0), using SC1 group

Step control produces an output when the previous step is on and its present condition is on.

Row 15

Row 16

Row 17

Row 18

Row 19

S_BIT[0] %Q0.0.0

S_BIT[1] %Q0.0.1

S_BIT[2] %Q0.0.2

S_BIT[3] %Q0.0.3

%M1

%M2

%M3

%M0

S_BIT[1]

S_BIT[2]

S_BIT[2]

input condition
to clear SC1

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

Row 9

Row 10

Row 11

Row 12

Row 13

Row 14

%M1

1

0

%M2

2

0

%M3

%M0

3

0

0

0

SC1

SCON
REQ

ST_0

JP_1

SET

DONE

S

CUR_

 S

S_BIT

SC1

SCON
REQ

ST_0

JP_1

SET

DONE

S

CUR_

 S

S_BIT

SC1

SCON
REQ

ST_0

JP_1

SET

DONE

S

CUR_

 S

S_BIT

SC1

SCON
REQ

ST_0

JP_1

SET

DONE

S

CUR_

 S

S_BIT

8. Basic Function/Function Block Library

 8-217

 Program Example
In case of JUMP function (ST_0/JP_1 = 1), using SC2 group (last input priority)

NO %M1 %M2 %M3 %M4 S_O[1] S_O[23] S_O[98] S_O[0]
1 On Off Off Off O
2 On On Off Off O
3 On On On Off O
4 On On On On O

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

Row 9

Row 10

Row 11

Row 12

Row 13

Row 14

%M0

1

1

%M1

23

1

%M2

%M3

98

1

0

1

SC2

SCON
REQ

ST_0

JP_1

SET

DONE

S

CUR_

 S

S_O

SC2

SCON
REQ

ST_0

JP_1

SET

DONE

S

CUR_

 S

S_O

SC2

SCON
REQ

ST_0

JP_1

SET

DONE

S

CUR_

 S

S_O

SC2

SCON
REQ

ST_0

JP_1

SET

DONE

S

CUR_

 S

S_0

8. Basic Function/Function Block Library

 8-218

TMR
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Block Description

 Input
 IN: operation condition for Timer
 PT: preset time
 RST: reset

 Output
 Q: timer output
 ET: elapsed time

 Function

 ▷ When IN is 1, elapsed time is produced at ET.
 ▷ Even if IN is 0 before ET reaches PT, ET keeps its value. If IN is 1 again, elapsed time is produced at ET

integrating its previous value.
 ▷ If ET reaches PT, Q is 1..
 ▷ If RST is 1, Q and ET are 0.

 Timing Chart

TIME

TMRTMRTMRTMR

Q IN

PT

RST

ET

BOOL BOOL

BOOL

TIME

IN

RST

ET
PT

PT

Q

 Integration Timer

8. Basic Function/Function Block Library

 8-219

 Program Example

LD

(1) If 10 seconds passes after input variable T_TMR is 1, output variable TIMER_OK is 1.
(2) Elapsed time is produced at ET_TIME after T_TMR is 1.
(3) ET_TIME keeps its value even if T_TMR is 0 before ET_TIME reaches its preset time 10 seconds.
(4) If T_TMR is 1, elapsed time is produced at ET_TIME integrating its previous value.
(5) If input contact %I1.1.12 is 1, elapsed time ET_TIME and output variable TIMER_OK are all cleared.

T_TMR

%I1.1.12

ET_TIME
10s

10s

TIMER_OK

8. Basic Function/Function Block Library

 8-220

TMR_FLK
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Block Description

 Input
 IN: operation condition for Timer
 ON: TON setting time
 OFF: TOF setting time

 Output
 Q: Timer output
 ET: elapsed time

 Function

 ▷ If IN is 1, Q is 1 and maintains its value during TON setting time.
 ▷ After TON setting time set by ON, Q is 0 during TOF setting time.
 ▷ If IN is 0, it stops its function of either on or off operation and keeps its time. If IN is 1 again, it is executed with

its previous data.
 ▷ Output Q is 0 while IN is 0.
 ▷ If ON is 0, output Q is always 0.

 Timing Chart

IN

ON

OFF

ON Time

Q

OFF Time

ON Time

OFF Time

 TMR with Flicker

TIME

TMR_FLKTMR_FLKTMR_FLKTMR_FLK
Q IN

ON

OFF

ET

BOOL BOOL

TIME

TIME

RST BOOL

8. Basic Function/Function Block Library

 8-221

 Program Example

LD

(1) If input variable T_TMR_FLK is 1, TMR_FLK function block is executed.
(2) Output contact %QX1.1.5 is 1 during 5 seconds set by ON after input variable T_TMR_FLK is 1.
(3) Output contact %QX1.1.5 is 0 during 2 seconds set by OFF after 5 seconds set by ON.
(4) TON time (ON) when Q is 1 and TOF time (OFF) when Q is 0 are produced at ET_TIME by turns while

T_TMR_FLK is 1.
(5) If input variable T_TMR_FLK is 0, then it keeps its time and output contact %QX1.1.5 is 0. If T_TMR_FLK

is 1, it is executed again.
(6) If input T_TMR_FLK is 1, elapsed time ET_TIME and output contact %QX1.1.5 are all cleared.

8. Basic Function/Function Block Library

 8-222

TMR_UINT
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Block Description

 Input
 IN: operation condition for Timer
 PT: preset time
 UNIT: time unit of setting time
 RST: reset input

 Output
 Q: timer output
 ET: elapsed time

 Function

 ▷ Elapsed time is produced at ET after IN is 1.
 ▷ Even if IN is 0 before ET reaches PT, ET keeps its value. If IN is 1 again, elapsed time is produced at ET

integrating its previous value.
 ▷ Q is 1 when elapsed time reaches preset time.
 ▷ If RST is 1, Q and ET are 0.
 ▷ Setting time is PT x UNIT (ms).

 Timing Chart

TIME

TMR_UINTTMR_UINTTMR_UINTTMR_UINT

Q IN

PT

UNIT

ET

BOOL BOOL

UINT

UINT

RST BOOL

IN

RST

ET
PT×UNIT

Setting Time
(PT ×UNIT)

Q

 TMR with integer setting

8. Basic Function/Function Block Library

 8-223

 Program Example

LD

(1) Setting time is PT x UNIT[ms] = 10 x 1000[ms] = 10[s].
(2) Output variable TIMER_OK is 1, if 10 seconds passes after input variable T_TMR is 1.
(3) Elapsed time is produced at ET_TIME after input variable T_TMR is 1.
(4) Even if T_TMR is 0 before ET_TIME reaches preset time 10 seconds, ET_TIME keeps its value.
(5) If input variable T_TMR is 1 again, elapsed time is produced at ET integrating its previous value.
(6) If input contact %IX1.1.5 is 1, elapsed time ET_TIME and output contact TIMER_OK are all cleared.

T_TMR

%IX1.1.5

ET_TIME
10×1000

Setting Time
(10000ms)

TIMER_OK

8. Basic Function/Function Block Library

 8-224

TOF_RST
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Block Description

 Input
 IN: operation condition for Timer
 PT: preset time
 RST: reset

 Output
 Q: Timer output
 ET: elapsed time

 Function

 ▷ Q is 1 when IN is 1 and Q is 0 after preset time (PT) after IN is 0.
 ▷ Elapsed time is produced at ET after IN is 0.
 ▷ Elapsed time is 0 if IN is 1 before ET reaches PT.
 ▷ If RST is 1, Q and ET are 0.

 Timing Chart

TIME

TOF_RSTTOF_RSTTOF_RSTTOF_RST

Q IN

PT

RST

ET

BOOL BOOL

BOOL

TIME

IN

RST

ET

PT
Preset Time
(PT)

Q

 TOF with Reset

8. Basic Function/Function Block Library

 8-225

 Program Example

LD

(1) If input variable T_TOF_RST is 1, output variable TIMER_OK is 1. And TIMER_OK is 0 after 10 seconds

after T_TOF_RST is 0.
(2) If T_OF_RST is 1 within 10 seconds after it turns off, TOF_RST is initialized.
(3) Elapsed time is produced at ET_TIME.
(4) If input contact %IX1.1.15 is 1, elapsed time ET_TIME and output contact TIMER_OK are all cleared.

T_TOF_RST

%IX1.1.15

ET_TIME

10s
Preset Time
(10s)

TIMER_OK

8. Basic Function/Function Block Library

 8-226

TOF_UINT
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Block Description

 Input
 IN: operation condition for Timer
 PT: preset time
 UNIT: time unit of setting time
 RST: reset

 Output
 Q: Timer output
 ET: elapsed time

 Function

 ▷ Q is 1 when IN is 1. And Q is 0, if setting time (PT) passes after IN is 0.
 ▷ Elapsed time is produced at ET after IN is 0.
 ▷ If IN is 1 before ET reaches PT, ET is 0.
 ▷ If RST is 1, Q and ET are 0.

 ▷ Setting time is PT x UNIT (ms).

 Timing Chart

TIME

TOF_UINTTOF_UINTTOF_UINTTOF_UINT

Q IN

PT

UNIT

ET

BOOL BOOL

UINT

UINT

RST BOOL

IN

RST

ET

PT×UNIT
Preset Time

(PT ×UNIT)

Q

 TOF with integer setting

8. Basic Function/Function Block Library

 8-227

 Program Example

LD

(1) Preset time PT x UNIT[ms] = 10 x 1000[ms] = 10[s].
(2) If input variable T_TOF is 1, output variable TIMER_OK is 1. TIMER_OK is 0, if 10 seconds passes after

T_TOF is 0.
(3) If T_TOF is 1 within 10 seconds, TOF_UINT is initialized.
(4) Elapsed time is produced at ET_TIME.
(5) If input contact %IX1.1.5 is 1, TIMER_OK and ET_TIME are all cleared.

T_TOF

%IX1.1.5

ET_TIME

10×1000
Preset Time

(10 ×1000)

TIMER_OK

8. Basic Function/Function Block Library

 8-228

TON_UINT
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Block Description

 Input
 IN: operation condition for Timer
 PT: preset time
 UNIT: time unit of setting time

 Output
 Q: timer output
 ET: elapsed time

 Function

 ▷ Elapsed time is produced at ET after IN is 1.
 ▷ Elapsed time ET is 0, if IN is 0 before ET reaches PT.
 ▷ Q is 0, if IN is 0 after Q is 1.
▷ Preset time is PT x UNIT[ms].

 Timing Chart

TIME

TON_UINTTON_UINTTON_UINTTON_UINT

Q IN

PT

UNIT

ET

BOOL BOOL

UINT

UINT

IN

ET
PT×UNIT

Preset Time
(PT ×UNIT)

Q

 TON with integer setting

8. Basic Function/Function Block Library

 8-229

 Program Example

LD

(1) Preset time is PT x UNIT[ms] = 10 x 1000[ms] = 10[s].
(2) If 10 seconds passes after input variable T_TON is on, output variable TIMER_OK is 1.
(3) Elapsed time is produced at ET_TIME after input variable T_TON is on.
(4) If T_TON is 0 before elapsed time ET_TIME reaches 10 seconds, ET_TIME is 0.
(5) If T_TON is 0 after TIMER_OK is 1, TIMER_OK and ET_TIME are 0.

T_TON

ET_TIME
10×1000

Preset Time
(10,000ms)

TIMER_OK

8. Basic Function/Function Block Library

 8-230

TP_RST
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Block Description

 Input
 IN: operation condition for Timer
 PT: preset time
 RST: reset

 Output
 Q: timer output
 ET: elapsed time

 Function

 ▷ If IN is 1, Q is 1. And if elapsed time reaches preset time, timer output Q is 0.
 ▷ ET increases its value from when IN is 1, keeps its value at PT and is cleared when IN is 0.
 ▷ It doesn't matter whether IN changes its state or not while timer output Q is 1 (during a pulse output).
 ▷ If RST is 1, output Q and ET are 0.

 Timing Chart

TIME

TP_RSTTP_RSTTP_RSTTP_RST

Q IN

PT

RST

ET

BOOL BOOL

BOOL

TIME

IN

RST

ET

Preset Time

(PT)

Q

PT

 TP with Reset

8. Basic Function/Function Block Library

 8-231

 Program Example

LD

(1) If input variable T_TP_RST is 1, output variable TIMER_OK is 1. And 10 seconds later, TIMER_OK is 0.

Once TP_RST timer is executed, input T_TP_RST doesn't matter.
(2) ET_TIME value increases and stops at 10S. And if T_TP_RST is 0, it is 0.
(3) If input contact %I1.1.12 is 1, TIIMER_OK and ET_TIME are all cleared.

TIMER_OK

T_TP_RST

%I1.1.12

ET_TIME
10s

Preset Time
(10s)

8. Basic Function/Function Block Library

 8-232

TP_UINT
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Block Description

 Input
 IN: operation condition for Timer
 PT: preset time
 UNIT: time unit of setting time
 RST: reset

 Output
 Q: timer output
 ET: elapsed time

 Function

 ▷ If IN is 1, Q is 1. And if elapsed time reaches preset time, timer output Q is 0.
 ▷ ET increases its value from when IN is 1, keeps its value at PT and is cleared when IN is 0.
 ▷ It doesn't matter whether IN changes its state or not while timer output Q is 1 (during a pulse output).
 ▷ If RST is 1, output Q and ET are 0.
 ▷ Preset time is PT x UNIT[ms].

 Timing Chart

TIME

TP_UINTTP_UINTTP_UINTTP_UINT

Q IN

PT

UNIT

ET

BOOL BOOL

UINT

UINT

RST BOOL

IN

RST

ET
PT×UNIT

Preset Time
(PT×UNIT)

Q

 TP with integer setting

8. Basic Function/Function Block Library

 8-233

 Program Example

LD

(1) Preset time is PT x UNIT[s] = 10 x 1000[s] = 10[s].
(2) If input variable T_TP is 1, output variable TIMER_OK is 1. And 10 seconds later, TIMER_OK is 0. Once

TP_UINT timer is executed, input T_TP doesn't matter.
(3) ET_TIME value increases and stops at 10000. And if T_TP is 0, it is 0.
(4) If input contact %IX1.1.5 is 1, TIMER_OK and ET_TIME are all cleared.

T_TP

%IX1.1.5

ET_TIME
10×1000

Preset Time

(10,000ms)

TIMER_OK

8. Basic Function/Function Block Library

 8-234

TRTG
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Block Description

 Input
 IN: operation condition for Timer
 PT: preset time
 RST: reset

 Output
 Q: timer output
 ET: elapsed time

 Function

 ▷ If IN is 1, Q is 1. And if elapsed time reaches preset time, timer output Q is 0.
 ▷ If IN turns on again before elapsed time reaches preset time, then elapsed time is set as 0 and increased

again. And if it reaches PT, Q is 0.
 ▷ If RST is 1, timer output Q and elapsed time ET are 0.

 Timing Chart

TIME

TRTGTRTGTRTGTRTG

Q IN

PT

RST

ET

BOOL BOOL

BOOL

TIME

IN

RST

ET PT

Preset Time

(PT)

Q

 Retriggerable Timer

8. Basic Function/Function Block Library

 8-235

 Program Example

LD

(1) TIMER_OK is 1 during 10 seconds after input variable T_TRTG becomes 1 from 0. If T_TRTG becomes

1 from 0 after timer is executed, ET_TIME is set as 0 and increased again.
(2) TIMER_OK is 1 during 10 seconds even when T_TRTG becomes 0 from 1.
(3) ET_TIME value increases and stops at T#10S. And it is 0 when T_TRTG is 0.
(4) If input contact %I1.1.15 is 1, TIMER_OK and ET_TIME are all cleared.

T_TRTG

%I1.1.15

ET_TIME 10s

Preset Time

(10s)

TIMER_OK

8. Basic Function/Function Block Library

 8-236

TRTG_UINT
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Block Description

 Input
 IN: operation condition for Timer
 PT: preset time
 UNIT: time unit of setting time
 RST: reset

 Output
 Q: timer output
 ET: elapsed time

 Function

 ▷ If IN is 1, Q is 1. And if elapsed time reaches preset time, timer output Q is 0.
 ▷ If IN turns on again before elapsed time reaches preset time, then elapsed time is set as 0 and increased

again. And if it reaches PT, Q is 0.
 ▷ If RST is 1, timer output Q and elapsed time ET are 0.
 ▷ Preset time is PT x UNIT[ms].

 Timing Chart

TIME

TRTG_UINTTRTG_UINTTRTG_UINTTRTG_UINT

Q IN

PT

UNIT

ET

BOOL BOOL

UINT

UINT

RST BOOL

IN

RST

ET×UNIT PT×UNIT

Preset Time

(PT)

Q

 TRTG with integer setting

8. Basic Function/Function Block Library

 8-237

 Program Example

LD

(1) Preset time is PT x UNIT[ms] = 10 x 1000[ms] = 10[s].
(2) TIMER_OK is 1 during 10 seconds after input variable T_TRTG becomes 1 from 0. If T_TRTG becomes

1 from 0 after timer is executed, ET_TIME is set as 0 and increased again.
(3) TIMER_OK is 1 during 10 seconds even when T_TRTG becomes 0 from 1.
(4) ET_TIME value increases and stops at 10000. And it is 0 when T_TRTG is 0.
(5) If input contact %IX1.1.5 is 1, TIMER_OK and ET_TIME are all cleared.

T_TRTG

%IX1.1.5

ET×TIME 10×1000

Preset Time
(10,000ms)

TIMER_OK

	Instruction & Programming
	Contents
	1. Overview
	1.1 Characteristics of IEC 1131-3 Language
	1.2 Type of Language

	2. The Structure of Software
	2.1 Overview
	2.2 Project
	2.3 Configuration

	3. Common Elements
	3.1. Expression
	3.2 . Data Type
	3.3. Variable
	3.4. Reserved Word
	3.5. Program Type

	4. SFC (Sequential Function Chart)
	4.1. Overview
	4.2. SFC Structure
	4.3. Extension Regulation

	5. IL (Instruction List)
	5.1. Overview
	5.2. Current Result: CR
	5.3. Instructions
	5.4. Calling of Function and Function Block

	6. LD (Ladder Diagram)
	6.1. Overview
	6.2. Bus Line
	6.3. Connection Line
	6.4. Contact
	6.5. Coil
	6.6. Calling of Function and Function Block

	7. Function and Function Block
	7.1. Function
	7.2. MK (MASTER-K) Function
	7.3. Array Operation Function
	7.4. Basic Function Block

	8. Function/Function Block Library
	8.1 Basic Function Library
	8.2 Application Function Library
	8.3 Basic Function Block Library
	8.4 Application Function Block Library

