. 7-80!Uﬁon Leader in Electrics & Automation

User Manual

GLOFA-GM

Instructions

A Safety Instructions

* Read this manual carefully before installing, wiring, operating, servicing or inspecting this equipment.

* Keep this manual within easy reach for quick reference.

Ls
sananar las | .
www.Isis.biz

Table of Contents

Ch 1. Overview

1.1. Characteristics of |EC 1131-3 Language 1-1
1.2. Type of LanQuageooi i e 1-1

Ch 2. The Structure of Software

2.l OV VI W L 2-1
2. 2. PrOJeCt 2-1
2.3, Configuration 2-1
2.3. 1. RESOUICE . ittt e 2-2
2.3. 1.0 Program . ..o 2-2
2.3.1.2. Resource Global Variable....... ... oo i, 2-2
2.3.1.8. TaSK . 2-3

2.3.2. Configuration Global Variableo i ... 2-4
2.3.3. Access Variable 2-4

Ch 3. Common Elements

3 EXPIESSION ot 3-1
3.1 dentifiers oo 3-1
3.1.2. Data EXPressSion ... 3-1

3,120 NUMDEIS . oo 3-2
3.1.2.2. Character String...... ..o, 3-2
3.1.2.3. Time Letters . ..o 3-2
3.1.2.3.0. Duration ... 3-2
3.1.2.3.2. Time of Day and Date 3-3

3.2, D8ta TYPE oot 3-4
3.2.1. Basic Data Type ... 3-4
3.2.2. Data Type Hierarchy Chart o i 3-5
3.2.3. Initial Value ... 3-5
3.2.4. Data Type STrUCTUre ... e 3-6

3.3, Variable oo 3-8
3.3.1. Variable EXpressionouuiiiiiii e 3-8
3.3.2. Variable Declarationooiiiiiiiiii .. 3-9

3.3.3. Reserved Variable. 3-12

Table of Contents

3.4, Reserved Word ... oo 3-17
3.5, Program TYPe ...t 3-18
3.5 1. FUNCEION e 3-18
3.5.2. Function BIOCK .. .o 3-19
3.5.8. Program ... 3-20

Ch 4. SFC (Sequential Function Chart)

Aol VeIV B oo 4-1
4.2, SFC SIrUCTUIe L 4-1
A 2 T SOD ot 4-1
42,2, TransSition ... 4-2
4. 2.3, ACTION 4-2
4.2.4. Action Qualifier ... oo 4-3
4.3. Extension Regulation ... 4-8
4.3.7. Serial Connectionuiii e 4-8
4.3.2. Selection Branch 4-8
4.3.3. Parallel Branch (Simultaneous Branch) 4-9
4.3 4. JUMD .« 4-9

Ch 5. IL (Instruction List)

S OV IV B L 5-1
5.2. Current Result: CR... .. 5-1
5.3, INStIUCTIONS . oo 5-2
5.3 1. Label . 5-2
5.3, 2. Modifier . 5-2
5.3.3. Basic Operation.o 5-3
5.3.3.1. Basic Operatoro 5-5

5.4. Calling of Function and Function Block.......... 5-24

Table of Contents

Ch 6. LD (Ladder Diagram)

B. 1. OVBIVIBW « ot 6-1
B.2. BUS LiNe oo 6-1
6.3. Connection Line 6-2
B.4. CONtaCT . ot 6-3
T o 6-4
6.6. Calling of Function and Function Block 6-5

Ch 7. Function and Function Block

7l FUNGE I ON L 7-1
7.1.1. Type Conversion FUNCLion ... 7-1
7.1.2. Arithmetic Functiono 7-8

7.1.2.1. Numerical Operation Function with One Input............ 7-8
7.1.2.2. Basic Arithmetic Function........ ... oo, 7-8
7.1.3. Bit Array FUNCLION ..o 7-9
7.1.3.1.0 Bit=shift Function... ... i 7-9
7.1.3.2. Bit Operation Function.............. i, 7-9
7.1.4. Selection FUNCLION ... ot e 7-9
7.1.5. Data Exchange Function i 7-9
7.1.6. Comparision FUNCLION ...t e 7-10
7.1.7. Character String Function 7-10
7.1.8. Time/Time of Day/Date and Time of Day Function.............. 7-11
7.1.9. System Control Function 7-11
7.1.10. Data Manipulation Function 7-12
7.1.11. Stack Operation Function oo, 7-12

7.2. MK (MASTER-K) FUNCEION ..\t 7-13

7.3. Array Operation FUNCtiono i 7-13

7.4, Basic Function BIoCKo 7-13
7.4.1. Bistable Function Block ... 7-13
7.4.2. Edge Detection Function Block oL, 7-13
T.4.3. COUNT BT e 7-14
R I 117 7-14

7.4.5. 0ther Function Block ... 7-14

Ch 8. Basic Function/Function Block Library

8.1 Basic Function Libraryo
ABS

B T A %
BOOL O %% e
BY T T O A%k
CONCAT .

DA T A %% L
DELETE.

LN T A%

v

Table of Contents

Table of Contents

LN 8-49
LG 8-50
LREAL _TO #%% 8-51
LT 8-53
LWORD_TO_#%% .. e 8-54
A 8-56
M 8-57
MIN 8-58
oD 8-59
MOVE . 8-60
UL 8-61
MU T IME o 8-62
MU 8-63
NE 8-64
N 8-65
NUM_TO_STRING ..o e 8-66
OR 8-67
RE AL T O A %% 8-68
REPLACE .. o 8-70
RIGHT 8-72
ROl 8-73
ROR 8-74
SEL 8-75
SHL 8-76
SHR 8-77
SIN 8-78
SN T T O A %% 8-79
SORT 8-81
STOP 8-82
STRING_TO %% e 8-83
STRING T O _ARY et 8-85
SUB 8-86
SUB DATE 8-87
SUB DT 8-88
SUB T IME oo 8-89
SUB_TOD .. 8-90
AN 8-91
TIME T O %% 8-92
TOD T O ™% 8-93
TRUNC . 8-94
UD INT T O %% e e 8-95
U N T O A%k 8-97

Table of Contents

VI

O 8-99
USINT T k%% e 8-101
DT RS o 8-103
WORD T O %% e 8-105
KO 8-106
8.2 Application Function Library 8-107
ARY_ASC_TO_BCD ..ot e 8-108
ARY _ASC_TO BYTE o 8-110
ARY _AVE % %% e 8-112
ARY_BCD_TO_ASC ..o 8-114
ARY _BYTE_TO_ASC ... 8-116
ARY O %% 8-118
ARY L %% % e 8-120
ARY _MOVE . 8-122
ARY _ROT G *x% e 8-124
ARY S CH % %% 8-126
ARY ST G xxk e 8-128
ARY _SWAP _**x 8-130
ASC_TO_BCD ..t e 8-132
ASC_TO BYTE . 8-133
BCD_TO_ASC . .ot 8-134
BT BYTE o 8-135
BMOV _*xx 8-136
BOUM ** % 8-138
BY TE BT o 8-139
BYTE_TO_ASC ..t 8-140
BYTE_WORD . .. 8-141
D G %% 8-142
DEC O _* %% 8-143
D G % 8-144
DS,k 8-145
DWORD_LWORD . ..\ttt e e e e 8-147
DWORD_WORD . .ottt e e e e 8-148
ENCO_B, W, D, L oo 8-149
GET _CHAR 8-150
INC_B,W,D, L o 8-151
LWORD_DWORDttt ettt e e e e e e e e e 8-152
MO o 8-153
MCSCLR .. 8-155
MEQ . 8-156
PUT _CHAR 8-158

Table of Contents

R D %% e 8-159
ROT AT E A %% 8-160
ROT AT E G %% L e 8-163
RTC SET .« 8-165
SEG_WORD ..o 8-168
SHIF T A %%k 8-170
SHIF T A %% e 8-173
S AR %k 8-175
UN % 8-176
WORD_BYTE ..o 8-178
WORD_DWORD . . ottt e e e e e e 8-179
KCOHG %% % 8-180
8.3 Basic Function Block Library 8-182
T et 8-183
CTU e 8-185
CTUD o 8-187
o TRIG . 8-189
RS 8-190
R TRIG . 8-191
SEMA o 8-192
SR 8-195
TOF 8-196
TON L 8-198
TP e 8-200
8.4 Application Function Block Library 8-202
TR 8-203
DUTY 8-205
IR %% 8-207
LR O %% 8-211
SCON o 8-215
TR 8-218
TR LK L 8-220
TUR _UINT o 8-222
TOF RS 8-224
TOF _UINT o 8-226
TON_UINT o 8-228
TP RS e 8-230
TP _UINT o 8-232
TRTG o 8-234
TRTG_UINT L 8-236

Vil

1. Overview

1. Overview
This instruction describes languages that support GM1~GM7 (GLOFA PLC).

GLOFA PLC is based on the standard language of IEC (International Electrotechnical Commission).

1.1Characteristics of IEC 1131-3 Language
The characteristics of IEC language newly introduced are as follows:

> Available to support several data types.

> The introduction of program elements such as functions, function blocks etc. enables the bottom-
up design and top-down design and the structural creation of PLC program.

> The program created by the user shall be stored like as a library system so that it can be used in
other environment, which enables to reuse the software.

> Available to support various languages so that the user can select the optimal language suitable

for the environment to apply.

1.2Type of Language
The PLC language standardized by IEC consists of two illustrated languages, two character languages
and SFC.
B> lllustrated languages
a) LD (Ladder Diagram): A graphical language that is based on the relay ladder logic
b) FBD (Function Block Diagram): A graphical language for depicting signal and data flows through
function blocks - re-usable software elements
[> Character language
a) IL (Instruction List): A low-level ‘assembler like' language that is based on similar instruction list
languages.
b) ST (Structured Text): A high-level language of PASCAL type
> SFC (Sequential Function Chart): A graphical language for depicting sequential behavior of a

control system. It is used for defining control sequences that are time- and event-driven.

1-1

1. Overview

The languages supported by GLOFA PLC at present are IL, LD and SFC.

W

Choose the language to use

£ B T S s (5 BEAGTr

L) e = e = e =

e S T IR EL

1-2

2. The Structure of Software

2. The Structure of Software

2.10verview
Before making a PLC program, you should have an overall PLC system mapped out in the aspect of
software. The overall PLC system is defined as one project in GLOFA PLC. In the project, all composition

elements necessary for the PLC system are defined hierarchically.

Project — Configuration ——Resource — Program
— Resource global variable

—— Task
— Configuration global variable

L— Access variable

——Parameter — Basic parameter

— |/O parameter

—— Link parameter

2.2 Project

> For a GLOFA PLC program, the first priority should be given to project configuration. To make one
project means that all the elements necessary for a PLC system (scan programs, task definitions,
basic parameters, I/O parameters, etc.) are programmed.

> A project is divided into two groups: configuration and parameter. Configuration part is for several
definitions of a PLC program such as global variable, program, task definition and their
interrelation. Parameter part is for setting parameters necessary for a PLC system operation. In
this book, we deal with “Configuration part.” For parameter part, please refer to “"GMWIN User’s

Manual.”

2.3 Configuration
> Configuration means a PLC system. It consists of a base, a CPU module, I/O modules and special
modules and so on. Generally one PLC system has one CPU module; 4 CPU modules can be
installed in GM1.
> A PLC system has its own name called Configuration name. This becomes its unique name during
communicating between PLCs. Configuration name is limited up to maximum 8 letters in alphabet
and for more information, please refer to 3.1.1 Identifiers.

[> Configuration contains resource, configuration global variables and access variables.

2-1

2. The Structure of Software

2.3.1 Resource

>

>

Resource means one CPU module. And it is available to define 4 resources in the GM1
Configuration. For GM2 ~ GM5, only one resource is available to define. This resource has its own
name that is also used for communication. The resource name is limited up to 8 letters in alphabet
and it complies with 3.1.1 Identifiers.

Resource has programs, resource global variables and task definitions.

2.3.1.1 Program

>

>

It is an application program that is actually executed on PLC. In GLOFA PLC, it is available to
create several application programs for one resource and set program conditions to run. For
example, you can make programs as follows: program A is a general scan program; program B is
a program executed once in a second; program C is an event program that is executed with
certain inputs. These conditions to execute the program are called “Task.” Users should make an
application program as well as set the conditions (task definitions). Unless task definitions are set,

this program will be regarded as a scan program.

Reference

Scan program: application program that repeats a series of execution from the start to the end after

reading input data from input modules, and writing the results in output modules.

A program has its instance name. This instance contains data to be executed in this program.

Reference

For the instance, refer to 3.5.2. Function Block.

2.3.1.2 Resource Global Variable

>

>

The variables defined in resource global variable can be used in any program of the resource. All
the data to be shared among programs are defined in resource global variables.

If users want to use resource global variables in their programs, variables are supposed to be
declared as VAR_EXTERNAL.

Reference

For a variable type, refer to 3.3.2 Variable Declaration.

2-2

2. The Structure of Software

2.3.1.3 Task
[> Task means a condition to execute a program. Task definitions contain designation of program
execution condition and priority.
[> There are 3 types of program execution conditions as follows:
1) Single: executes once if the setting condition is satisfied. The condition is set as a name of
BOOL variable.
2) Interval: executes periodically per a setting time. The condition is set as elapsed time value.
Refer to ‘3.1.2.3.1 Duration’ for how to set the elapsed time value.
3) Interrupt: executes once if the contact of an interrupt card is ON. The condition is set as the

contact number of an interrupt card.

Execution conditions Setting Description
Single %1X0.0.1 Executes once if input contact point %I1X0.0.1 is ON.
Interval T#1S Executes per second
Interrupt 4 Executes once if the contact (#4) of an interrupt card
is ON.

> The priority is from 0 to 7. Priority O is the highest priority. When scheduling, the task with the
highest priority is executed first. And if there are some tasks with the same priority, they're
executed in execution-condition-occur order.

> The task used by the reservation in system contains _ERR_SYS, H_INIT and _INIT task.
_ERR_SYS: System Error (available in GM1, 2)
_H_INIT: Hot Restart
_INIT: Cold/Warm Restart

2-3

2. The Structure of Software

2.3.2 Configuration Global Variable
> The variables defined in Configuration Global Variables can be used in any resource program. All
the data to be shared among resources are defined in Configuration Global Variable.
> If users want to use configuration global variables in their programs, variables are supposed to be
declared as VAR_EXTERNAL.

Reference

For a variable type, refer to 3.3.2 Variable Declaration.

> Configuration global variable can be defined only in GM1 that can have several resources.

2.3.3 Access Variable

The variable defined in Access Variable can be used in other PLC system.

Reference

For the use of access variable, refer to the User's Manual (Communication part).

2-4

3. Common Elements

3. Common Elements
The elements of GLOFA PLC program (programs, functions, function blocks) can be programmed in
other languages such as IL, LD, SFC, etc., respectively. Those languages, however, have grammar

elements in common.
3.1. Expression

3.1.1. Identifiers

> Alphabet and all letters starting with underline (), and all the mixed letters with numbers and
underlines can be identifiers.

D> Identifiers are used as variable names.

> Blank (space) is not allowed in identifiers.

> In case of variables, identifiers are generally 16 letters of the alphabet while input/output variable
and instance, 8 letters of the alphabet.

> There’s no difference between small letters and capitals in alphabet; all the letters of the alphabet

are recognized as capitals.

Types Examples
Capital letters and numbers IW210, IW215Z, QX75, IDENT
Capital letters, numbers and underline LIM SW 2, LIMSW5, ABCD, AB CD
Capital letters and numbers starting with the _MAIN, 12Vv7, ABCD
underline ()

3.1.2. Data Expression

The data in GLOFA PLC is: numbers, a string of characters, time letters, etc.

Types Examples
Integer -12,0, 123 456, +986
Real number -12.0, 0.0, 0.456, 3.14159 26
Real number with an exponent -1.34E-12, 1.0E+6, 1.234E6
Binary number 2#1111 1111, 2#1110 0000

8#377 (decimal 255)
8#340 (decimal 224)
16#FF (decimal 255)
16#E0 (decimal 224)
BOOL data 0, 1, TRUE, FALSE

Octal number

Hexadecimal number

3-1

3. Com

mon Elements

3.1.2.1. Numbers
> There are integer and real numbers.
> Discontinuous underline (_) can be placed between numbers and it doesn’t have any meaning.
> Decimal complies with general decimal literal expression and if there is a decimal point, this will be
real numbers.
> In case of expressing exponent, plus/minus signs can be used. The letter ‘E’ standing for the
exponent does not distinguish capitals from small letters.
> When using real numbers with exponents, the followings are not allowed.
Ex) 12E-5(x) 12.0E-5(O)
> Integer includes binary, octal, hexadecimal numbers, not to mention decimal, which can be
distinguished by placing # in front of each number.
> 0~9andA ~F are used (including small letters a ~ f) in expressing hexadecimal.
> Not available to have plus/minus signs in expressing hexadecimal.
[> Boolean data may be expressed as an integer 0 or 1.
3.1.2.2. Character String
> Character string covers all the letters surrounded with single inverted commas.
> The length is limited up to 16 letters in case of character string constant and for an initialization
case it does within 30 letters.
Ex)
‘CONVEYER’
3.1.2.3. Time Letters
> Time letters are classified into these: 1) Duration data which is calculating and controlling the
elapsed time of a controlling event; 2) Time of Day and Date data which is displaying the time of
the starting/ending point of a controlling event.
3.1.2.3.1. Duration
> Duration data starts with the reserved word, 'T#' or 't#'.
> Several data types such as date (d), hour (h), minute (m), second (s) and millisecond (ms) should
be written in order and duration date can start with any unit among them. Millisecond (ms), the
minimum unit can be omitted but don't skip the medium unit between duration units.
> Not allowed to use the underline ().
> Duration data can overflow at the maximum unit, if any, and the data with a decimal point is
available except ‘ms’. It does not exceed T#49d17h2m47s295ms (32bits by ‘ms’ unit).
> The data is limited to the third decimal place in the second unit (s).
> Decimal point is not available at ‘ms’ unit.

3-2

3. Common Elements

[> Capital and small letters are both available.

Content Examples
T#14ms, T#14.7s, T#14.7m, T#14.7h
t#14.7d, t#25h15m, t#5d14h12m18s356ms

Duration (no underline)

3.1.2.3.2. Time of Day and Date

[> There are three types expressing ‘Time of Day and Date’ as follows: Date; Time of Day; Date and

Time.
Content Prefix as a reserved word
Date prefix D#
Time of Day prefix TOD#
Date and Time prefix DT#

> The starting point of date is January 1st, 1984.
> There's a limit on 'Time of Day’ and ‘Date and Time', which is up to the third decimal place in the
‘ms’ unit.

> The overflow is not allowed for all the units when expressing ‘Time of Day’ and ‘Date and Time’.

Content Examples
Date D#1984-06-25
d#1984-06-25
Time of Day TOD#15:36:55.36

tod#15:36:55.369

DT#1984-06-25-15:36:55.36
dt#1984-06-25-15:36:55.369

Date and Time

3-3

3. Common Elements

3.2. Data Type

Data has a data type to show its character.

3.2.1. Basic Data Type

GLOFA PLC supports the following basic data types.

No | Reserved Word Data Type Size Range
(bits)
1 | SINT Short Integer 8 -128 ~ 127
2 | INT Integer 16 -32768 ~ 32767
3 | DINT Double Integer 32 -2147483648 ~ 2147483647
4 | LINT Long Integer 64 28~ 0%
5 | USINT Unsigned Short Integer 8 0~ 255
6 | UINT Unsigned Integer 16 0 ~ 65535
7 | UDINT Unsigned Double Integer 32 0 ~ 4294967295
8 | ULINT Unsigned Long Integer 64 0~2%1
9 | REAL Real Numbers 32 -3.402823E38 ~ -1.401298E-45
1.401298E-45 ~ 3.402823E38
10 | LREAL Long Real Numbers 64 -1.7976931E308 ~-4.9406564E-324
4.9406564E-324 ~ 1.7976931E308
11 | TIME Duration 32 T#0S ~ T#49D17H2M47S295MS
12 | DATE Date 16 D#1984-01-01 ~ D#2163-6-6
13 | TIME_OF_DAY | Time of Day 32 TOD#00:00:00 ~ TOD#23:59:59.999
14 | DATE_AND_TI | Date and Time 64 DT#1984-01-01-00:00:00 ~
ME DT#2163-12-31-23:59:59.999
15 | STRING Character String 30*8 | Limited within 30 letters.
16 | BOOL Boolean 1 0,1
17 | BYTE Bit String of Length 8 8 16#0 ~ 16#FF
18 | WORD Bit String of Length 16 16 16#0 ~ 16#FFFF
19 | DWORD Bit String of Length 32 32 16#0 ~ 16#FFFFFFFF
20 | LWORD Bit String of Length 64 64 16#0 ~ 16#FFFFFFFFFFFFFFFF

% LINT, ULINT, REAL, LREAL, LWORD are available in GM1 and GM2 only.

3-4

3. Common Elements

3.2.2. Data Type Hierarchy Chart
Data types used in GLOFA PLC are as follows:

ANY
[[} [[
ANY_NUM ANY_BIT ANY STRING ANY_DATE TIME
—— LWORD (GM1,2) ATE_AND_TIME
ANY_REAL ANY_INT DWORD DATE
(GML2) LINT (GM1,2) WORD TIME_OF DAY
LREAL DINT BYTE
REAL INT BOOL
SINT
ULINT (GM1,2)
UDINT
UINT
USINT

> LINT, ULINT, LWORD and ANY_REAL (LREAL, REAL) are available in GM1 and GM2 only.
[> Data expressed as ANY_NUM includes LREAL, REAL, LINT, DINT, INT, SINT, ULINT, UDINT,

UINT, USINT hereafter.

> For example, if a data type is expressed as ANY_BIT in GM3, it can use one of the following data

types: DWORD, WORD, BYTE and BOOL.

3.2.3. Initial Value

If an initial value of data were not assigned, it would be automatically assigned as below.

Data Type Initial Value
SINT, INT, DINT, LINT 0
USINT, UINT, UDINT, ULINT 0
BOOL, BYTE, WORD, DWORD, LWORD 0
REAL, LREAL 0.0
TIME T#0s
DATE D#1984-01-01
TIME_OF_DAY TOD#00:00:00

DATE_AND_TIME

DT#1984-01-01-00:00:00

STRING

"' (empty string)

3-5

3. Common Elements

3.2.4. Data Type Structure

Bit String
BOOL || 1 bit, range: 0, 1
7 0
BYTE 8 bits, range: 2#0000_0000 ~ 2#1111_1111, 16#00 ~ 16#FF
15 87 0
WORD 16 bits, range: 2#0000_0000 _0000_0000 ~ 2#1111_1111 1111 1111
16#0000 ~ 16#FFFF
31 16 15 0
DWORD 32 bits, range: 2#0000_...000 ~ 2#1111_...111
16#00000000 ~ 16#FFFFFFFF
63 3231 0
LWORD

64 bits, range: 2#0000_...000 ~ 2#1111_...111, 16#0000000000000000 ~ 16#FFFFFFFFFFFFFFFF

Unsigned Integer

7 0
USINT 8 bits, range: 0 ~ 255
15 87 0
UINT 16 bits, range: 0 ~ 65,535
31 16 15 0
UDINT 32 bits, range: 0 ~ 4,294,967,295
63 3231 0
ULINT

64 bits, range: 0 ~ 2°*-1

Integer (Negative number is expressed as 2's Complement.)

7 0
SINT 8 bits, range: -128 ~ 127
15 87 0
INT 16 bits, range: -32,768 ~ 32,767
31 16 15 0
DINT 32 bits, range: -2,147,483,648 ~ 2,147,483,647
63 3231 0
LINT

64 bits, range: -2%° ~ 2%%-1

3-6

3. Common Elements

Real (based on the IEEE Standard 754-1984)

3130 2322 0
REAL |§Exponen Fraction 32 bits, range: +1.401298E-45 ~ +3.402823E38
LREAL |$ Exponent Fraction

63 62 52 51 0

64 bits, range: +4.9406564E-324 ~ +1.7976931E308
- S: sign (If it's O, the data is a positive number; otherwise, a negative number).
- Exponent: exponent of 2 (2°7?"; for REAL, e=bgobys...b,s; for LREAL, e=bg,be;...bsy).
- Fraction: a decimal fraction (Fraction: for REAL, f=by,0,;...bg; for LREAL, e=bs;bs;...bg).
Time

31 0
TIME 32 bits, range: 0 ~ 4,294,967,295ms
T#49d17h2m47s295ms
Date
63 48 47 32 31 0
DT 00000000000000P0O DATE TOD
64bits, range: DT#1984-01-01-00:00:00 ~ DT#2163-12-31-23:59:59.999
15 0
DATE 16bits, range: D#1984-01-01 ~ D#2163-6-6
31 0
TOD 32bits, range: TOD#00:00:00 ~ TOD#23:59:59.999
#BCD
7 43 0
(BYTE) 10" 109 8bits, range: 0 ~ 99
15 87 0
(WORD) 107 | 10% | 10| 10° 16bits, range: 0 ~ 9999
31 24 23 16 15 87 0

(DWORD) | 107] 10°| 10° 101 1010%| 107 104 32bits, range: 0 ~ 99,999,999

63 48 47 32 31 16 15 0
(LWORD) | 10%10" | 10"%| 10'] 10'"| 10" 10° |10® [107 | 10°| 10°| 10%| 10?| 10%| 10% 10
64bits, range: 0 ~ 9,999,999,999,999,999

3-7

3. Common Elements

3.3. Variable
A variable, data used in the program, has its own value. ‘Variable’ means something that can vary such

as an input/output of PLC, memory, etc.

3.3.1. Variable Expression

> Variables can be expressed in two ways: one is to give a name to a data element using an
identifier (Variable by Identifier) and the other is to directly assign a memory address or an
input/output of PLC to a data element (Direct Variable).

> A variable by identifier should be unique within its ‘effective scope’ (program area where the
variable was declared) in order to distinguish it from other variables.

> A direct variable is expressed as one, which starts with the percent sign (%) followed by the
‘location prefix’, a prefix of the data size, and more than one unsigned integer numbers divided by

a period (.). The prefix are shown as below:

Location prefix

No. Prefix Meaning
1 I Input Location
2 Q Output Location
3 M Memory Location

Size prefix

No. Prefix Meaning
1 X 1 hit size
2 None 1 bit size
3 B 1 BYTE (8 bits) size
4 w 1 WORD (16 bits) size
5 D 1 DOUBLE WORD (32 hits) size
6 L 1 LONG WORD (64 bits) size

Expression format

%[Location Prefix][Size Prefix] n1.n2.n3

No. I,Q M

nl Base number (starting from “0") nl data according to [size prefix]

(starting from “0”)

n2 Slot number (starting from “0”) n2 bit of nl1 data (starting from “0"):

available to omit

n3 n3 data according to the [size prefix] Not used.

(starting from “0”)

3-8

3. Common Elements

Examples

%QX3.1.4 or %Q3.1.4 4" output of no.1 slot on no.3 base (1bit)

%I W2.4.1 1* word input of no.4 slot on no.2 base (16bits)
%MD48 48" double word memory

%MW40.3 3" bit of 40™ word memory

(Internal memory doesn’t have a base or slot number.)

> Small letter is not allowed as a prefix.
> A variable without a size prefix is treated as 1 bit.

[> Direct variables are available to use without a variable declaration.

3.3.2. Variable Declaration
> Program elements (programs, functions, function blocks, etc) have declaration parts to edit their
variables to use.
> Users should declare variables first to use them in the program elements.

> The contents of a variable declaration are as follows:

1) Variable types: how to declare variables?

Variable types Description
VAR General variable available to read/write
VAR RETAIN Retaining (data-keeping) variable
VAR_CONSTANT Read Only Variable
VAR EXTERNAL Declaration to use the variable declared as VAR _GLOBAL
Reference

When declaring Resource Global Variable and Configuration Global Variable, variable formats are
VAR_GLOBAL, VAR_GLOBAL_RETAIN, and VAR_GLOBAL_CONSTANT; VAR_EXTERNAL is

not available for them.

2) Data type: sets a variable data type.
3) Memory allocation: assigns memory for a variable.
Auto: the compiler sets a variable location automatically (Automatic Allocation Variable).

Assign (AT): a user sets a variable location, using a direct variable (Direct Variable).

3-9

3. Common Elements

Reference

The location of Automatic Allocation Variable is not fixed. If variable VAL1, for example, was
declared as BOOL, it is not fixed in the internal memory; the compiler and linker fix its location. If the
program is compiled again after modification, the location may change.

The merit of Automatic Allocation Variable is that users don’'t have to care the location of the
internal variables because its location is not overlapped as long as a variable name is different from
others.

It is recommended not to use Direct Variable except % I and %Q because the location of a variable

is fixed and it could be overlapped in a wrong-used case.

D> Initial Value Assignment: assigns an initial value. A variable is set with an initial value as is shown

in ‘3.2.3. Initial Value' if not assigned.

Reference
The initial value is not assigned when it comes to VAR_EXTERNAL.

In case of ‘Variable Declaration’, you cannot assign an initial value to % I or %Q variables.

> You can declare variable VAR_RETAIN that keeps its data in case of power failure. Rules are:
1) ‘Retention Variable’ retains its data when the system is set as ‘Warm Restart'.
2) In case of ‘Cold Restart’, variables are initialized as the initial values set by users or the basic
initial values as are shown in ‘3.2.3 Initial Value'.
> Variables, which are not declared as VAR_RETAIN, are to be initialized as the initial values set by

a user or the basic initial values in case of Warm or Cold Restart’.

Reference
Variables, which are assigned as %l or %Q, are not to be declared as VAR_RETAIN or
VAR_CONSTANT.

> Users can declare variables 'Array’ with Elementary Data Type. When declaring the Array Variable,
users are supposed to set Data Type and Array Size; ‘String’ among Elementary Data Type is not
allowed.

> Effective scope of variable declaration, the area which is available to use the variable, is limited to
the program where variables are declared. And users can't use variables declared in other
program in the above area. On the contrary, users can get an access to 'Global Variable' from
other program elements by declaring it as 'VAR_EXTERNAL'": 'Configuration Global Variable' can
be used in all program elements of all resources; 'Resource Global Variable' can be used in all

program elements of the very resource.

3-10

3. Common Elements

Examples of Variable Declaration

Variable Name Variable Kind Data Type Initial Value |Memory Allocation
I VAL VAR INT 1234 Auto
BIPOLAR VAR_RETAIN REAL Auto
LIMIT_SW VAR BOOL %I1X1.0.2
GLO_SW VAR_EXTERNAL| DWORD Auto
READ_ BUF VAR ARRAY OF INT[10] Auto

3-11

3. Common Elements

3.3.3. Reserved Variable
> ‘Reserved Variable’ is the variables previously declared in the system. These variables are used
for special purposes and users cannot declare other variables with the Reserved Variable names.
> Users can use these reserved variables without variable declaration.

> For further information, please refer to ‘User's Manual'.

1) User Flag
Reserved Variable Data Type Description
_ERR BOOL Operation error contact
_LER BOOL Operation error latch contact
_T20MS BOOL 20ms clock contact
_T100MS BOOL 100ms clock contact
_T200MS BOOL 200ms clock contact
_T1S BOOL 1 sec. clock contact
_T2S BOOL 2 sec. clock contact
_T10S BOOL 10 sec. clock contact
_T20S BOOL 20 sec. clock contact
_T60S BOOL 60 sec. clock contact
_ON BOOL All time ON contact
_OFF BOOL All time OFF contact
_10N BOOL 1 scan ON contact
_10FF BOOL 1 scan OFF contact
_STOG BOOL Reversal at every scanning
_INIT_DONE BOOL Initial program completion
_RTC DATE DATE Current date of RTC
RTC_TOD TOD Current time of RTC
_RTC WEEK UINT Current day of RTC

3-12

3. Common Elements

2) System Error Flag

Reserved Variable Data Type Description

_CNF_ER WORD System error (Heavy trouble)

_CPU_ER BOOL CPU configuration error

10 TYER BOOL Module type inconsistency error

_IO_DEER BOOL Module installation error

_FUSE_ER BOOL Fuse shortage error

_IO_RWER BOOL I/O module read/write error (trouble)
_SP_IFER BOOL Special/communication module interface error (trouble)
_ANNUN_ER BOOL Heavy trouble detection error of external device
~WD_ER BOOL Scan Watch-Dog error

_CODE_ER BOOL Program code error

_STACK ER BOOL Stack Overflow error

_P_BCK_ER BOOL Program error

3) System Error Release Flag

Reserved Variable Data Type Description
_CNF ER M BYTE System error (heavy trouble) release

4) System Alarm Flag
Reserved variable Data type Description
_CNF_WAR WORD System Alarm (Alarm message)
_RTC ERR BOOL RTC data error
D BCK ER BOOL Data backup error
~H BCK ER BOOL Hot restart unable error
_AB SD ER BOOL Abnormal Shutdown
_TASK ERR BOOL Task conflict (normal cycle, external task)
_BAT ERR BOOL Battery error
~ANNUN_ WR BOOL Light trouble detection of external device
_HSPMT1 ER BOOL Over high-speed link parameter 1
_HSPMT2 ER BOOL Over high-speed link parameter 2
_HSPMT3_ER BOOL Over high-speed link parameter 3
_HSPMT4 ER BOOL Over high-speed link parameter 4

3-13

3. Common Elements

5) Detailed System Error Flag

Reserved variable Data type Description

10 TYER N UINT Module type inconsistency slot number
10 TYERR ARRAY OF BYTE Module type inconsistency location

10 DEER N UINT Module installation slot number
_|IO_DEERR ARRAY OF BYTE Module installation location

_FUSE ER N UINT Fuse shortage slot number

_FUSE ERR ARRAY OF BYTE Fuse shortage slot location

10 RWER N UINT I/0O module read/write error slot number
_IO_RWERR ARRAY OF BYTE I/O module read/write error slot location
_ANC ERR ARRAY OF UINT Heavy trouble detection of external device
_ANC_WAR ARRAY OF UINT Light trouble detection of external device
_ANC WB ARRAY OF BOOL Alarm message detection bit map of external device
_TC BMAP ARRAY OF BOOL Task conflict mark

_TC CNT ARRAY OF UINT Task conflict counter

_BAT ER_TM DT Battery voltage drop-down time

~AC F CNT UINT Shutdown counter

_AC F TM ARRAY OF DT Instantaneous service interruption history

3-14

3. Common Elements

6) Information of System Operation Status

Reserved variable Data type Description
_CPU_TYPE UINT System Type
_VER_NUM UINT PLC O/S Version number
_MEM_TYPE UINT Memory module type
_SYS_STATE WORD PLC mode and status
_RST_TY BYTE Restart mode information
_INIT_RUN BIT Initializing
_SCAN_MAX UINT Max. scan time (ms)
_SCAN_MIN UINT Min. scan time (ms)
_SCAN_CUR UINT Current scan time (ms)
_STSK_NUM UINT Task number requiring execution time check
_STSK_MAX UINT Max. task execution time (ms)
_STSK_MIN UINT Min. task execution time (ms)
_STSK_CUR UINT Current task execution time (ms)
_RTC_TIME ARRAY OF BYTE Current time
_SYS_ERR UINT Error type

7) Communication Module Information Flag [n is a slot number where a communication module is

installed (n =0 ~ 7)]

Reserved variable Data type Description
_CnVERNO UINT Communication module version number
_CnTXECNT UINT Communication transmit error
_CnRXECNT UINT Communication receive error
_CnSVCFCNT UINT Communication service process error
_CnSCANMX UINT Max. communication scan time (1ms unit)
_CnSCANAV UINT Average communication scan time (1ms unit)
_CnSCANMN UINT Minimum communication scan time (1ms unit)
_CnLINF UINT Communication module system information
_CnCRDER BOOL Communication module system error (Error = 1)
_CnSVBSY BOOL Lack of common RAM resource (Lack = 1)
_CnIFERR BOOL Interface error (error = 1)
_CnINRING BOOL Communication in ring (IN_RING = 1)

3-15

3. Common Elements

8) Remote I/O Control Flag [m is a slot number where a communication module is installed (m =0 ~ 7)]

Reserved variable Data type Description

_FSMm_RESET BOOL (able to write) Remote 1 /O station reset control (reset = 1)

_FSMm_IO_RESET |BOOL (able to write) Output reset control of remote I/O station (reset =
1)

_FSMm_ST NO USINT (able to write) | Station number of corresponding remote I/O station

9) Detailed High-speed Link Information Flag [m is a high-speed link parameter number (m =1, 2, 3, 4)]

Reserved variable Data type Description

_HSmMRLINK BOOL HS RUN_LINK information
_HSMLTRBL BOOL Abnormal information of HS (Link Trouble)

General communication status information of k data
_HSMSTATE ARRAY OF BOOL| plock

Station mode information of k data block at HS link
_HSmMOD ARRAY OF BOOL| parameter (Run = 1, Other = 0)

Communication status information of k data block at HS
_HSMTRX ARRAY OF BOOL| |ink parameter (Normal = 1, Abnormal = 0)

Station status information of k data block at HS link
_HSmMERR ARRAY OF BOOL| parameter (Normal = 0, Error = 1)

3-16

3. Common Elements

3.4. Reserved Word
Reserved words are previously defined words to use in the system. And these reserved words cannot

be used as an identifier.

Reserved words

ACTION ... END ACTION

ARRAY ... OF

AT

CASE ... OF ... ELSE ... END_CASE
CONFIGURATION ... END_CONFIGURATION
Name of data type

DATE#, D#

DATE _AND TIME#, DT#

EXIT

FOR..TO..BY.. DO..END FOR
FUNCTION ... END FUNCTION
FUNCTION_BLOCK ... END_FUNCTION_BLOCK
Name of function block

IF.. THEN ... ELSIF ... ELSE ... END _IF
OK

Operator (IL language)

Operator (ST language)

PROGRAM

PROGRAM ... END_PROGRAM
REPEAT ... UNTIL ... END REPEAT
RESOURCE ... END_RESOURCE
RETAIN

RETURN

STEP ... END_STEP

STRUCTURE ... END_STRUCTURE

T#

TASK ... WITH

TIME_OF_ DAY#, TOD#

TRANSITION ... FROM... TO ... END_TRANSITION
TYPE ... END_TYPE

VAR ... END_VAR

VAR_INPUT ... END_VAR

VAR _OUTPUT ... END_VAR
VAR_IN_OUT ... END_VAR

VAR _EXTERNAL ... END VAR

VAR _ACCESS ... END VAR
VAR_GLOBAL ... END_VAR

WHILE ... DO ... END WHILE

WITH

3-17

3. Common Elements

3.5. Program Type
> There are three types of program: function, function block and program.

> Itis not available to call its own program in the program (reflexive call is prohibited).

3.5.1. Function

> A function has one output.

Example
If there is function A that is to add input IN1 and IN2 and then add 100 to the sum of IN1 and IN2. and

the output 1 <= IN1 + IN2 + 100, this function will be correct. However, if the above function has one
more output (output 2 <= IN1 + IN2 * 100), this will not be a function because it has 2 outputs: output

1 and output 2.

> A function does not have data to preserve its state inside. This means if an input is constant, an

output value should be constant, which is a function.

Example
If there is function B whose contents are

Output 1 <= IN1 + IN2 + Val
Val <= outputl (where, Val is an internal variable),
This cannot be a function as there is internal variable Val. To have an internal variable means that an
output will be different even if there is a same input. Output 1 value is subject to change because of
Val variable even if the value of IN1 and IN2 are constant as is shown on the above. Compared with
the above function A, function A will have output 1 value (150) when IN1 is 20 and IN2 is 30. This

shows that the output value will be constant if inputs are constant.

An internal variable of a function is not available to have an initial value.
Users can’t declare a function as VAR_EXTERNAL and use it.
It is not available to use direct variables inside the function.

A function will be called by program elements and used.

VAR VAR VAR VAR V4

Data transfer from program composition elements, which call the function, to the function will be

executed through an input of a function.

3-18

3. Common Elements

Example

EN oL [ENO

TEST — IN OUT — OUTPUT

NO — N

SHL function is a basic function that shifts input IN to the left as many as N bit number and produces
it as an output. Program composition elements call SHL function, assigning a value of TEST variable

to input IN and a value of NO variable to input N. The result will be stored in OUTPUT variable.

> Afunction is inserted into a library for use.
> Itis not available to call a function block or a program inside the function.
> A function has a variable whose name is the same as that of the function and whose data type is
the same as the data type of the result of the function. This variable is automatically created when
making a function, and the result value of the function will be written in the output.
Example

If a function name is WEIGH and a data type of a result value is WORD, a variable whose name is
WEIGH and whose data type is WORD will be automatically created inside the function. Users can
store the result of function in variable WEIGH.

ST WEIGH (example in IL)

3.5.2 Function Block

>
>

A function block has several outputs.

A function block has data inside. A function block should declare the instance as it declares
variables before using them. Instance is a set of variables used in a function block. A function
block should have its data memory to preserve the output value as well as variables used inside,
which is called as “instance.” A program is a kind of a function block and also needs to declare
“instance.” However, users cannot call a program inside a program or a function block for use,
contrary to a function block.

In order to use the output value of a function block, it is required to place a period (.) between the

name of instance and the output name.

3-19

3. Common Elements

Example
1 <—— Instance name
TON
— IN Q
PT ET — Output
7
Input

General examples of a function block are Timer and Counter. On-delay timer function block is TON
and this is executed if IN is ON after users declare T1 as “instance.” In order to use timer output
contact and duration value, it is required to place a period (.) between the name of instance and the
output name. In case of a timer function block, the output contact and the elapsed time value for the
instance are T1.Q and T1.ET respectively because the output contact name is Q and the elapsed
time contact name is ET. The output value of a function is a return value by calling a function while

the output value of a function block is fixed for the instance.

> Users cannot declare a direct variable inside a function block. However, users can use a direct
variable declared as Global Variable and allocated according to ‘Assign (AT)’ after declaring it as
VAR_EXTERNAL.

> A function block is inserted into a library for use.

> Itis not available to call a program inside the function block.

3.5.3 Program
> Users can use a program after declaring an instance like a function block.
> Itis available to use direct variables in the program.
> A program does not have input/output variables.

The calling of a program is defined in the resource.

3-20

4. SFC

4. SFC (Sequential Function Chart)

4.1. Overview

> SFC is a structured language that extends an application program in the form of flow chart
according to the processing sequence, using a PLC language.
> SFC splits an application program into step and transition, and provides how to connect them each
other. Each step is related to action and each transition is related to transition condition.
> As SFC should contain the state information, only program and function block among program
types are available to apply this SFC.
> Type
T1E Initial step
| 52 Pu bOTCR_ ONg——r |,
AR Action name
T T2 . .
Action Selection
Step %a e branch
o — 1 T1 T4 11
Transition E4 EI;ZI 511
T T4 T+ T 112
THI%FII?E Jump
58 Transition name Parallel
T T3 LIMITY I branch
56 510 12
TG
87
Label
THI;ETT . Qualifier
[52 hsDjRae oN |
+ T8

4.2. SFC Structure
4.2.1. Step

[> Step indicates a sequence control unit by connecting the action.

> When step is in an active state, the attached content of action will be executed.

> The initial step is one to be activated
UL initiar step
T Il Transition condition
b Step

T 1

>

first.

If a next transition condition of activated initial step (S1) is established, step 1 (S1) that is currently

activated becomes deactivated and Step 2 (S2) connected to S1 becomes activated.

4-1

4. SFC

4.2.2. Transition
> Transition indicates the execution condition between steps.
> Atransition condition should be described as a PLC language such as IL or LD.
The result of a transition condition should always be a BOOL type and the variable name should
be TRANS for any transition.
> In case that the result of transition condition is 1, the current step is deactivated and the next step
is activated.

> There must be a transition between step and step.

T1 TRAN1

T
+ T

The content of TRAN1

{01 g0 13 TRANG
—— | ¢

LY

Sl0. 0.1
—

When TRANS is on, S1 will be deactivated and S2 activated.
TRANS is the internally declared variable.

A transition condition of all transition should be output in TRANS variable.

4.2.3. Action

[> Each step is able to connect up to two actions.

> The step without action is regarded as a waiting action and it is required to wait until the next
transition condition will be 1.

> Action is composed of PLC language such as IL or LD and the content of action will be executed
while the step is activated.

> Action qualifier will be used to control action.

> When action becomes deactivated state after activating, the contact output in action will be 0.
However, S, R, function and function block output retain their state before they become non-

activating.

W ACTICND
& |ACT IO

T1

4-2

4. SFC

The content of ACTION1

SRl 0.
—

S0, 0.2
l |

——

1 %0 0.0
L

The content of ACTION2

0. 0. § o590, 0, §
— | { —
0. 0. 3 0. 0. 3
=N (>

- ACTIONL1 will be executed only when S1 is activated.
- ACTION2 will be executed until S1 meets R qualifier after activated.
It goes on executing even if S1 is deactivated.

- When action is deactivated, this action is Post Scanned and then passes to the next step.

Reference

Post Scan

When action is deactivated, this action is scanned again.

As it is scanned as if there were a contact (contact with the value of 0) in the beginning part of an
action program, the program output, which is composed of contacts, will be 0.

Function, function block, S, R output etc., are not included.

JI— postscan
4 0
— | { >—
B
—
2l S0, 0.0 0. 0.0
— —1 (>

In this figure, as the contact of postscan is 0, C and %Q0.0.0 will be 0.

4.2.4. Action Qualifier
> Whenever action is used, action qualifier will be followed.
[> The action of step defines an executing point and time according to the assigned qualifier.

> Types of action qualifier are as follows:

4-3

4. SFC

1) N (Non-Stored)
Action is executed only when the step is activated.

.4 Active state

Step connected
by N

Action

2) S (Set)
It continues the action after the step is deactivated (until the action is reset by R qualifier).

RE
Step connected ds ik .
by S Q Action
Step connected J4r1
by R

Step connected

by S

Action J I—
Step connected

by R

3) R (Overriding Reset)
It terminates the execution of an action previously started with the S, SD, SL or DS qualifier.

4-4

4. SFC

4) L (Time Limited)
It start the action when the step becomes active and continue until the step goes inactive or a set

time elapses.

Step connected AND |- Action
by L |_

Step connected J
by L
T

—

Action

5) D (Time Delayed)
Start a delay timer when the step becomes active - after the time delay the action starts (if step still

active) and continues until deactivated.

Step connected dm g

by D [~ Action

Step connected

I L
s

Action Q I—

4-5

4. SFC

6) P (Pulse)

It starts the action when the step becomes active and executes the action only once.

E_TRIG
Step connected 47LE

by P

L1

I Action

Step connected
by P J
j 1 scan

Action

7) SD (Stored & Time Delayed)
It starts a delay timer when the step becomes active - after the time delay, the action starts and

continues until reset (regardless of step activation/deactivation).

RE T
Step connected [a1 N aF Action
by SD
Step connected 4E1 PT ET
by R

Step connected

T
by SD c :

Action Q I—
|_L

Step connected
by R

4-6

4. SFC

8) DS (Delayed & Stored)
It starts a delay timer when the step becomes active - after the time delay the action starts (if step

still active) and continues until reset by R qualifier.

Step connected Jmy g B Rl Action
by DS

Step connected
by R

Step connected J |
by DS T ;

Action Q I_
[

Step connected
by R

9) SL (Stored & Timed Limited)
It starts the action when the step becomes active and continues for a set time or until the action is

reset (regardless of step activation/deactivation).

Step connected Ju = g1 AND 1 Action
by SL
Step connected 4Rl
by R N T 8
T PT ET|

Step connec.ted_ _J |
by SL

Action

Step connected
by R

4-7

4. SFC

4.3. Extension Regulation

4.3.1. Serial Connection
> 2 steps are always divided by transitions without connecting directly.

> Step always divides 2 transitions without connecting directly.

T1

T?

[correct example] [wrong example]
> For the transition between steps connected by serial, the lower step will be activated if the upper

step is active and the transition condition connected to the next is 1.

4.3.2. Selection Branch
> When a processor executes a selection branch, the processor finds the first path with a true
transition in the order of the program scan and executes the steps and transitions in that path. If
more than one path in a selection branch goes true at the same time, the processor chooses the

left-most path. The following example shows a typical scan sequence.

Example
[E1]
T Tl T4 T3
E
— T T T7

* In case that the transition condition of T1 is 1,
the order of activation will be S1 -> S2 -> S3.
* In case that the transition condition of T4 is 1,
the order of activation will be S1 -> S4 -> S3.
* In case that the transition condition of T5 is 1,
the order of activation will be S1 -> S5 -> S3.
If the transition conditions are 1 at the same time, the processor chooses the left-most path.
* In case that the transition condition of T1 and T4 is 1 at the same time,
the order of activation will be S1 -> S2 -> S3.
* In case that the transition condition of T4 and T5 is 1 at the same time,

the order of activation will be S1 -> S4 -> S3.

4-8

4. SFC

4.3.3. Parallel Branch (Simultaneous Branch)

> When a processor executes the parallel (simultaneous) branch, the processor scans the branch
from left-to-right, top-to-bottom. It appears that the processor executes each path in the branch
simultaneously.

> In case of connecting by parallel branch, if the transition condition connected to the next is 1, all
steps tied to this transition will be activated. The extension of each branch will be the same as
serial connection. At this time, the steps in the state of activation are as many as the number of
branches.

> In case of combining in parallel branch, if the transition condition is 1 when the state of all the last

steps of each branch is activated, the step connected to the next will be activated.

Example

- If the transition condition of T1 is 1 when S1 is active, S2, S6 and S8 will be activated and S1 will be

deactivated.

- If the transition condition of T4 is 1 when S4, S7 and S8 are activated, S5 will be activated and S4,
S7 and S8 will be deactivated.

* The order of activation
S1-+->52-->53-->54--+->55

4.3.4. Jump

> If the transition condition connected to the next is 1 after the last step of SFC is activated, the initial

step of SFC will be activated.

4-9

4. SFC

Example

* The order of activation
—> S1—> S2 —>S3 %\L

T

> Itis possible to extend to the place using a jump.

> Jump can only be place at the end of SFC program or the end of a selection branch.
It is not allowed to jump into the inside or outside of parallel branch; it is allowed to jump within

parallel branch.

Example
1) Jump at the end of selection branch

T1
ARC:

57]

tm 15
s3]

T3 Te

ABC
By
T4

|
- S2 will be activated after S5.

4-10

4. SFC

2) Jump within parallel branch

5

T 11
LABEL1:
5] T8
T 12 T T9
[&3 [56 | 59
T 13 T7
LABEL
£+
T4
£3
+ T4

3) Not available to jump into the inside of parallel branch..

By

T Tl
LABELL:
T3
Ti 26
83
T T3
B4
T4
LAEELL

4-11

4-12

5. 1L

5. IL (Instruction List)

5.1. Overview
> IL is a low-level 'assembler like' language.

> IL is applicable to simple PLC systems.

> Type
Label
45 THERE: €
46 LDN START (* Switch input reading *)
/ T Operand /I\
Line No. Operator Identifier Comment

5.2. Current Result: CR

> In IL, there is a register that stores an operation result by that time, which is called “CR (current
result)”.

> Only one CR exists in IL.

> CRis able to be any data type.

> The operator that puts a certain value to CR and determines its data type is LD (Load).

Example
LD %IX0.0.0 is to put the value of %I1X0.0.0 to the CR. Now, the data type of CR is BOOL because

the data type expressed as X is BOOL. If variable VAL is declared as INT and is written as LD VAL, it
writes the value of VAL to CR and the data type of CR is INT.

[> ST operator stores the current result (CR) in a variable.

Example
If variable VAL is declared as INT and is written as ST VAL, this means that CR is stored in variable

VAL. At this time, the data type of CR should be INT. Unless CR is an INT type, an error occurs when

compiling.

5-1

5. 1L

Please read the following:
LD %1X0.0.0
ST VAL (assume that variable VAL is declared as INT)
CR is assigned as BOOL in the first row and declared as INT in the second row, which results in an

error when compiling.

LD %1X0.0.0

ST START

LD 20

ST VAL (assume that variable START is declared as BOOL and variable VAL as INT)

The above example is executed normally because the data type to store CR respectively is the same.

5.3. Instructions
> ILis a list of instructions.
> Each instruction must begin on a new line, and must contain an operator, completed with optional
modifiers and, if necessary, for the specific operation, one or more operands, separated with

commas (',").

5.3.1. Label
> A label followed by a colon (') may precede the instruction.

> Labels are used as operands for some operations such as jumps.

5.3.2. Modifier
> The modifier character must complete the name of the operator, with no blank characters between
them. There're three types of modifiers: N, (, C.

> The N modifier indicates a Boolean negation of the operand.

Example
ANDN %I1X2.0.0 is interpreted as:

CR <= CR AND NOT %IX2.0.0
When N is attached to JMP, CAL and RET with no blank character between them, this means it

executes the instruction when CR is BOOL 0.

> Modifier ‘(* delays the operation of an operator until it meets operator ‘)’.
As there is only one CR in IL, it is available to execute the delayed operation: CR is kept while other

operations are executed and after that, operation will be done with the stored CR value.

Type Characteristic Semantics
(Modifier Operation is delayed.
) Operator Evaluation deferred operation used with ‘("

5-2

5. 1L

Example
AND(%IX1.0.0

OR %I1X2.0.0)
CR <= CR AND (%1X1.0.0 OR %I1X2.0.0)
This means that the execution of AND will be delayed until ‘)’ appears. After the operation inside the
parentheses, %1X1.0.0 OR %I1X2.0.0, is executed, the operation with the result will be done.
> Modifier ‘C’ indicates that the attached instruction must be executed only if the current result has
the Boolean value 1 (TRUE).

Example
JMPC THERE

If CRis BOOL 1, jump to THERE.

5.3.3. Basic Operator

> Basic operators are as follows:

No. | Operator | Modifier | Operand Semantics
1 LD N Data Set current results equal to operand
2 ST N Data Store current results to operand
3 S BOOL If CR is BOOL 1, set Boolean Operand to 1
R BOOL If CR is BOOL 1, set Boolean Operand to 0
4 AND N, (Data Boolean AND operation
5 OR N, (Data Boolean OR operation
6 XOR N, (Data Boolean XOR operation
7 ADD (Data Addition operation
8 SUB (Data Subtraction operation
9 MUL (Data Multiplication operation
10 DIV (Data Division operation
11 GT (Data Comparison operation: > (greater than)
12 GE (Data Comparison operation: >= (greater than or equal to)
13 EQ (Data Comparison operation: = (equal to)
14 NE (Data Comparison operation: <> (not equal)
15 LE (Data Comparison operation: <= (less than or equal to)
16 LT (Data Comparison operation: < (less than)
17 JMP C,N Label Jump to label
18 CAL C,N Name Call a function or function block
19 RET C,N Return from a function or function block
20) Evaluation deferred operation used with ‘(*

5-3

5. 1L

> Operators from no. 4 to 16 execute the following functions:
CR <== CR Operation Operand
After executing the operation made between CR and operand value is done, it stores the result in CR.
Example
AND %IX1.0.0 is interpreted as follows:
CR <= CR AND %lX1.0.0

[> Comparison operator stores its Boolean result in CR after a comparison operation made between

CR and the right operand.

Example
For GT %MW10, if CR is greater than the value of internal memory word 10, the value of CR will be
BOOL 1. Otherwise it will be 0.

[> The data type of CR is not modified by most of the operation instructions. However, in case of

comparison operators, a data type of CR is changed.

Example
LD VAL €)

EQ GROSS (b)
AND %IX0.0.0 (c)
ST START (d)
(assume that variable START is declared as BOOL, and variable VAL and GROSS as INT)

At (a) row, the INT value of VAL is put in CR. At (b) row, after comparing the CR to INT value of
GROSS, if the value is same, it puts BOOL 1 in CR; if not, CR is BOOL 0. At this time, a data
type of CR changes from INT to BOOL. Accordingly, instructions of (c) and (d) rows are normal

without making an error.

5-4

5. 1L

5.3.3.1. Basic Operator

(1) LD
Meaning It loads a value in the current result. A data type of CR changes according to the
operand data type.
Modifier N: If the operand is BOOL, it negates its value and loads it in CR.
Operand All the data types including constant are available.
Examples | LD TRUE The value of BOOL 1 is loaded in CR.
The data type of CR is BOOL.
LD INT_VALUE The value of INT_VALUE is loaded in CR.
The data type of CR is INT.
LD T#1S T#1S, time constant, is loaded in CR.
The data type of CR is TIME.
LDN B_VALUE The value of B_VALUE is negated and is loaded in CR.
The data type of CR is BOOL.
(2) sT
Meaning It stores the current result (CR) in a variable (operand).
The data type of both CR and operand should be the same. The current result is not
modified by this operation.
Modifier N: If CR is BOOL, it negates its value and stores it in the operand. At this time, the
value of CR does not change.
Operand All the data types except constant are available.
Its data type should be the same as that of CR.
Examples | LD FALSE The value of BOOL 0 is loaded in CR.

ST B_VALUE1l

STN

B_VALUE2

LD INT_VALUE

ST I_VALUE1

LD D#1995-12-25

ST D_VALUE1

The data type of CR is BOOL.

Stores the value of CR in variable B_VALUEL of which data
type is BOOL.

Negates the value of CR and stores it in B_VALUEZ2 of which
data type is BOOL.

The value of INT_VALUE that is INT variable is loaded in CR.
The data type of CR is INT.

Stores the value of CR in variable |_VALUEL of which data
type is INT.

Date constant D#1995-12-25 is loaded in CR.

At this time, a data type of CR is DATE.

Stores the value of CR in variable D_VALUEL of which data
type is DATE.

5-5

5. 1L

(3) S (Set)
Meaning If CR is BOOL 1, the operand value of which data type is BOOL will be 1.
No operation is processed if CR is BOOL 0.
The current result is not modified by this operation.
Modifier None
Operand Only BOOL data type is available.
Constant is not available.
Examples | LD FALSE The value of BOOL 0 is loaded in CR. At this time, a data type
of CR is BOOL.

S B_VALUE1 No operation is processed because CR is 0.

The value of B_VALUE1 does not change.

LD TRUE The value of BOOL 1 is loaded in CR. At this time, a data type
of CR is BOOL.

S B_VALUE2 As CR is 1, the value of B_VALUE2 whose data type is BOOL
will be 1.

(4) R (Reset)

Meaning If CR is BOOL 1, the operand value whose data type is BOOL will be 0.
No operation is processed if CR is BOOL 0.
The current result is not modified by this operation.
Modifier None
Operand Only BOOL data type is available.
Constant is not available.
Examples | LD FALSE The value of BOOL 0 is loaded in CR. At this time, a data type
of CR is BOOL.

R B_VALUE1l No operation is processed because CR is 0.

The value of B_VALUE1 does not change.

LD TRUE The value of BOOL 1 is loaded in CR. At this time, a data type
of CR is BOOL.

R B_VALUE2 As CR is 1, the value of B_VALUE2 whose data type is BOOL
will be 0. The value of CR does not change.

ST B_VALUES The value of CR (Boolean 1) is stored in B_VALUE3 whose
data type is BOOL.

5-6

5. 1L

(5) AND
Meaning After logical AND operation for CR and the operand value, stores the operation result in
CR. At this time, a data type of both CR and the operand should be the same. The
operand value does not change.
Modifier N: If the operand data type is BOOL, logical AND operation is made between the
operand value and CR after negating the operand value.
(: If a data type of operand is BOOL, moves CR value in other place for a while and
stores the operand value in CR (deferred operation).
Operand Only BOOL, BYTE, WORD, DWORD, LWORD data types are available.
Constant is also available.
Examples | LD B_VALUE1l The value of B_VALUE1 whose data type is BOOL is loaded in
CR. At this time, a data type of CR is BOOL.
AND B_VALUE2 | After logical AND operation for CR and the value of B_VALUE2

ANDN B_VALUE3

ST

LD

AND

ST

LD

AND(

OR

ST

B_VALUE4

W_VALUE1

W_VALUE2

W_VALUE3

B_VALUE1

B_VALUE2

B_VALUE3

B_VALUE4

whose data type is BOOL, stores the result in CR.

After negating the value of B_VALUES, logical AND operation is
made between CR and the value of B_VALUE3 whose data type
is BOOL.

Stores CR value in B_VALUE4 whose data type is BOOL.
B_VALUE4 <== B_VALUE1 AND B_VALUE2 AND NOT (B_VALUE3)

The value of W_VALUEL1 whose data type is WORD is loaded in
CR. At this time, a data type of CR is WORD.

After logical AND operation for CR and the value of W_VALUE2
whose data type is WORD, stores the result in CR.

Stores CR value in W_VALUE3 whose data type is WORD.
W_VALUE3 <==W_VALUE1 AND W_VALUE2

The value of B_VALUE1 whose data type is BOOL is loaded in
CR. At this time, a data type of CR is BOOL.

Moves CR value in other place and stores the value of
B_VALUE2 whose data type is BOOL in CR.

After logical OR operation for CR and the value of B_VALUE3
whose data type is BOOL, stores the result in CR.

After logical AND operation for the current CR value and the
moved CR value stored in other place, stores the result in CR.
Stores CR value in B_VALUE4 whose data type is BOOL.

B VALUE4 <==B VALUE1 AND (B VALUE2 OR B VALUE3)

5-7

5. 1L

(6) OR
Meaning After logical OR operation for CR and the operand value, stores the operation result in
CR. At this time, a data type of both CR and the operand should be the same. The
operand value does not change.
Modifier N: If the operand data type is BOOL, logical AND operation is made between the
operand value and CR after negating the operand value.
(: If a data type of operand is BOOL, moves CR value in other place for a while and
stores the operand value in CR (deferred operation).
Operand Only BOOL, BYTE, WORD, DWORD, LWORD data types are available.
Constant is also available.
Examples | LD B _VALUE1l The value of B_VALUEL whose data type is BOOL is loaded in

OR B_VALUE2

ORN B_VALUES

ST B_VALUE4

LD W_VALUE1

OR W_VALUE2

ST W_VALUES

LD B_VALUE1l

OR(B_VALUE2

AND B_VALUES

ST B_VALUE4

CR. At this time, a data type of CR is BOOL.

After logical OR operation for CR and the value of B_VALUE2
whose data type is BOOL, stores the result in CR.

After negating the value of B_VALUES3, logical OR operation is
made between CR and the value of B_VALUE3 whose data
type is BOOL.

Stores CR value in B_VALUE4 whose data type is BOOL.
B_VALUE4 <== B_VALUE1 OR B_VALUE2 OR NOT (B_VALUE3)

The value of W_VALUE1 whose data type is WORD is loaded in
CR. At this time, a data type of CR is WORD.

After logical AND operation for CR and the value of W_VALUE2
whose data type is WORD, stores the result in CR.

Stores CR value in W_VALUES3 whose data type is WORD.
W_VALUES3 <==W_VALUE1 OR W_VALUE2

The value of B_VALUE1 whose data type is BOOL is loaded in
CR. At this time, a data type of CR is BOOL.

Moves CR value in other place and stores the value of
B_VALUE2 whose data type is BOOL in CR.

After logical AND operation for CR and the value of B_VALUE3
whose data type is BOOL, stores the result in CR.

After logical OR operation for the current CR value and the
moved CR value stored in other place, stores the result in CR.
Stores CR value in B_VALUE4 whose data type is BOOL.
B_VALUE4 <== B_VALUE1 OR (B_VALUE2 AND B_VALUE3)

5-8

5. 1L

(7) XOR
Meaning After logical XOR operation for CR and the operand value, stores the operation result in
CR. At this time, a data type of both CR and the operand should be the same. The
operand value does not change.
Modifier N: If the operand data type is BOOL, logical AND operation is made between the
operand value and CR after negating the operand value.
(: If a data type of operand is BOOL, moves CR value in other place for a while and
stores the operand value in CR (deferred operation).
Operand Only BOOL, BYTE, WORD, DWORD, LWORD data types are available.
Constant is also available.
Examples LD B_VALUELl | The value of B_VALUEL whose data type is BOOL is loaded in
CR. At this time, a data type of CR is BOOL.
XOR B_VALUE2| After logical XOR operation for CR and the value of B_ VALUE2
whose data type is BOOL, stores the result in CR.
XORN After negating the value of B_VALUES3, logical XOR operation is
B_VALUES3 made between CR and the value of B_VALUE3 whose data
type is BOOL.
Stores CR value in B_VALUE4 whose data type is BOOL.
ST B_VALUE4 | B_VALUE4 <== B_VALUE1 XOR B_VALUE2 XOR NOT (B_VALUES3)
The value of W_VALUE1 whose data type is WORD is loaded in
LD W_VALUE1 | CR. At this time, a data type of CR is WORD.
After logical XOR operation for CR and the value of W_VALUE2
XOR W_VALUE2 | Whose data type is WORD, stores the result in CR.
Stores CR value in W_VALUES3 whose data type is WORD.
ST W _VALUE3| W_VALUE3 <== W_VALUE1 XOR W_VALUE2
The value of B_VALUE1 whose data type is BOOL is loaded in
LD B_VALUE1 | CR. At this time, a data type of CR is BOOL.
Moves CR value in other place and stores the value of
XOR(B_VALUE2 | B_VALUE2 whose data type is BOOL in CR.
After logical AND operation for CR and the value of B_VALUE3
AND B VALUE3| Whose data type is BOOL, stores the result in CR.
- After logical XOR operation for the current CR value and the
) moved CR value stored in other place, stores the result in CR.
Stores CR value in B_VALUE4 whose data type is BOOL.
ST B VALUE4 | B_VALUE4 <==B_VALUE1 XOR (B_VALUE2 AND B_VALUE3)

5-9

5. 1L

(8) ADD

Meaning After addition operation for CR and the operand value, stores the operation result in
CR. At this time, a data type of both CR and the operand should be the same. The
operand value does not change.

Modifier (: Moves CR value in other place for a while and stores the operand value in CR
(deferred operation).

Operand Only SINT, INT, DINT, LINT, USINT, UINT, UDINT, ULINT, REAL, LREAL data types
are available.
Constant is also available.

Examples | LD |_VALUE1 The value of I_VALUE1 whose data type is INT is loaded in CR.

At this time, a data type of CR is INT.

ADD |_VALUE2 After ADD operation for CR and the value of I_VALUE2 whose

ST |_VALUE3

LD D_VALUE1

ADD(D_VALUE2

DIV D_VALUE3

ST D_VALUE4

data type is INT, stores the result in CR.
Stores CR value in |_VALUE3 whose data type is INT.
|_VALUE3 <==1_VALUEL + | VALUE2

The value of D_VALUE1 whose data type is DINT is loaded in
CR. At this time, a data type of CR is DINT.

Moves CR value in other place and stores the value of
D_VALUE2 whose data type is DINT in CR.

After DIV operation for CR and the value of D_VALUE3 whose
data type is DINT, stores the result in CR.

After ADD operation for the current CR value and the moved CR
value stored in other place, stores the result in CR.

Stores the CR value in D_VALUE4 whose data type is DINT.
D VALUE4 <==D VALUE1 + (D_VALUE2 /D VALUE3)

5-10

5. 1L

(9) SUB

Meaning After subtraction operation for CR and the operand value, stores the operation result in
CR. At this time, a data type of both CR and the operand should be the same. The
operand value does not change.

Modifier (: Moves CR value in other place for a while and stores the operand value in CR
(deferred operation).

Operand Only SINT, INT, DINT, LINT, USINT, UINT, UDINT, ULINT, REAL, LREAL data types
are available.
Constant is also available.

Examples | LD |_VALUE1 The value of I_VALUE1 whose data type is INT is loaded in CR.

SUB |_VALUE2

ST |_VALUE3

LD D_VALUE1

SUB(D_VALUE2

MUL D_VALUES

ST D_VALUE4

At this time, a data type of CR is INT.

After SUB operation for CR and the value of |_VALUE2 whose
data type is INT, stores the result in CR.

Stores CR value in I_VALUE3 whose data type is INT.
|_VALUE3 <==1|_VALUE1 - |_VALUEZ2

The value of D_VALUE1 whose data type is DINT is loaded in
CR. At this time, a data type of CR is DINT.

Moves CR value in other place and stores the value of
D_VALUE2 whose data type is DINT in CR.

After MUL operation for CR and the value of D_VALUE3 whose
data type is DINT, stores the result in CR.

After SUB operation for the current CR value and the moved
CR value stored in other place, stores the result in CR.

Stores the CR value in D_VALUE4 whose data type is DINT.
D VALUE4 <== D VALUEL1 - (D VALUE2 X D_VALUE3)

5-11

5. 1L

(10) MUL

Meaning | After multiplication operation for CR and the operand value, stores the operation result in
CR. At this time, a data type of both CR and the operand should be the same. The
operand value does not change.

Modifier (: Moves CR value in other place for a while and stores the operand value in CR
(deferred operation).

Operand Only SINT, INT, DINT, LINT, USINT, UINT, UDINT, ULINT, REAL, LREAL data types
are available.
Constant is also available.

Examples | LD |_VALUE1 The value of I_VALUE1 whose data type is INT is loaded in CR.

MUL |_VALUE2

ST |_VALUE3

LD D_VALUE1

MUL(D_VALUE2

SUB D_VALUES

ST D_VALUE4

At this time, a data type of CR is INT.

After MUL operation for CR and the value of I_VALUE2 whose
data type is INT, stores the result in CR.

Stores CR value in I_VALUE3 whose data type is INT.

|_VALUE3 <==|_VALUE1 X |_VALUE2

The value of D_VALUE1 whose data type is DINT is loaded in
CR. At this time, a data type of CR is DINT.

Moves CR value in other place and stores the value of
D_VALUE2 whose data type is DINT in CR.

After SUB operation for CR and the value of D_VALUE3 whose
data type is DINT, stores the result in CR.

After MUL operation for the current CR value and the moved CR
value stored in other place, stores the result in CR.

Stores the CR value in D_VALUE4 whose data type is DINT.
D VALUE4 <== D VALUE1 X (D_VALUE2 - D VALUE3)

5-12

5. 1L

(11) DIV

Meaning After division operation for CR and the operand value, stores the operation result in
CR. At this time, a data type of both CR and the operand should be the same. The
operand value does not change.

Modifier (: Moves CR value in other place for a while and stores the operand value in CR
(deferred operation).

Operand Only SINT, INT, DINT, LINT, USINT, UINT, UDINT, ULINT, REAL, LREAL data types
are available.
Constant is also available.

Examples | LD |_VALUE1 The value of I_VALUE1 whose data type is INT is loaded in CR.

At this time, a data type of CR is INT.

DIV I_VALUE2 After DIV operation for CR and the value of |_VALUE2 whose

ST |_VALUE3

LD D _VALUE1
DIV(D_VALUE2
ADD

D_VALUE3

ST D_VALUE4

data type is INT, stores the result in CR.
Stores CR value in |_VALUE3 whose data type is INT.
I_VALUE3 <==1_VALUE1/|_VALUE2

The value of D_VALUE1 whose data type is DINT is loaded in
CR. At this time, a data type of CR is DINT.

Moves CR value in other place and stores the value of
D_VALUE2 whose data type is DINT in CR.

After ADD operation for CR and the value of D_VALUE3 whose
data type is DINT, stores the result in CR.

After DIV operation for the current CR value and the moved CR
value stored in other place, stores the result in CR.

Stores the CR value in D_VALUE4 whose data type is DINT.

D VALUE4 <== D VALUE1 /(D VALUE2 + D VALUE3)

5-13

5. 1L

(12) GT

Meaning After comparison operation for CR and the operand value, stores the BOOL result in
CR. CR will be 1 only if CR is greater than operand. A data type of both CR and the
operand should be the same. The operand value does not change. After operation, a

data type of CR will be BOOL regardless of the operand data type.

Modifier (: Moves CR value in other place for a while and stores the value of operand in CR

(deferred operation).

Operand All the data types except ARRAY are available.

Constant is also available.

Examples In case that |_VAL1 =50, |_VAL2 =100 IVAL_3 =70,
LD I_VAL1 The value of I_VAL1 whose data type is INT is loaded in CR.
GT I_VAL2 After comparison operation for CR and the value of I_VAL2

whose data type is INT, stores the result in CR.
(As|_VAL1 <1 _VAL2, CR will be 0)

ST B_VAL1 Stores CR value in B_VAL1 whose data type is BOOL.
B_VAL1 <==FALSE

LD I_VAL2 The value of I_VAL2 whose data type is INT is loaded in CR.
GT I_VAL1 After comparison operation for CR and the value of I_VAL1
whose data type is INT, stores the result in CR.

(As |_VAL1 <1 _VAL2, CR will be 1)

ST B_VAL2 Stores CR value in B_VAL2 whose data type is BOOL.

B_VAL2 <==TRUE

LD I_VAL1 The value of I_VAL1 whose data type is INT is loaded in CR.
GT(I_VAL2 Moves CR value in other place and stores the value of |_VAL2
whose data type is INT in CR.

SUB |_VAL3 After SUB operation for CR and the value of I_VAL3 whose data
type is INT, stores the result in CR.

) After comparison operation for the current CR value and the
moved CR value stored in other place, stores the result in CR.
(As the stored CR > current CR, CR will be 1)

ST B_VAL3 Stores the CR value in B_VAL3 whose data type is BOOL.

B VAL3 <== TRUE

5-14

5. 1L

(13) GE

Meaning After comparison operation for CR and the operand value, stores the BOOL result in
CR. CR will be 1 only if CR is greater than operand. A data type of both CR and the
operand should be the same. The operand value does not change. After operation, a

data type of CR will be BOOL regardless of the operand data type.

Modifier (: Moves CR value in other place for a while and stores the value of operand in CR

(deferred operation).

Operand All the data types except ARRAY are available.

Constant is also available.

Examples In case that |_VAL1 =50, |_VAL2 =100 IVAL_3 =70,
LD I_VAL1 The value of I_VAL1 whose data type is INT is loaded in CR.
GE I_VAL2 After comparison operation for CR and the value of |_VAL2

whose data type is INT, stores the result in CR.
(As|_VAL1 < | _VAL2, CR will be 0)

ST B_VAL1 Stores CR value in B_VAL1 whose data type is BOOL.
B_VAL1 <==FALSE

LD I_VAL2 The value of I_VAL2 whose data type is INT is loaded in CR.
GE I_VAL1 After comparison operation for CR and the value of I_VAL1
whose data type is INT, stores the result in CR.

(As |_VAL1 <1 _VAL2, CR will be 1)

ST B_VAL2 Stores CR value in B_VAL2 whose data type is BOOL.

B_VAL2 <==TRUE

LD I_VAL1 The value of I_VAL1 whose data type is INT is loaded in CR.
GE(|_VAL2 Moves CR value in other place and stores the value of |_VAL2
whose data type is INT in CR.

SUB |_VAL3 After SUB operation for CR and the value of I_VAL3 whose data
type is INT, stores the result in CR.

) After comparison operation for the current CR value and the
moved CR value stored in other place, stores the result in CR.
(As the stored CR > current CR, CR will be 1)

ST B_VAL3 Stores the CR value in B_VAL3 whose data type is BOOL.

B VAL3 <== TRUE

5-15

5. 1L

(14) EQ

Meaning After comparison operation for CR and the operand value, stores the BOOL result in
CR. CR will be 1 only if CR is greater than operand. A data type of both CR and the
operand should be the same. The operand value does not change. After operation, a

data type of CR will be BOOL regardless of the operand data type.

Modifier (: Moves CR value in other place for a while and stores the value of operand in CR

(deferred operation).

Operand All the data types except ARRAY are available.

Constant is also available.

Examples In case that |_VAL1 =50, |_VAL2 =100 IVAL_3 =50,
LD I_VAL1 The value of I_VAL1 whose data type is INT is loaded in CR.
EQ I_VAL2 After comparison operation for CR and the value of |I_VAL2

whose data type is INT, stores the result in CR.
(As|_VAL1 <1 _VAL2, CR will be 0)

ST B_VAL1 Stores CR value in B_VAL1 whose data type is BOOL.
B_VAL1 <==FALSE

LD I_VAL1 The value of I_VAL2 whose data type is INT is loaded in CR.
EQ I_VAL3 After comparison operation for CR and the value of I_VAL1
whose data type is INT, stores the result in CR.

(As |_VAL1 =1_VAL3, CR will be 1)

ST B_VAL2 Stores CR value in B_VAL2 whose data type is BOOL.

B_VAL2 <==TRUE

LD I_VAL1 The value of I_VAL1 whose data type is INT is loaded in CR.
EQ(I_VAL2 Moves CR value in other place and stores the value of |_VAL2
whose data type is INT in CR.

SUB |_VAL3 After SUB operation for CR and the value of I_VAL3 whose
data type is INT, stores the result in CR.

) After comparison operation for the current CR value and the
moved CR value stored in other place, stores the result in CR.
(As the stored CR = current CR, CR will be 1)

ST B_VAL3 Stores the CR value in B_VAL3 whose data type is BOOL.

B VAL3 <== TRUE

5-16

5. 1L

(15) NE

Meaning After comparison operation for CR and the operand value, stores the BOOL result in
CR. CR will be 1 only if CR is greater than operand. A data type of both CR and the
operand should be the same. The operand value does not change. After operation, a
data type of CR will be BOOL regardless of the operand data type.

Modifier (: Moves CR value in other place for a while and stores the value of operand in CR
(deferred operation).

Operand All data types except ARRAY are available.
Constant is also available.

Examples In case that |_VAL1 =50, |_VAL2 =100 IVAL_3 =50,

LD | VAL1L
NE | VAL3
ST B_VALL
LD | VAL1L

NE | VAL2
ST B_VAL2
LD | VAL1L

NE(| VAL2

SUB | VAL3
)

ST B_VA3

The value of I_VAL1 whose data type is INT is loaded in CR.
After comparison operation for CR and the value of |_VAL2
whose data type is INT, stores the result in CR.

(As |_VAL1 =1_VAL3, CR will be 0)

Stores CR value in B_VAL1 whose data type is BOOL.

B_VAL1 <==FALSE

The value of I_VAL2 whose data type is INT is loaded in CR.
After comparison operation for CR and the value of |_VAL1
whose data type is INT, stores the result in CR.

(As |_VAL1 <>1_VAL2, CR will be 1)

Stores CR value in B_VAL2 whose data type is BOOL.

B_VAL2 <==TRUE

The value of |_VAL1 whose data type is INT is loaded in CR.
Moves CR value in other place and stores the value of I_VAL2
whose data type is INT in CR.

After SUB operation for CR and the value of |_VAL3 whose
data type is INT, stores the result in CR.

After comparison operation for the current CR value and the
moved CR value stored in other place, stores the result in CR.
(As the stored CR = current CR, CR will be 0)

Stores the CR value in B_VAL3 whose data type is BOOL.

B VAL2 <== FALSE

5-17

5. 1L

(16) LE

Meaning After comparison operation for CR and the operand value, stores the BOOL result in
CR. CR will be 1 only if CR is greater than operand. A data type of both CR and the
operand should be the same. The operand value does not change. After operation, a

data type of CR will be BOOL regardless of the operand data type.

Modifier (: Moves CR value in other place for a while and stores the value of operand in CR

(deferred operation).

Operand All data types except ARRAY are available.

Constant is also available.

Examples In case that |_VAL1 =50, |_VAL2 =100 IVAL_3 =70,
LD I_VAL2 The value of I_VAL2 whose data type is INT is loaded in CR.
LE I_VAL1 After comparison operation for CR and the value of I_VAL1

whose data type is INT, stores the result in CR.
(As|_VAL1 <1 _VAL2, CR will be 0)

ST B_VAL1 Stores CR value in B_VAL1 whose data type is BOOL.
B_VAL1 <==FALSE

LD I_VAL1 The value of I_VAL1 whose data type is INT is loaded in CR.

LE I_VAL2 After comparison operation for CR and the value of I_VAL2
whose data type is INT, stores the result in CR.

(As |_VAL1 <1 _VAL2, CR will be 1)

ST B_VAL2 Stores CR value in B_VAL2 whose data type is BOOL.

B_VAL2 <==TRUE

LD I_VAL1 The value of I_VAL1 whose data type is INT is loaded in CR.
LE(I_VAL2 Moves CR value in other place and stores the value of |_VAL2
whose data type is INT in CR.

SUB |_VAL3 After SUB operation for CR and the value of I_VAL3 whose
data type is INT, stores the result in CR.

) After comparison operation for the current CR value and the
moved CR value stored in other place, stores the result in CR.
(As the stored CR > current CR, CR will be 0)

ST B_VA3 Stores the CR value in B_VAL3 whose data type is BOOL.

B VAL2 <== FALSE

5-18

5. 1L

@an.LT

Meaning After comparison operation for CR and the operand value, stores the BOOL result in
CR. CR will be 1 only if CR is greater than operand. A data type of both CR and the
operand should be the same. The operand value does not change. After operation, a
data type of CR will be BOOL regardless of the operand data type.

Modifier (: Moves CR value in other place for a while and stores the value of operand in CR
(deferred operation).

Operand All data types except ARRAY are available.
Constant is also available.

Examples In case that |_VAL1 =50, |_VAL2 =100 IVAL_3 =70,

LD | _VAL2
LT |_VALL
ST B_VALL
LD | VAL1L
LT |_VAL2
ST B_VAL2
LD | VAL1L
LT(|_VAL2
SUB | VAL3
)

ST B_VA3

The value of |_VAL2 whose data type is INT is loaded in CR.
After comparison operation for CR and the value of |_VAL1
whose data type is INT, stores the result in CR.

(As|_VALL <1 _VAL2, CR will be 0)

Stores CR value in B_VAL1 whose data type is BOOL.

B_VALL <==FALSE

The value of |_VAL1 whose data type is INT is loaded in CR.
After comparison operation for CR and the value of |_VAL2
whose data type is INT, stores the result in CR.

(As |_VAL1 < |_VAL2, CR will be 1)

Stores CR value in B_VAL2 whose data type is BOOL.

B_VAL2 <==TRUE

The value of I_VAL1 whose data type is INT is loaded in CR.
Moves CR value in other place and stores the value of I_VAL2
whose data type is INT in CR.

After SUB operation for CR and the value of |_VAL3 whose
data type is INT, stores the result in CR.

After comparison operation for the current CR value and the
moved CR value stored in other place, stores the result in CR.
(As the stored CR > current CR, CR will be 0)

Stores the CR value in B_VAL3 whose data type is BOOL.

B VAL2 <== FALSE

5-19

5. 1L

(18) IMP
Meaning Jumps to the specified label.
Modifier C: If CR whose data type is BOOL is TRUE (1), it jumps to the specified label.
If CR whose data type is BOOL is FALSE (0), it does not jump to the specified label
but executes the next instruction.
N: If CR whose data type is BOOL is FALSE (0), it jumps to the specified label.
If CR whose data type is BOOL is TRUE (1), it does not jump to the specified label
but executes the next instruction.
If there is no madifier, it jumps to the label regardless of CR value.
Operand Label defined in the same IL program.
Examples This is a program that stores the value of |_VALL1 or |_VAL2 in

LD B_VAL1

JMPC THERE1

LD |_VAL1
JMP THERE2
THEREZ1L:
LD I_VAL2
THERE2:
ST I_VAL3
LD B_VAL2
JMPN THERE3
LD B_VALUE
SEL
G:=
CURRENT
RESULT
IN1:=1_VAL1
IN2:=1_VAL2
ST I_VAL3
THERE3:

|_VALS3 according to the value of B_VAL1 whose data type is
BOOL.

The value of B_VAL1 whose data type is BOOL is loaded in
CR.

If CRis 1, it jumps to THEREL label; if CR is 0, it executes the
next instruction.

CR <==|_VAL1

Jumps to THEREZ2 label unconditionally.

THERELX label

CR <==|_VAL2

THEREZ2 label

|_VAL3 <== CR

This is a program that executes SEL function if the value of
B_VAL2 whose data type is BOOL is 1.

CR <== B_VAL2

If CR is O (FALSE), it jumps to THERES label.

CR <==B_VALUE

Calls SEL function.

|_VAL3 <== CR
THERES label

5-20

5. 1L

(19) CAL
Meaning Calls the function block whose name is described in the operand section.
Modifier C: if CR whose data type is BOOL is TRUE (1), it calls a function block.
If CR whose data type is BOOL is FALSE (0), it does not call a function block.
N : if CR whose data type is BOOL is FALSE (0), it calls a function block.
If CR whose data type is BOOL is TRUE (1), it does not call a function block.
If there is no madifier, it calls a function block regardless of CR.
Operand Function block name
Examples This is a program that if the value of B_VAL1 whose data

LD B_VAL1

CALC TON TIMER1
IN:= T_INPUT
PT:= PRE_TIME

LD B_VAL2

CALN CTU COUNT1
CU=B_UP
Ri= B_RESET
PV:= 100

CAL CTD COUNT2
CD:= B_DOWN
LD:= B_LDV
PV:= 300

type is BOOL is 1(TRUE), calls the TON (on-delay timer).
The value of B_VAL1 whose data type is BOOL is loaded in
CR.

If CRis 1, it calls the on-delay timer, TON whose instance is
TIMER1.

This is a program that calls the CTU, (up counter), if the
value of B_VAL2 whose data type is BOOL is O (FALSE).
The value of B_VAL2 whose data type is BOOL is loaded in
CR.

If CR is 1, it calls the CTU (up counter) whose instance is
COUNTL.

This is a program that calls the CTD (down-counter)
regardless of CR.

Calls the CTD (down-counter) whose instance is COUNT?2.

5-21

5. 1L

(20) RET

Meaning Returns from a function or function block.

Modifier C: if CR whose data type is BOOL is TRUE (1), it returns.

If CR whose data type is BOOL is FALSE (0), it does not return.
N: if CR whose data type is BOOL is FALSE (0), it returns.

If CR whose data type is BOOL is TRUE (1), it does not return.

If there is no madifier, it returns regardless of CR.

Operand None

Examples This is a function that stores the result in I_VAL3 after MUL
operation for the value of |_VAL1 whose data type is INT and the
value of I_VAL2 whose data type is INT. At this time, if an
operation error occurs in MUL operation, it returns after storing 0
in |_VAL3.

LD |_VAL1

MUL |_VAL2

ST I_VAL3

LD _ERR CR <== system error flag
RETN If CR is 0, instance will return.
LD 0

ST |_VAL3 |_VAL3 <==

RET Returns unconditionally.

5-22

5. 1L

(21))

Meaning Evaluation deferred operation used with (‘.
Modifier None
Operand None
Examples | LD |_VAL1 |_VAL4 <== (I_VALL + IVAL2) X |_VAL3
ADD I_VAL2
MUL |_VAL3
ST |_VAL4
LD |_VAL1 |_VAL4 <==|_VALL + (IVAL2 X |_VAL3)
ADD(|_VAL2
MUL |_VAL3
)
ST I|_VAL4
LD L_VAL1 L VAL7 <== (L_VAL1 + (L_VAL2 X (L_VAL3 - L_VAL4) +
ADD(L _VAL2 L_VAL5))/L _VAL6
MUL(L_VAL3
SUB L_VAL4
)
ADD L_VALS
)
DIV L_VALG
ST L_VAL7

5-23

5. 1L

5.4. Calling of Function and Function Block

Calls a function using its name as an operator.

When calling a function, CR is stored as the first input.

If a function has more than one input, assign the input value and then call a function.

The output value of a function will be stored in CR.

VAR VAR VAR VAR V4

A data type of CR will be the output data type a function.

Example
LD VAL

SIN
ST RESULT (VAL and RESULT are regarded as a REAL data type)

If you store the value of VAL in CR at the first row and call SIN function at the second row, then the
CR value will be stored in SIN function as a first input. And it does not need other inputs because SIN
function has only one input, and the output value will be stored in CR after executing SIN function. At

the third row, CR will be stored in RESULT variable.

LD %IX0.0.0

SEL G:= CURRENT RESULT
INO:= VAL1
IN1:= VAL2

ST VAL3

This is the example of a function that has several inputs. CR is set at the first row and is loaded in
SEL function as a first input value. If you assign each value for the rest inputs and call SEL function,

the result will be stored in CR and CR value will be stored in variable VALS3.

5-24

5. 1L

> JMP (JMPN, JMPC) instructions are used to call a function conditionally.

Example

LD %1X0.0.0

JMPN THERE

LD I_VAL1

ADD IN1:= CURRENT RESULT
IN2:= |_VAL2
IN3:= |_VALS3

ST |_VAL4

THERE:

%I1X0.0.0 value is loaded in CR whose data type is BOOL at the first row. And if the value is 0 at the
second row, it jumps to THERE: label. If %1X0.0.0 value is 1, it does not execute JMP instruction but

does the next row.

> When calling a function block, CAL is used as an operator and the instance name as an operand
that is previously declared.
> CAL INSTANCE /* call a function block unconditionally. */
CALN INSTANCE /*if CR is BOOL 0, call a function block. */
CALC INSTANCE /*if CRis BOOL 1, call a function block. */
Here, INSTANCE should be previously declared as an instance of a function block.
> CRis not loaded in a function block input. So it is required to assign all the input values necessary

for a function block. Besides output value is not stored in CR.

Example

On-Delay Timer function block

LD %I1X0.0.0

CALC TON TIMERO
IN:= %IX0.1.2
PT:= T#200S

LD TIMERO.Q

ST %QX1.0.2

(assume that TIMERO is declared as an instance of TON)

On-delay timer has 2 inputs and calls it after assigning its input values, respectively. If users want to
use the result values, they can do it like the fifth row in the above program because the result values

are stored in TIMERO.Q and TIMERO.ET respectively.

5-25

5. 1L

5-26

6. LD

6. LD (Ladder Diagram)

6.1. Overview
> LD program represents PLC program through graphic signs such as coil or contact used in relay
logic diagram.

[> Configuration

; ; — Rung comment
Line no. — - Function block Z 9
Lin=0 [iThis is an example of LD program. Funct
T1 ,~~—Function
THEEE ST ART TN SIGH 20T)]
Label —7Zinel — 0 | /—zr Moy
LineZ SET_T IME JET ETfcve_TmEe | Daral Jmwi ouTl Daraz C/F'I
0i
Lined DaTaz o INE
Rung
2I0.0.0 STOF ZContact Jump label
Lineg _Ifl 1 1
—)
DowH Horizontal link Vertical link THERE
Lin=s _I : =" o
Left bus line /
] Right bus line
6.2. Bus Line

> Bus line as power line is placed vertically on both left and right sides on LD graphic diagram.

No. Symbol Description

1 Left bus line

Its value is always 1 (BOOL).

Right bus line

The value is not fixed.

6-1

6.LD

6.3. Connection Line

>

The value (BOOL 1) of left bus line is transmitted to the right side by the ladder diagram. The line
that has the transmitted value is called as 'power flow line' or ‘connection line' which is connected
to a contact or coil. Power flow line has always a BOOL value and there's only one power flow line

in one rung that is connected by lines.

There are two types of a connection line of LD: horizontal connection line and vertical connection

line.

No. Symbol Description

Horizontal connection line

It transmits the left side value to the right side.

Vertical connection line
It's logical OR of horizontal connection lines of

its left side.

6-2

6. LD

6.4. Contact

[> 'Contact' transmits a value to the right horizontal connection line, which is the result of logical AND
operation of these: the state of left horizontal connection line, Boolean input/output related to the
current contact, or memory variables. It does not change the value of variable itself related to the

contact. Standard contact symbols are as follows:

Static contact

No. Symbol Description

Normally open contact

*kk

1 = When the addressed memory bit (marked with ***) is ON, the instruction is
TRUE, which transmits the state of the left connection line to the right one.

Otherwise the state of the right connection line is OFF.

Normally closed contact

5 When the addressed memory bit (marked with ***) is OFF, the instruction
—/—=

is TRUE, which transmits the state of the left connection line to the right

one. Otherwise the state of the right connection line is OFF.

State transition-sensing contact

Positive transition-sensing contact

*kk

When the addressed memory bit (marked with ***) that was OFF in the

3 —
—ip previous scan is ON, it maintains ON state during one scan (current
scan).
Negative transition-sensing contact
*k%
4 When the addressed memory bit (marked with ***) that was ON in the
—ANF—

previous scan is OFF, it maintains ON state during just one scan (current

scan).

6-3

6.LD

6.5. Coil
> Coil stores the state of the left connection line or the processing result of state transition in the

associated BOOL variable. Standard coil symbols are as follows:

No. | Symbol Description

Momentary Coils

Caoil

*kk

1 —()— | When the rung is TRUE, the addressed memory bit (marked with ***) is set ON.
If the bit controls an output device, that output device will be ON.

Fokok Negated coil

2 —()— When the rung is TRUE, the addressed memory bit (marked with ***) is set OFF.
That is, if the state of left connection line is OFF, the associated variable is ON
and if the state of left connection line is ON, the associated variable is OFF.

If the bit controls an output device, that output device will be OFF.

Latched Coils

Set coil

*%%

3 —(Sy— | It sets the associated variable (marked with ***) to ON when the left link is in the
ON state or TRUE and remains set until reset by a Reset coil. When the left link
is OFF or FALSE, the associated variable is not affected by the Set coil element.

Reset coil
*kk
4 —(R)— It sets the associated variable (marked with ***) to OFF when the left link is in the
ON state or TRUE and remains reset until set by a Set coil. When the left link is
OFF or FALSE, the associated variable is not affected by the Reset coil element.
State Transition-sensing Coils
Positive transition-sensing coil
*k%
> —(P— If the state of its left connection that was OFF in the previous scan is ON in the
current scan, the associated variable (marked with ***) is ON during the current
scan.
Negative transition-sensing coil
*k%
6

—(N)— If the state of its left connection that was ON in the previous scan is OFF in the
current scan, the associated variable (marked with ***) is ON during the current

scan.

> Coils are placed in the rightmost side of LD, of which right side is a right bus line.

6-4

6. LD

6.6. Calling of Function and Function Block
> D The connection to a function and function block will be done by putting suitable data or variable

to their input/output.

Example
N —
SEL e i
—N ENOf———— — o T o
sTaRT e ouTh REGH clko 4o oo sTop
WAL 1IN0 RESET 47 ol Dowm
wal2 A 1H SMITCH 4D
FLAN APy
Function Function block

> There should be at least one BOOL-type input and BOOL-type output in a function or function
block if you want to enable them. EN and ENO are BOOL-type input/output in a function while a
data type of the first input and first output are BOOL-type in a function block.

Example
Bool type input/output of Function ‘\
pat=ry / £t L T
4EN ENOF 4EN ENOF 4EN ENOF
4181 OUTE 4181 OUTE 4K OUTE
s 1LE 11K
S [
e |]y F1 2
TE F_THIG CTl
11K W qCLE i] i
4FT ET (&l]
1FV
Bool type input/output of Function Block

6-5

6.LD

> Function in LD is different from that of IL. By convention the ladder logic connected Boolean input
to a function is called EN and the corresponding output Boolean is called ENO, or enable out. If
the value of EN is 1, then the function is executed, otherwise it is not executed. In all cases, the
default is for the value of EN to be copied to the output ENO. If, for whatever reason, an error
occurs in the execution of a function, the function is responsible to set ENO to FALSE (BOOL 0).
EN is connected to the power flow line but ENO doesn't have to be connected to it. However, when
connecting the power flow line to the function output instead of ENO, output data type should be a
BOOL type. Note that only one power flow line can be connected to a function (when connecting
the power flow line to the function output not ENO, do not connect anything to ENO output). All the
inputs of a function are assigned by entering its data. The output of a function is stored at the
output variable in the right side of it.
> You can use a function block in LD as you do in IL. Inputs of a function block are assigned much
the same as a function. A function block is called when the left link is TRUE and not called when
the left link is FALSE. The value of the left link IN is copied to the right link Q for further processing.
The name of the function block is the "instance" name, which can be user-defined and must be
unique to LD in which the function block appears. You don't have to assign output variables
because they are in the instance. If a function block is connected to the power flow line, it is always
executed because there is neither EN nor ENO in it. Therefore, it is required to use Jump (-->>) to
determine whether or not to execute a function block according to the logic result. When
connecting the power flow line to the function block, it is required to connect it to the input/output of
which data type is BOOL.
Example
Linel —ICLKI ?EI;; m?IFT?H EH J:lESEHCI —EINEHIGE PL;U:H
_S(TAFIT 0K
Line? S/ — [{IN oUTE Do
Lined
PLACE?
Lined =
S - N
PLACE1 TOM STAAT
Lined IH 0 {
Linek TEET qFT ET
Line?
PLACE? Q0N 2 STOP
Lined |— | {¥—

6-6

6. LD

> You can place a function and function block in any place of LD. It is available to make a program

by connecting the power flow line to their output and then putting the contact to that.

Example
CLE ACO HESET START ALY SH AEGT COH1 ENERGE
— ¥ ENO— | {1 {P| M o | {7} { —
uTOF‘ aL? COKZ
PLAM 4181 OQUTR= D0 SH——HNI— HREG1 A
DA IN2

CON2

> Only one power flow line can be connected to a function or function block.

Example
Correct
E2 REG E2
EH ENO—/ — —l E | ENOI=
STOP START
0 4141 UT— }— 0 4181 QUT—
oo e \ oL IR ILE
Y“Wrong. only
one power flow
line can be
connected \
E2 SWITCH START E2
EH EWOl— }— —] }—EH ENO-
STOP REG
0 4181 QUTE= START — I8 T
0o 4 [N 0o 4 [N
Correct

6-7

6-8

7. Function and Function Block

7. Function and Function Block
It's a list of function and function block. For each function and function block, please refer to the next

chapter.
7.1. Function

7.1.1. Type Conversion Function
It converts each input data type into an output data type.

.) Application
Function group Function Input data type|Output data type GWR-2 a3 | ona—7
ARY_ASC.TO s ARY_ASC_TO_BYTE WORD (ASCI1) BYTE O O O

ARY_ASC_TO_BCD WORD (ASCI I) BYTE (BCD) O O O
ARY_BYTE_TOQ_*** ARY_BYTE_TO_ASC BYTE WORD (ASCI 1) O O O
ARY_BCD_TO_x~*x* ARY_BCD_TO_ ASC BYTE (BCD) WORD (ASCI 1) O O O
ASC TO ks ASC_TO_BCD BYTE (BCD) USINT O O O
T ASC_TO_BYTE WORD (BCD) UINT O O O
BCD_TO_SINT BYTE (BCD) SINT O O O
BCD_TO_INT WORD (BCD) INT O O O
BCD_TO_DINT DWORD (BCD) DINT O O O

BCD_TO_LINT LWORD (BCD) LINT O
BCD_TO_x=~ BCD_TO_USINT BYTE (BCD) USINT O O O
BCD_TO_UINT WORD (BCD) UINT O O O

BCD_TO_UDINT DWORD (BCD) UDINT O

BCD_TO_ULINT LWORD (BCD) ULINT O
BCD_TO_ASC BYTE (BCD) WORD O O O

TRUNC TRUNC REAL DINT O

LREAL LINT O

REAL_TO_SINT REAL SINT O

REAL_TO_INT REAL INT O

REAL_TO_DINT REAL DINT O

REAL_TO_LINT REAL LINT O

REAL_TO_ #w REAL_TO_USINT REAL USINT O

REAL_TO_UINT REAL UINT O

REAL_TO_UDINT REAL UDINT O

REAL_TO_ULINT REAL ULINT O

REAL_TO_DWORD REAL DWORD O

REAL_TO_LREAL REAL LREAL O

LREAL_TO_SINT LREAL SINT O

LREAL_TO_INT LREAL INT O

LREAL_TO_=*** LREAL_TO_DINT LREAL DINT O

LREAL_TO_LINT LREAL LINT O

LREAL_TO_USINT LREAL USINT O

7. Function and Function Block

Application
Function group Function Input data type|Output data type
GMR~2 GM3 | GM4~7

LREAL_TO_UINT LREAL UINT O
LREAL_TO_UDINT LREAL UDINT O

LREAL_TO_**x LREAL_TO_ULINT LREAL ULINT O
LREAL_TO_LWORD LREAL LWORD O
LREAL_TO_REAL LREAL REAL O
SINT_TO_INT SINT INT O O O
SINT_TO_DINT SINT DINT O O O
SINT_TO_LINT SINT LINT O
SINT_TO_USINT SINT USINT O O O
SINT_TO_UINT SINT UINT O O O
SINT_TO_UDINT SINT UDINT O O O
SINT_TO_ULINT SINT ULINT O

SINT_TO_#*x* SINT_TO_BOOL SINT BOOL O O O
SINT_TO_BYTE SINT BYTE O O O
SINT_TO_WORD SINT WORD O O O
SINT_TO_DWORD SINT DWORD O O O
SINT_TO_LWORD SINT LWORD O
SINT_TO_BCD SINT BYTE (BCD) O O O
SINT_TO_REAL SINT REAL O
SINT_TO_LREAL SINT LREAL O
INT_TO_SINT INT SINT O O O
INT_TO_DINT INT DINT O O O
INT_TO_LINT INT LINT O
INT_TO_USINT INT USINT O O O
INT_TO_UINT INT UINT O O O
INT_TO_UDINT INT UDINT O O O
INT_TO_ULINT INT ULINT O

INT_TOQ_xxx* INT_TO_BOOL INT BOOL O O O
INT_TO_BYTE INT BYTE O O O
INT_TO_WORD INT WORD O O O
INT_TO_DWORD INT DWORD O O O
INT_TO_LWORD INT LWORD O
INT_TO_BCD INT WORD (BCD) O O ©)
INT_TO_REAL INT REAL O
INT_TO_LREAL INT LREAL O

7. Function and Function Block

Application
Function group Function Input data type |Output data type
GMR~2 GM3 | GM4~7
DINT_TO_SINT DINT SINT O O O
DINT_TO_INT DINT INT O O O
DINT_TO_LINT DINT LINT O
DINT_TO_USINT DINT USINT O O O
DINT_TO_UINT DINT UINT O O O
DINT_TO_UDINT DINT UDINT O O O
DINT_TO_ULINT DINT ULINT O
DINT_TOQ_x=*x* DINT_TO_BOOL DINT BOOL O O O
DINT_TO_BYTE DINT BYTE O O O
DINT_TO_WORD DINT WORD O O O
DINT_TO_DWORD DINT DWORD O O O
DINT_TO_LWORD DINT LWORD O
DINT_TO_BCD DINT DWORD (BCD) O O O
DINT_TO_REAL DINT REAL O
DINT_TO_LREAL DINT LREAL O
LINT_TO_SINT LINT SINT O
LINT_TO_INT LINT INT O
LINT_TO_DINT LINT DINT O
LINT_TO_USINT LINT USINT O
LINT_TO_UINT LINT UINT O
LINT_TO_UDINT LINT UDINT O
LINT_TO_ULINT LINT ULINT O
LINT_TO_»== LINT_TO_BOOL LINT BOOL O
LINT_TO_BYTE LINT BYTE O
L INT_TO_WORD LINT WORD O
L INT_TO_DWORD LINT DWORD O
LINT_TO_LWORD LINT LWORD O
L INT_TO_BCD LINT LWORD (BCD) O
LINT_TO_REAL LINT REAL O
L INT_TO_LREAL LINT LREAL O
USINT_TO_SINT USINT SINT O O O
USINT_TO_INT USINT INT O O O
USINT_TO_DINT USINT DINT O O O
USINT_TO_LINT USINT LINT O
USINT_TO_UINT USINT UINT O O O
USINT TO_ s USINT_TO_UDINT USINT UDINT O O O
USINT_TO_ULINT USINT ULINT O
USINT_TO_BOOL USINT BOOL O O O
USINT_TO_BYTE USINT BYTE O O O
USINT_TO_WORD USINT WORD O O O
USINT_TO_DWORD USINT DWORD O O O
USINT_TO_LWORD USINT LWORD O

7. Function and Function Block

Application
Function group Function Input data type |Output data type
GMR~2 GM3 | GM4~7
USINT_TO_BCD USINT BYTE (BCD) O O O
USINT_TO_**x* USINT_TO_REAL USINT REAL O
USINT_TO_LREAL USINT LREAL O
UINT_TO_SINT UINT SINT O O O
UINT_TO_INT UINT INT O O O
UINT_TO_DINT UINT DINT O O O
UINT_TO_LINT UINT LINT O
UINT_TO_USINT UINT USINT O
UINT_TO_UDINT UINT UDINT O O O
UINT_TO_ULINT UINT ULINT O
UINT TO s UINT_TO_BOOL UINT BOOL O O O
- UINT_TO_BYTE UINT BYTE O O O
UINT_TO_WORD UINT WORD O O O
UINT_TO_DWORD UINT DWORD O O O
UINT_TO_LWORD UINT LWORD O
UINT_TO_BCD UINT WORD (BCD) O O O
UINT_TO_REAL UINT REAL O
UINT_TO_LREAL UINT LREAL O
UINT_TO_DATE UINT DATE O O O
UDINT_TO_SINT UDINT SINT O O O
UDINT_TO_INT UDINT INT O O O
UDINT_TO_DINT UDINT DINT O O O
UDINT_TO_LINT UDINT LINT O
UDINT_TO_USINT UDINT USINT O
UDINT_TO_UINT UDINT UINT O
UDINT_TO_ULINT UDINT ULINT O
UDINT_TO_BOOL UDINT BOOL O O O
UDINT_TO_**x* UDINT_TO_BYTE UDINT BYTE O O O
UDINT_TO_WORD UDINT WORD O O O
UDINT_TO_DWORD UDINT DWORD O O O
UDINT_TO_LWORD UDINT LWORD O
UDINT_TO_BCD UDINT DWORD (BCD) O O O
UDINT_TO_REAL UDINT REAL O
UDINT_TO_LREAL UDINT LREAL O
UDINT_TO_TOD UDINT TOD O O O
UDINT_TO_TIME UDINT TIME O O O
ULINT_TO_SINT ULINT SINT O
ULINT_TO_INT ULINT INT O
ULINT_TO. ##x ULINT_TO_DINT ULINT DINT O
ULINT_TO_LINT ULINT LINT O
ULINT_TO_USINT ULINT USINT O
ULINT_TO_UINT ULINT UINT O

7. Function and Function Block

Application
Function group Function Input data type |Output data type
GMR~2 GM3 | GM4~7
ULINT_TO_UDINT ULINT UDINT O
UL INT_TO_BOOL ULINT BOOL O
ULINT_TO_BYTE ULINT BYTE O
UL INT_TO_WORD ULINT WORD O
UL INT_TO_#=*x* UL INT_TO_DWORD ULINT DWORD O
UL INT_TO_LWORD ULINT LWORD O
ULINT_TO_BCD ULINT LWORD (BCD) O
UL INT_TO_REAL ULINT REAL O
ULINT_TO_LREAL ULINT LREAL O
BOOL_TO_SINT BOOL SINT O O O
BOOL_TO_INT BOOL INT O O O
BOOL_TO_DINT BOOL DINT O O O
BOOL_TO_LINT BOOL LINT O
BOOL_TO_USINT BOOL USINT O O O
BOOL_TO_UINT BOOL UINT O O O
BOOL_TO_x=*x* BOOL_TO_UDINT BOOL UDINT O O O
BOOL_TO_ULINT BOOL ULINT O
BOOL_TO_BYTE BOOL BYTE O O O
BOOL_TO_WORD BOOL WORD O O O
BOOL_TO_DWORD BOOL DWORD O O O
BOOL_TO_LWORD BOOL LWORD O
BOOL_TO_STRING BOOL STRING O O O
BYTE_TO_SINT BYTE SINT O O O
BYTE_TO_INT BYTE INT O O O
BYTE_TO_DINT BYTE DINT O O O
BYTE_TO_LINT BYTE LINT O
BYTE_TO_USINT BYTE USINT O O O
BYTE_TO_UINT BYTE UINT O O O
BYTE TO_ s BYTE_TO_UDINT BYTE UDINT O O O
BYTE_TO_ULINT BYTE ULINT O
BYTE_TO_BOOL BYTE BOOL O O O
BYTE_TO_WORD BYTE WORD O O O
BYTE_TO_DWORD BYTE DWORD O O O
BYTE_TO_LWORD BYTE LWORD O
BYTE_TO_STRING BYTE STRING O O O
BYTE_TO_ASC BYTE WORD (ASCI1)
WORD_TO_SINT WORD SINT O O O
WORD_TO_INT WORD INT O O O
WORD_TO_DINT WORD DINT O O O
WORD_TO_» WORD_TO_LINT WORD LINT O
WORD_TO_USINT WORD USINT O O O
WORD_TO_UINT WORD UINT O O O

7. Function and Function Block

Application
Function group Function Input data type [Output data type
GMR~2 | GM3 | GM4~7
WORD_TO_UDINT WORD UDINT O O | O
WORD_TO_UL INT WORD ULINT O
WORD_T0_BOOL WORD BOOL O O | O
HORD. 10 oes WORD_TO_BYTE WORD BYTE O O | O
-5 WORD_TO_DWORD WORD DIORD O O | O
WORD_TO_LWORD WORD LWORD O
WORD_TO_DATE WORD DATE O O | O
WORD_TO_STRING WORD STRING O O | O
DWORD_TO_S INT DIORD SINT O O | O
DWORD_TO__INT DIORD INT O O | O
DWORD_TO_DINT DIORD DINT O O | O
DWORD_TO_L INT DIORD LINT O
DWORD_TO_USINT DIORD USINT O O | O
DIORD_TO_UINT DIORD UINT O O | O
DIORD_TO_UDINT DIORD UDINT O O | O
DWORD_TO_UL INT DIORD ULINT O
DWORD_TO_ = DIORD_T0_BOOL DIORD BOOL O O | O
DWORD_TO_BYTE DIORD BYTE O O | O
DWORD_TO_WORD DIORD WORD O O | O
DIORD_TO_LWORD DIORD LWORD O
DIORD_TO_REAL DIORD REAL O
DWORD_TO_ T INE DIORD TIVE O O | O
DWORD_T0_TOD DIORD TOD O O | O
DIORD_TO_STRING DIORD STRING O O | O
LWORD_TO_SINT LWORD SINT O
LWORD_TO__INT LWORD INT O
LWORD_TO_DINT LWORD DINT O
LWORD_TO_L INT LWORD LINT O
LORD_TO == LWORD_TO_USINT LWORD USINT O
LWORD_TO_UINT LWORD UINT O
LWORD_TO_UDINT LWORD UDINT O
LWORD_TO_UL INT LWORD ULINT O
LWORD_T0_BOOL LWORD BOOL O
LWORD_TO_BYTE LWORD BYTE O
LWORD__TO_WORD LWORD WORD O
LWORD_TO_ #+ LWORD_TO_DWORD LWORD DIORD O
LWORD_TO_LREAL LWORD LREAL O
LWORD_T0_DT LWORD DT O
LWORD_TO_STRING LWORD STRING O
STRING _TO_SINT STRING SINT O O | O
STRING_TO_+*+ | STRING _TO_INT STRING INT O O | O
STRING _TO_DINT STRING DINT O O | O

7. Function and Function Block

Application
Function group Function Input data type |Output data type
GMR~2 GM3 | GM4~7
STRING _TO_LINT STRING LINT O
STRING _TO_USINT STRING USINT O O O
STRING _TO_UINT STRING UINT O O O
STRING _TO_UDINT STRING UDINT O O O
STRING _TO_ULINT STRING ULINT O
STRING _TO_BOOL STRING BOOL O O O
STRING _TO_BYTE STRING BYTE O O O
STRING.TQ s STRING _TO_WORD STRING WORD O O O
STRING _TO_DWORD STRING DWORD O O O
STRING _TO_LWORD STRING LWORD O
STRING _TO_REAL STRING REAL O
STRING _TO_LREAL STRING LREAL O
STRING _TO_DT STRING DT O O O
STRING _TO_DATE STRING DATE O O O
STRING _TO_TOD STRING TOD O O O
STRING _TO_TIME STRING TIME O O O
NUM_TO_STRING NUM_TO_STRING ANY_NUM STRING O O O
TIME_TO_UDINT TIME UDINT O O O
TIME_TO_#+*x* TIME_TO_DWORD TIME DWORD O O O
TIME_TO_STRING TIME STRING O O O
DATE_TO_UINT DATE UINT O O O
DATE_TOQ_x*x* DATE_TO_WORD DATE WORD O O O
DATE_TO_STRING DATE STRING O O O
TOD_TO_UDINT TOD UDINT O O O
TOD_TO_x*x* TOD_TO_DWORD TOD DWORD O O O
TOD_TO_STRING TOD STRING O O O
DT_TO_LWORD DT LWORD O
DT_TO_DATE DT DATE O O O
DT_TOQ_**x
DT_TO_TOD DT TOD O O O
DT_TO_STRING DT STRING O O O

7. Function and Function Block

7.1.2. Arithmetic Function

7.1.2.1. Numerical Operation Function with One Input
It supports GMR, GM1, GM2 (Note: ABS function supports GM3, GM4, GM6, GM7).

No.| Function | Description
General function
1 ABS Absolute value operation
2 SQRT Calculate SQRT (Square root operation)
Logar ithm
3 LN Natural logarithm operation
4 LOG Base 10 logarithm operation
5 EXP Natural exponential operation
Trigonometric function
6 SIN Sine operation
7 CoS Cosine operation
8 TAN Tangent operation
9 ASIN Arc Sine operation
10 ACOS Arc Cosine operation
11 ATAN Arc Tangent operation
Angle function
12 RAD_REAL Convert degree into radian
13 RAD_LREAL
14 DEG_REAL Convert radian into degree
15 DEG_LREAL

7.1.2.2. Basic Arithmetic Function
EXPT supports GMR, GM1, GM2 only; XCHG_*** supports GM3, GM4, GM6, GM7.

No. Function Description
Operation function of which input number (n) can be extended up to 8.
1 ADD Addition (OUT <= INT + IN2 + ... + INn)

2 MUL Multiplication (OUT <= INT = IN2 = ... * [Nn)
Operation function of which input number is fixed.
3 SUB Subtraction (OUT <= IN1 - IN2)
4 DIV Division (OUT <= IN1 / IN2)
5 MOD Calculate remainder (OUT <= IN1 Modulo IN2)
6 EXPT Exponential operation (OUT <= IN1"™?)
7 MOVE Copy data (OUT <= IN)
Input data exchange
8 XCHG_#~** Exchanges two input data

7. Function and Function Block

7.1.3. Bit Array Function

7.1.3.1. Bit-shift Function

No. Function Description
1 SHL Shift left

2 SHR Shift right

3 SHIFT_C_**~* Shift with Carry

4 ROL Rotate left

5 ROR Rotate right

6 ROTATE_C_*~~ Rotates a designated direction

7.1.3.2. Bit Operation Function

No. Function Description (n can be extended up to 8)
1 AND Logical AND (OUT <= IN1T AND IN2 AND ... AND INn)
2 OR Logical OR (OUT <= IN1T OR IN2 OR ... OR INn)
3 XOR Exclusive OR (OUT <= IN1 XOR IN2 XOR ... XOR INn)
4 NOT Reverse logic (OUT <= NOT IN1)
7.1.4. Selection Function
No. Function Description (n can be extended up to 8)
1 SEL Selection from two inputs
2 MAX Produces a maximum value among input IN1, ..., INn
3 MIN Produces a minimum value among input IN1, ..., INn
4 LIMIT Limits upper and lower boundary
5 MUX Selection from multiple inputs
7.1.5. Data Exchange Function
No. Function Description
1 SWAP_BYTE Swaps upper nibble for lower nibble data.
SWAP_WORD Swaps upper byte for lower byte data.
SWAP_DWORD Swaps upper word for lower word data.
SWAP_LWORD Swaps upper double word for lower double word data.
2 ARY_SWAP_BYTE

Swaps upper/lower nibble of byte elements.

ARY_SWAP_WORD

Swaps upper/lower byte of WORD elements.

ARY_SWAP_DWORD

Swaps upper/lower WORD of DWORD elements.

ARY_SWAP_LWORD

Swaps upper/lower DWORD of LWORD elements.

7. Function and Function Block

7.1.6. Comparison Function

No. Function Description (n can be extended up to 8)
1 GT ‘Greater than’ compar ison
OUT <= (IN1>IN2) & (IN2>IN3) & ... & (INn-1 > INn)
2 GE ‘Greater than or equal to’ comparison
OUT <= (IN1>=IN2) & (IN2>=IN3) & ... & (INn-1 >= [Nn)
3 EQ ‘Equal to’ comparison
OUT <= (IN1=IN2) & (IN2=IN3) & ... & (INn-1 = INn)
4 LE 'Less than or equal to' comparison
OUT <= (IN1<=IN2) & (IN2<=IN3) & ... & (INn-1 <= INn)
5 LT ‘Less than’ comparison
OUT <= (IN1<IN2) & (IN2<IN3) & ... & (INn-1 < INn)
6 NE ‘Not equal to’ comparison
OUT <= (IN1<>IN2) & (IN2<>IN3) & ... & (INn-1 <> INn)

7.1.7. Character String Function

No. Function Description
1 LEN Find a length of a character string
2 LEFT Take a left side of a string
3 RIGHT Take a right side of a string
4 MID Take a middle side of a string
5 CONCAT Concatenate the input character string in order
6 INSERT Insert a string
7 DELETE Delete a string
8 REPLACE Replace a string
9 FIND Find a string

7-10

7. Function and Function Block

7.1.8. Time/Time of Day/Date and Time of Day Function

No. Function Description
1 ADD_T IME Add time (Time/time of day/date and time addition)
2 SUB_TIME Subtract time
SUB_DATE Subtract date
SUB_TOD Subtract TOD
SUB_DT Subtract DT
3 MUL_T IME Multiply time
4 DIV_TIME Divide time
5 CONCAT_T IME Concatenate date with TOD

7.1.9. System Control Function

No. Function Description

1 DI Invalidates interrupt (Not to permit task program starting)
2 El Permits running for a task program

3 STOP Stop running by a task program

4 ESTOP Emergency running stop by a program

5 DIREC_IN Update input data (available for GM1 ~ GM7)

6 DIREC_O Updates output data (available in GM1 ~ GM7)

7 WDT_RST Initialize a timer of watchdog

8 MCS Set MCS (Master Control)

9 MCSCLR Set MCSCLR (Master Control Clear)

7-11

7. Function and Function Block

7.1.10. Data Manipulation Function

No. Function Description

1 MEQ_»** Compare whether two inputs are equal after masking
2 DIS_#*x* Data distribution

3 UNI _#xx Unite data

4 BIT_BYTE Combine 8 bits into one byte

5 BYTE_BIT Divide one byte into 8 bits

6 BYTE_WORD Combine two bytes into one WORD

7 WORD_BYTE Divide one WORD into two bytes

8 WORD_DWORD Combine two WORD data into DWORD

9 DWORD_WORD Divide DWORD into 2 WORD data

10 DWORD_LWORD Combine two DWORD data into LWORD

11 LWORD_DWORD Divide LWORD into two DWORD data

12 GET_CHAR Get one character from a character string
13 PUT_CHAR Puts a character in a string

14 STRING_TO_ARY Convert a string into a byte array

15 ARY_TO_STRING Convert a byte array into a string

7.1.11. Stack Operation Function

No. Function Description
1 FIFOQ_»*x* First In First Out
2 LIFO_**= Last In First OQut

7-12

7. Function and Function Block

7.2. MK (MASTER-K) Function

No. Function Description (n can be extended up to 8)
1 ENCO_*x~* Output a position of On bit by number

2 DECO_x== Turn a selected bit on

3 BSUM_xxx Output a number of On bit

4 SEG Convert BCD/HEX into 7-segment code

5 BMOV_*** Move part of a bit string

6 INC_»xx Increase IN data

7 DEC_**x* Decrease IN data

7.3. Array Operation Function

No. Function Description
1 ARY_MOVE Copy array-typed data (OUT <= IN)

2 ARY_CMP _~*x* Array compar ison

3 ARY_SCH_»#* Array search

4 ARY_FLL_**x* Filling an array with data

5 ARY_AVE _**x* Find an average of an array

6 ARY_SFT_C_*xx Array bit shift left with carry

7 ARY_ROT_C_»xx Bit rotation of array with carry

8 SHIFT_A_**x Shift array elements

9 ROTATE_A =% Rotates array elements

7.4. Basic Function Block

7.4.1. Bistable Function Block

No. Function Block Description
1 SR Set preference bistable

2 RS Reset preference bistable

3 SEMA Semaphore

7.4.2. Edge Detection Function Block

No. Function Block Description
1 R_TRIG Rising edge detector
2 F_TRIG Falling edge detector

7-13

7. Function and Function Block

7.4.3. Counter

7.4.4.

7.4.5.

No.| Function Block Description
1 CTu Up Counter

2 CTD Down Counter

3 CTUD Up/Down Counter

4 CTR Ring Counter

Timer
No.| Function Block Description
1 TP Pulse Timer

2 TON On-Delay Timer

3 TOF Off-Delay Timer

4 TMR Integrating Timer

5 TP_RST TP with reset

6 TRTG Retriggerable Timer

7 TOF_RST TOF with reset

8 TON_UNIT TON with integer setting

9 TOF_UNIT TOF with integer setting

10 TP_UNIT TP with integer setting

11 TMR_UNIT TMR with integer setting

Other Function Block
No.| Function Block Description
1 SCON Step Controller

2 DUTY Scan setting On/Off

7-14

8. Basic Function/Function Block Library

8. Function/Function Block Library
8.1 Basic Function Library

This chapter describes the basic function library respectively.

POINT F when a function error occurs, please refer to the following instruction.
> Function error

If an error occurs when a function is run, ENO will be 0 and, the error flag (_ERR, LER) will be 1.
Unless an error occurs, ENO will be equal to EN (EN and ENO are used in LD only).
> Error flag
_ERR (Error)
- After function execution of which error is described, ERR value will be changed as follows:
(There’s no change in _ERR value as long as there’s no function error.)
- In case of an operation error, it will be 1.
- In other cases, it will be 0.

_LER (Latched Error)
- In case of an error after execution, _LER will be 1 and maintained until the end of the program.
- It is possible to write 0 in the program.
mProgram Example
This is a program that moves VALUE1 data to OUT_VAL without executing SUB function if an ADD
function error occurs.

MO0 A0 SUTE

_I I— EN ENO EN ENQ =

VALUELl J4IN1 0T | 0UT_ WAL OUT_WAL JIN1 OUT p OUT_SFAL

vaLUE: J 1wz YaLvE: Jime
_EEE MOSE
—] }—{er¥ ENO[

TALUELl J4IN1 OUT | 0UT_WaL

(1) An error occurs in ADD function when its two inputs are as follows:
Input (IN1): VALUEL (SINT) = 100 (16#64)
(IN2): VALUE2 (SINT) = 50 (16#32)
Output (OUT): OUT_VAL (SINT) = -106 (16#96)

(2) As an output value is out of range of its data type, the abnormal value will be stored in the OUT_VAL
(SINT). At this time, ENO of ADD function will be 0 and SUB function will not be executed, and the
error flag (ERR and _LER) will be on.

(3) _ERR will be on and MOVE function will be executed.

Input (IN1): VALUEL (SINT) =100 (16#64)
Output (OUT): OUT_VAL (SINT) = 100 (16#64)

8-1

8. Basic Function/Function Block Library

ABS

Absolute value operation Mode | GMR | GM1 [GM2 [GM3 | GM4 | GM6 | GM7
Application| @ | @ @ @ © @ | @

Function Description

Input EN: executes the function in case of 1
IN: input value of absolute value operation

ABS
BOOL 4EN ENO} BOOL

Output ENO: without an error, it will be 1
ANY_NUMSIN OUTE ANY_NUM

OUT: absolute value
IN, OUT should be the same data type.

m Function
It converts input IN into its absolute value and produces output OUT.
[X], an absolute value of X is,

If X>=0, |X| = X,
If X<0, |X| = -X.
OUT = |IN|

mError
_ERR, LER flags are set when input IN is a minimum value.
Ex) If IN value is —128 and its data type is SINT, an error occurs.

m Program Example

LD IL
LD %10.0.0
~ JMPN AL
IR MR | _ LD VALUE
~ ABS
VALUE JINl ouT|eaBs_vaLuEe . ST ABS_VALUE
! AL :

(2) If the transition condition (%10.0.0) is on, ABS function will be executed.
(2) If VALUE = -7, ABS_VALUE = |-7| = 7.
If VALUE = 200, ABS_VALUE = |200]| = 200.

Input (IN): VALUE (INT) = -7 [aTafafa]aala]al a] a1 2] 1] o o] 1]
(L6#FFF9)
(ABS) ¢

Output (OUT): ABS_VALUE (INT) =7 | 0 | 0 | 0 | 0 | 0 | 0| 0| 0| 0| 0| 0| 0| 0| 1| 1| 1|
(16#0007)
The negative number of INT type is represented as the 2's compliment form (refer to 3.2.4. Data Type
Structure)

8-2

8. Basic Function/Function Block Library

ACOS
Arc Cosine operation Mode | GMR | GM1 |GM2 |GM3 | GM4 | GME | GM7
Application| @ | @ | @ o
* Applied only in GM4-CPUC among GM4 series
Function Description

Input EN: executes the function in case of 1
IN: input value of Arc Cosine operation

ACOS
BOOL -EN ENOp BOOL

Output ENO: without an error, it will be 1
ANY_REAL= IN OUT}~ANY_REAL

OUT: Arc Cosine (radian)
IN, OUT should be the same data type.

m Function

It converts input IN into its Arc Cosine value and produces output OUT. The output range is between 0 and «.
OUT = ACOS (IN).

| Error
Unless an IN value is between -1.0 and 1.0, ERR, LER flags are set.

B Program Example

LD IL
LD %MO
M0 ACO3S JMPN LL
— p—pE¥ ENE 1 LD INPUT
ACOS
INPUT JIN1 OUTp. ERESULT ST RESULT
LL:

(2) If the transition condition (%MO) is on, ACOS function will be executed.
(2) If INPUT is 0.8660... (\ 3/2), RESULT will be 0.5235... (/6 rad = 30°).
ACOS (\37/2) = /6
(COS /6 = 3/2)
Input (IN1): INPUT (REAL) = 0.866
\L (ACOS)

Output (OUT): RESULT (REAL) = 5.23499966E-01

REAL type representation is based on IEEE Standard 754-1984 (refer to 3.2.4. Data Type Structure).

8-3

8. Basic Function/Function Block Library

ADD
Addition Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application| @ | @ @ © © © | ©
Function Description
Input EN: executes the function in case of 1
IN1: value to be added
ADD IN2: value to add
BOOL =EN ENO = BOOL Input variable number can be extended up to 8
ANY_NUM = IN1 OUT f=ANY_NUM
ANY_NUM —IN2 Output ENO: without an error, it will be 1
OUT: added value
IN1, IN2, ..., OUT should be the same data type.

B Function

It adds input variables up (IN1, IN2, ..., and INn, n: input number) and produces output OUT.

OUT =IN1+IN2+ ...+ INn

m Error

When the output value is out of its data type, ERR, LER flags are set.

_m Program Example

LD IL
LD %MO
JMPN CA
|"‘“°| I LD VALUE1L
ADD IN1:= CURRENT RESULT
VALUEL Jinl ouT| oUT_vaL IN2:= VALUEZ2
IN3:;= VALUE3
VALUEZ 4 INZ ST OUT_VAL
CA:
waLvEz JImz

(1) If the transition condition (%MO0) is on, ADD functio

n will be executed.

(2) If input variable VALUEL = 300, VALUE2 = 200, and VALUE3 = 100,
output variable OUT_VAL = 300 + 200 + 100 = 600.

Input (IN1): VALUEL (INT) = 300 (16#012C) |0]o]o|o]ofo]o] 1] o[o] 1] o] 1] 1] o] o

+ (ADD)

(IN2): VALUE2 (INT) = 200 (16#00C8) |0|o |0 |0|0|0|0| 0| 1| 1| 0| 0| 1| 0| o| 0|

+ (ADD)

(IN2): VALUES (INT) = 100 (16#0064) [0]oJoJoJofo[o] o] o] 1] 1] o] o] 1] o] o

(OUT): OUT_VAL (INT) = 600 (16#0258)

[ofJoJoJofoJof1]of of 1] of 1] 1] of 0] of

8-4

8. Basic Function/Function Block Library

ADD_TIME

Time Addition

Mode | GMR | GM1 |GM2 |GM3 | GM4

GM6

GM7

Application| @ @ @ @ | @

Function

Description

ADD_TIME
BOOL =IEN ENO =~ BOOL

TIME/TOD/DT={IN1 OUT|= TIME/TOD/DT

Input
IN1: reference time, time of date
IN2: time to add

Output ENO: without an error, it will be 1

OUT: added result of TOD or time

EN: executes the function in case of 1

TIME =IN2 IN1, IN2, and OUT should be the same data type:
If IN1 type is TIME_OF_DAY, OUT type will be also
TIME_OF_DAY.
m Function

D> If IN1 is TIME, added TIME will be an output.

D> If IN1 is TIME_OF_DAY, it adds TIME to reference TIME_OF_DAY and produces output TIME_OF_DAY.
D> If IN1 is DATE_AND_TIME, the output data type will be DT (Date and Time of Day) adding the time to the

standard date and time of day.

m Error

> If an output value is out of range of related data type, _ERR, _LER flag will be set.
> An error occurs: 1) when the result of adding the time and the time is out of range of TIME data type
T#49D17H2M47S295MS; 2) the result of adding TOD (Time of Day) and the time exceeds 24hrs; 3) the
result of adding the date and DT (Date and the Time of Day) exceeds the year, 2083.

Program Example

LD IL
LD %I10.1.0
JMPN ABC
210.1.0 |aro_rmE

L1 —len ~ Emol LD START_TIME
ADD_TIME IN1:= CURRENT RESULT

BT ART_T IM

E Jmm1 ourlEvp_TIME IN2:= WORK_TIME

ST END_TIME

WoRE_T IME] INZ ABC :

(2) If the transition condition (%10.1.0) is on, ADD_TIME function will be executed.
(2) If START_TIME is TOD#08:30:00 and WORK_TIME is T#2H10M20S500MS,

END_TIME will be TOD#10:40:20.5.

Input (IN1): START_TIME (TOD) = TOD#08:30:00

+ (ADD_TIME)

(IN2): WORK_TIME (TIME) = T#2H10M20S500MS

Output (OUT): END_TIME (TOD) = TOD#10:40:20.5

8-5

8. Basic Function/Function Block Library

AND

Logical AND (Logical multiplication) Mode | GMR | GM1 |GM2 |GM3 | GM4 | GMB

GM7

Application| @ @ @ @ | @

Function Description

Input EN: executes the function in case of 1
IN1: input 1
IN2: input 2
Input variables can be extended up to 8.

AND
BOOL =EN ENOJ= BOOL
ANY_BIT = IN1 OUT]= ANY_BIT

ANY_BIT o IN2 Output ENO: without an error, it will be 1

OUT: AND result
IN1, IN2, and OUT should be all the same data type.

B Function
It performs logical AND operation on the input variables by bit and produces output OUT.
IN1 1111..... 0000

IN2 1010 1010
OuUT 1010 0000

B Program Example

LD IL
LD %10.1.1
JMPN AA
jluli - mm i _ LD %MB10
AND IN1:= CURRENT RESULT
TIME10 JIN1 OUT b TQE0 00 o INZ:: ABC
ST %QB0.0.0
zBC JIimE - AA

(2) If the transition condition (%10.1.1) is on, AND function will be executed.
(2) If INI = %MB10 and IN2 = ABC, the result of AND will be shown in OUT (%QB0.0.0).

Input (IN1): %MB10 (BYTE) = 164CC [1] 1] o] o] 1] 1] o 0]
& (AND)
(IN2): ABC (BYTE) = 16#F0 [1] 1] 1] 1] o] o] o] 0]
\%

Output (OUT): %QBO0.0.0 (BYTE) = 16#CO0 | 1| 1| o| 0| o| 0| o| 0|

8-6

8. Basic Function/Function Block Library

ARY_TO_STRING

Converts a byte array into a string MODEL GMR | GM1 [GM2 [GM3 | GM4 | GM6 | GM7
Application| @ | @ @ © © © | ©

Function Description

Input EN: executes the function in case of 1
ARY_TO_STRING IN: byte array input
BOOL — EN ENO f~BOOL
BYTE_ARY — IN1 OUT = STRING
Output ENO: without an error, it will be 1
OUT: string output
m Function

It converts a byte array input into a string.

B Program Example

LD

BYTE_STRI
A NG
EN EN

INFUT I QU RESLLT

(2) If the transition condition (%6M2) is on, BYTE_STRING function will be executed.

(2) Input variable INPUT is converted into string-type variable OUTPUT.
For example, if INPUT is 16#{22("), 47(G), 4D(M), 34(4), 2D(-), 43(C), 50(P), 55(U), 41(A), 22(*)}, the
RESULT will be “GM4-CPUA”".

8-7

8. Basic Function/Function Block Library

ASIN
Arc Sine operation Mode | GMR | GM1 |GM2 |GM3 | GM4 | GME | GM7
Application] @ | @ | @
Function Description
Input EN: executes the function in case of 1
IN: input value of Arc Sine operation
ASIN
BOOL =EN ENOJ BOOL Output ENO: without an error, it will be 1
ANY_REAL=] IN OUTl ANY_REAL OUT: radian output value after operation
IN and OUT should be the same data type.
m Function

It produces an output (Arc Sine value) of IN.
OUT = ASIN (IN)

m Error

The output value is between -n/2 and n/2.

If an input value exceeds the range from -1.0to 1.0, ERR and _LER flags are set.

_m Program Example

LD IL
LD %MO0
JMPN AAA
|‘"“"| el LD INPUT
ASIN
INFUT JIN1 oUT|- RESULT ST RESULT
AAA

(2) If the transition condition (%MO) is on, ASIN function will be executed.
(2) If INPUT variable is 0.8660.... (\ 3 /2), the RESULT will be 1.0471.... (n/3 radian = 60°).

ASIN (V372) = /3
Therefore, SIN (n/3) =V 3 /2

Input (IN1): INPUT (REAL) = 0.866

J (ASIN)

Output (OUT): RESULT (REAL) = 1.04714680E+00

8-8

8. Basic Function/Function Block Library

ATAN
Arc Tangent operation Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application| @ | @ | @ o

* Applied only in GM4-CPUC among GM4 series

Function Description

Input EN: executes the function in case of 1
IN: Input value of Arc Tangent operation

ATAN
BOOL || EN ENO = BOOL
ANY_REAL=1 IN OUT = ANY_REAL

Output ENO: without an error, it will be 1
OUT: radian output value after operation
IN, OUT should be the same data type.

v Function
It produces an output (Arc Tangent value) of IN value. The output value is between -n/2 and r/2.

OUT = ATAN (IN)

v Program Example

LD IL
LD %MO
JMPN AA
f“”l i | LD INPUT
ATAN
wrrr . oorl RESULT) ST RESULT
AA:

(2) If the transition condition (%MO) is on, ATAN function will be executed.
(2) If INPUT = 1.0, then output RESULT will be:
RESULT = n/4 = 0.7853...
ATAN (1) = /4
(TAN (n/4) = 1)

Input (IN1): INPUT (REAL) = 1.0
J (ATAN)

Output (OUT): RESULT (REAL) = 7.85398185E-01

8-9

8. Basic Function/Function Block Library

BCD_TO_***
Converts BCD data into an integer number Model | GMR | GM|GM2 |GM3 | GM4 | GM6 | GM7
Application| @ | @ @ © © © | ©
Function Description
Input EN: executes the function in case of 1
BCD_TQ_** IN: ANY_BIT (BCD)
BOOL =] EN ENOI™ BOOL
ANY_BIT=] IN OUT[*** . .
- Output ENO: without an error, it will be 1
OUT: type-converted data

m Function

It converts input IN type and produces output OUT.
Function Input type |Output type Description

BCD _TO SINT | BYTE SINT

BCD TO INT WORD INT

BCD TO DINT | DWORD DINT It converts BCD data into an output data type.

BCD TO LINT LWORD LINT It coverts only when the input date type is a BCD value.

BCD TO USINT | BYTE USINT If an input data type is WORD, only the part of its data

BCD TO UINT | WORD UINT (0 ~16#9999) will be normally converted.

BCD TO UDINT| DWORD | UDINT

BCD _TO ULINT | LWORD ULINT

| Error
If IN is not a BCD data type, then the output will be 0 and _ERR, LER flags will be set.

B Program Example

LD IL
0
M0 BCD_TO_3 INT - oMo
| e _ VPN ABC
LD BCD_VAL
ECO_vwal JINl ouTl ouT_var ! : BCD_TO_SINT
ST OUT_VAL
ABC :

(2) If the transition condition (%MO) is on, BCD_TO_*** function will be executed.
(2) If BCD_VAL (BYTE) = 16#22 (2#0010_ 0010),
then the output variable OUT_VAL (SINT) = 22 (2#0001_ 0110).

Input (IN1): BCD_VAL (BYTE) = 16#22 | 0] o 1] o] o] of 1] 0
W(BCD_TO_SINT)

Output (OUT): OUT_VAL (SINT) =22 |0| 0| 0| 1| 0| 1| 1| 0|

8-10

8. Basic Function/Function Block Library

BOOL_TO_***
BOOL type conversion Model | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application| @ | @ @ © © © | ©
Function Description
Input EN: executes the function in case of 1
IN: bit to convert (1 bit)
BOOL_TQ_***
BOOL= EN ENO = BOOL Output ENO: without an error, it will be 1.
BOOL— IN OUT = = OUT: type-converted data
B Function
It converts input IN type and produces output OUT.
) Output .
Function Description
type
BOOL_TO_SINT SINT
BOOL _TO INT INT
BOOL TO DINT DINT If the input value (BOOL) is 2#0, it produces the integer number ‘0’ and
BOOL TO LINT LINT if it is 2#1, it does the integer number ‘1’ according to the output data
BOOL TO USINT [USINT type.
BOOL_TO _UINT UINT
BOOL TO UDINT | UDINT
BOOL_TO ULINT ULINT
BOOL_TO BYTE BYTE
BOOL TO WORD | WORD It converts BOOL into the output data type of which upper bits are filled
BOOL TO DWORD| DWORD | with 0.
BOOL TO LWORD | LWORD
BOOL _TO STRING | STRING | It converts BOOL into a STRING type, which will be ‘0’ or ‘1.
B Program Example
LD IL
LD %MO
JMPN ABC
o 5001 _To_BviE LD BOOL_VAL
— = BOOL_TO BYTE
EOO0L_%fal 4 IN1 00T 01T_ AL ST OUT—VAL
ABC :

(1) If the transition condition (%MO) is on, BOOL_TO_*** function will be executed.
(2) If input BOOL_VAL (BOOL) = 2#1, then output OUT_VAL (BYTE) = 2#0000_ 0001.

Input (IN1): BOOL_VAL (BOOL) = 2#1

Output (OUT): OUT_VAL (BYTE) = 16#1

Vv (BOOL_TO_SINT)

Lo] of of of o of of 1]

8-11

8. Basic Function/Function Block Library

BYTE_TO_***

BYTE type conversion

Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7

Application| @ | @ @ © © © | ©

Function Description
Input EN: executes the function in case of 1
BYTE_TO_*** IN: bit string to convert (8 bits)
BOOL =] EN ENOJ® BOOL
BYTE =IN OUT = *** Output ENO: without an error, it will be 1.
OUT: type-converted data

B Function

It converts input IN type and produces output OUT.

Function Output type Description
BYTE TO SINT SINT Converts into SINT type without changing its internal bit array.
BYTE TO INT INT Converts into INT type filling the upper bits with 0.
BYTE TO DINT DINT Converts into DINT type filling the upper bits with 0.
BYTE TO LINT LINT Converts into LINT type filling the upper bits with 0.
BYTE TO USINT USINT Converts into USINT type without changing its internal bit array.
BYTE TO UINT UINT Converts into UINT type filling the upper bits with 0.
BYTE TO UDNT UDINT Converts into UDINT type filling the upper bits with 0.
BYTE TO ULINT ULINT Converts into ULINT type filling the upper bits with 0.
BYTE TO BOOL BOOL Takes the lower 1 bit and converts it into BOOL type.
BYTE _TO WORD WORD Converts into WORD type filling the upper bits with 0.
BYTE TO DWORD DWORD Converts into DWORD type filling the upper bits with 0.
BYTE _TO LWORD LWORD Converts into LWORD type filling the upper bits with 0.
BYTE TO STRING STRING Converts the input value into STRING type.

m Program Example

LD IL
LD %M10
:M10 EYTE_T0_SINT JMPN -
- |_EH_ THo LD IN_VAL
BYTE_TO_SINT
I¥_val JINL oUT|e 0UT_walL ST OUT_VAL
LLL :

(2) If the transition condition (%M10) is on, BYTE_TO_SINT function will be executed.
(2) If IN_VAL (BYTE) = 2#0001_1000, OUT_VAL (SINT) = 24 (2#0001_1000).

Input (IN1): IN_VAL (BYTE) = 16#18 o] o] o] 1] 1] of o] o

V' (BYTE_TO_SINT)

Output (OUT): OUT_VAL (SINT) =24 [o] o] o] 1] 1] o] 0] 0

8-12

8. Basic Function/Function Block Library

CONCAT
Concatenates a character string Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application] @ @ @ @ © | @ | @
Function Description
Input EN: executes the function in case of 1
CONCAT IN1: input character string
IN2: input character string
BOOL 5|EN ENOf= BOOL Input variable number can be extended up to 8.
STRING ={IN1 OUT}= STRING
STRING =]IN2 Output ENO: without an error, it will be 1.
OUT: output character string
m Function
It concatenates the input character string IN1, IN2, IN3, ..., INn (n: input number) in order and produces

output character string OUT.

m Error

If the sum of character number of each input character string is greater than 30, then the output CONCAT is
the concatenate string of each input character string (up to 30 letters), and _ERR, LER flags will be set.

B Program Example

LD IL
LD %0.2.1
JMPN THERE
2I10.2.1 | CONCAT LD IN TEXT1

I I EN ENOf

IN_TEXT1 4IN1 OUT . OUT_TEXT

IN_TEXT: 4 INZ

CONCAT IN1:= CURRENT RESULT
IN2:= IN_TEXT2

ST OUT_TEXT

THERE :

(1) If the transition condition (%10.2.1) is on, CONCAT function will be executed.
(2) If input variable IN_TEXT1 = ‘ABCD’ and IN_TEXT2 = ‘DEF’, then OUT_TEXT = ‘ABCDDEF".

Input (IN1): IN_TEXT1 (STRING) = ‘ABCD’
(IN2): IN_TEXT2 (STRING) = ‘DEF’

V' (CONCAT)

Output (OUT): OUT_TEXT (STRING) = ‘ABCDDEF’

8-13

8. Basic Function/Function Block Library

CONCAT_TIME

BOOL=- EN ENO =BOOL
DATE =1 IN1 OuUT DT
TOD =] IN2

IN1: date data input

Concatenates date and time of day Modell GMR | GMT [GM2 |GM3 | G4 | GM6 | GM7
Application| @ | @ @ © © © | ©
Function Description
Input EN: executes the function in case of 1
CONCAT_TIMH

IN2: Time of day data input

Output ENO: without an error, it will be 1.
OUT: DT (Date and Time of Day) output

m Function

It concatenates IN1 (date) and IN2 (time of day) and produces output OUT (DT).

B Program Example

LD IL
0
M1 CONCAT T IME LD ¥oM1
] e “Ewol JMPN AA
LD START_DATE
START TAT
E Jmwi ourl sTarT DT CONCAT_TIME IN1:= CURRENT RESULT
START_TIM IN2:= START_TIME
E J 1wz ST START_DT
AA :

(1) If the transition condition (%M1) is on, CONCAT_TIME function will be executed.
(2) If START_DATE = D#1995-12-06 and START_TIME = TOD#08:30:00,
then, output START_DT = DT#1995-12-06-08:30:00.

Input (IN1): START_DATEL (DATE) = D#1995-12-06

(CONCAT_TIME)

(IN2): START_TIME (TOD) = TOD#08:30:00

v

Output (OUT): START_DT (DT) = DT#1995-12-06-08:30:00

8-14

8. Basic Function/Function Block Library

COS
Cosine operation Mode | GMR | GM1 [GM2 |GM3 | GM4 | GM6 | GM7
Application| @ | @ | @ o
* Applied only in GM4-CPUC among GM4 series
Function Description
Input EN: executes the function in case of 1
IN: radian input value of Cosine operation
COS
BOOL =EN ENOF BOOL Output ENO: without an error, it will be 1.
ANY_REAL~ IN OUTPF ANY_REAL) . .
- - OUT: result value of Cosine operation
IN and OUT should be the same data type.
m Function

It produces IN’s Cosine operation value.

OUT = COS (IN)

B Program Example

LD IL
LD %I0.1.3
TI0.1.3 cog JMPN CcCcC
— |—{er el
LD INPUT
INFUT JIN1 OUT| EBESULT COSs
ST RESULT
CCC:

(1) If the transition condition (%10.1.3) is on, COS function will be executed.
(2) If input INPUT = 0.5235 (n/6 rad = 30°), output RESULT = 0.8660 ... (¥ 3 /2).
COS (n/6) =V 3/2 = 0.866

Input (IN1): INPUT (REAL) = 0.5235

v

(COS)

Output (OUT): RESULT (REAL) = 8.66074800E-01

8-15

8. Basic Function/Function Block Library

DATE_TO_***
Date type conversion Mode | GMR | GM1 |GM2 |GM3 | GM4 | GMB | GM7
Application| @ | @ @ © © © | ©
Function Description
Input EN: executes the function in case of 1
IN: date data to convert
DATE_TO_***
BOOL o EN ENO -?SOL Output ENO: without an error, it will be 1.
DATE = IN OuT I= OUT: type-converted data
B Function

It converts an input IN type and produces output OUT.

Function Output type Description
DATE_TO_UINT UINT Converts DATE into UINT type.
DATE_TO_WORD WORD Converts DATE into WORD type.
DATE_TO_STRING | STRING Converts DATE into STRING type.

B Program Example

LD IL
LD %MO
M0 DATE_TO_STRING
— |—{ev =m0 JMPN L
LD IN_VAL
IN VAl JINL OUT|= oUT_van DATE TO STRING
ST OUT_VAL
LL:

(2) If the transition condition (%MO0) is on, DATE_TO_STRING function will be executed.
(2) If IN_VAL (DATE) = D#1995-12-01, OUT_VAL (STRING) = D#1995-12-01.

Input (IN1): IN_VAL (DATE) = D#1995-12-01

i/ (DATE_TO_STRING)

Output (OUT): OUT_VAL (STRING) = ‘D#1995-12-01’

8-16

8. Basic Function/Function Block Library

DELETE
Deletes a character string Mode | GMR | GM1 |GM2 |GM3 | GM4 | GME | GM7
Application| @ | @ @ © © © | ©
Function Description
Input EN: executes the function in case of 1
DELETE IN: input character string
BOOL =1 EN ENO}= BOOL L: length of character string to delete
STRING = IN OUTJ]= STRING P: position of character string to delete
INT oL
INT =P Output ENO: without an error, it will be 1.
OUT: output character string
H Function

After deleting a character string (L) from the P character of IN, produces output OUT.

W Error
IfP<0orL<O,or
If P > character number of IN, _ERR and _LER flags will be set.

B Program Example

LD IL
LD %I10.0.0
t10.0.0 | DELETE
L —lem o] JMPN KKK
LD IN_TEXT
w_text 41w ovrl our_TEXT J DELETE |IN:= CURRENT RESULT
L:= LENGTH
LENGTH JL o P:= POSITION
ST OUT_TEXT
POSITION P J KKK -

(1) If the transition condition (%10.0.0) is ON, DELETE function will be executed.
(2) If input variable IN_TEXT = ‘ABCDEF’, LENGTH = 3, and POSITION = 3, then OUT_TEXT (STRING) will
be ‘ABF'.
Input (IN): IN_TEXT (STRING) = ‘ABCDEF’
(L): LENGTH (INT) =3
(P): POSITION (INT) =3
(DELETE)
Output (OUT): OUT_VAL (STRING) = ‘ABF’

8-17

8. Basic Function/Function Block Library

DI
Invalidates task program (Not to permit task program Modell GMR | GMT [GM2 |GM3 | G4 | GM6 | GM7
starting) Application| @ O ® 6 o o o
Function Description
Input EN: executes the function in case of 1
5 REQ: requires to invalidate task program starting
BOOL i EN EN(?"_ BOOL Output ENO: without an error, it will be 1.
BOOL "REQ OU BOOL OUT: If Dl is executed, it will be 1.
m Function
> If EN =1 and REQ = 1, it stops a task program (single, interval, interrupt).
> Once DI function is executed, a task program does not start even if REQ input is 0.
> In order to start a task program normally, please use ‘El’ function.
> If you want to partially stop the task program for the troubled part, (otherwise, miss the continuity of

operation process due to the execution of other task program), it is available to use this function.

[> The task programs created while its execution is not invalidated will be executed according to task

program types as follows:

- Single task: it will be executed after 'El' function or current-running task program execution. In his

case, it repeats a task program as many as the state of single variable changes.

- Interval task, interrupt: Interval task, interrupt: the task occurred when it is not permitted to execute

will be executed after 'El' function or the current-running task program execution. But, if it occurs

more than 2 times, TASK_ERR is ON and TC_CNT (the number of task collision) is counted.

8-18

8. Basic Function/Function Block Library

W Program Example
This is the program that controls the task program increasing the value per second by using DI (Invalidates
task program) and El (permits running for task program).

; LD IL
(1) Scan program (TASK program control) (1) Scan program (TASK program control)
LDN %M100
TH100 01l JMPN KK
i] ' LD %10.1.14
TI0.1.12 JEEN 00T DI_0OK DI
ST DI_OK
KK :
TMI100 EI
— T LDN %M100
2I10.1.15JEEQ OUT|- EI_0K J JMPN LL
LD %I10.1.15
El
ST El_OK
LL:

(2) Task program increasing by executing per second.
(2) Task program increasing by executing per

second
M1 MOVE

|/ —{eF EWol | LDN %M1
JMPN MM

TITO_ 0.0 JIN1 OUT . TMW100 LD %lWOOO
MOVE
ST %MW100
MM :

(1) If REQ (assigned as direct variable %10.1.14) of DI is on, DI function will be executed and output DI_OK will
be 1.

(2) If DI function is executed, the task program to be executed per second stops.

(3) If REQ (assigned as direct variable %I10.1.15) of El is on, El function will be executed and output EI_OK will
be 1.

(4) If El function is executed, the task program stopped due to function DI will restart.

8-19

8. Basic Function/Function Block Library

DINT_TO_***
Invalidates task program (Not to permit task program Mode | GMR | GM1 |GM2 |GM3 | GM4 | GMG | GM7
starting) Application| @ | @ @ © © © | ©
Function Description
Input EN: executes the function in case of 1
DINT_TO_*

IN: double integer value to convert
BOOL =EN ENOJ= BOOL

- s KXX
DINT o IN ouT Output ENO: without an error, it will be 1.

OUT: type-converted data

v Function
It converts Input IN type and produces output OUT.

Function Output type Description

DINT_TO_SINT SINT If inputis -128 ~ 127, normal conversion.
Except this, an error occurs.

If input is -32768 ~ 32767, normal conversion.

DINT_TO_INT INT .
-~ Except this, an error occurs.

DINT _TO LINT LINT Converts normally into LINT type.

If inputis 0 ~ 255, normal conversion.

DINT_TO_USINT USINT .
-~ Except this, an error occurs.

If inputis 0 ~ 65535, normal conversion.

DINT_TO_UINT UINT .
-~ Except this, an error occurs.

Ifinputis 0 ~ 2147483647, normal conversion.

DINT_TO_UDINT UDINT .
-~ Except this, an error occurs.

Ifinputis 0 ~ 2147483647, normal conversion.

DINT_TO_ULINT ULINT .
-~ Except this, an error occurs.

DINT TO BOOL BOOL Takes the low 1 bit and converts into BOOL type.

DINT TO BYTE BYTE Takes the low 8 bit and converts into BYTE type.

DINT TO WORD WORD Takes the low 18 bit and converts into WORD type.

DINT TO DWORD | DWORD [Converts into DWORD type without changing the internal bit array.

DINT TO LWORD | LWORD |Converts into LWORD type filling the upper bytes with 0.

Ifinputis 0 ~ 99,999,999, normal conversion.

DINT_TO _BCD DWORD .
- = Except this, an error occurs.

Converts DINT into REAL type.

DINT_TO_REAL REAL _ . .
-~ During conversion, an error caused by the precision may occur.

Converts DINT into LREAL type.

DINT_TO_LREAL LREAL _ . -
-~ During conversion, an error caused by the precision may occur.

W Error
If a conversion error occurs, ERR, LER flags will be set.

When an error occurs, it takes as many lower bits as the bit number of the output type and produces an
output without changing the internal bit array.

8-20

8. Basic Function/Function Block Library

B Program Example

LD IL
0
M1 DINT_TO_SINT - o1
—lfl_m’_ =] JMPN LSB
LD DINT_VAL
DINT_wal JIN1 0UT|= 5INT wal ! DINT_TO_SINT
ST SINT_VAL
LSB:

(1) If the transition condition (%M1) is on, DINT_TO_SINT function will be executed.
(2) If INI = DINT_VAL (DINT) = -77, SINT_VAL (SINT) = -77.

Input (IN1): DINT_ VAL OINT)=-77 upper | L2]2]afafa]afa] af o] afa] e] 2]
Lefafafafafafafa]afofa]afofo 1]

lower

l (DINT_TO_SINT)

(1] of [1] of of 1] 1]

Output (OUT): OUT_VAL (SINT) = -77

8-21

8. Basic Function/Function Block Library

DIREC_IN
Update input data Mode | GMR | GM1 [GM2 |GM3 | GM4 | GM6 | GM7
Application| @ | @ @ © © © | ©
Function Description
Input EN: executes the function in case of 1
BASE: base number of an input module installed
DIREC_IN SLOT: slot number of an input module installed
BOOL =EN ENO = BOOL MASK_L: designates bits not to be updated
USINT = BASE OUTPE BOOL . .
among lower 32-bit data of input
USINT = SLOT MASK_H: designates bits not to be updated
DWORD o MASK_L . .
- among upper 32-bit data of input
DWORD = MASK_H
Output ENO: without an error, it will be 1.
OUT: if update is completed, output will be 1.
W Function

> If EN is 1 during the scan, DIREC _IN function reads 64-bit data of an input module from the designated

position of BASE and SLOT and updates them.

> At this time, only the actual contacts of an input module will be updated in the image scope.

> DIREC_IN function is available to use when you want to change the ON/OFF state of input (%l) during
the scan.

> Generally, it's impossible to update input data during 1 scan (executing a scan program) because a
scan-synchronized batch processing mode executes the batch processing to read input data and

produce output data after a scan program. It's available to update related input data, if you use

DIREC_IN function during program execution.

8-22

8. Basic Function/Function Block Library

B Program Example
1. This is the program that updates a 16-contact module installed in the 4th slot (slot number is 3) of the 3rd
extension base of which input data are 2# 1010 1010 1110 1011.

LD IL
LD %MO
MO DIREC_IN
IJFI EN ENO . L JMPN ABC
LD 3
3 BASE OWTE- REF OK DIREC_IN BASE:= CURRENT RESULT
N . SLOT:= 3
MASK_L:= 16#FFFF0000
16 TEFE00
oo JHESK 1 MASK_H:= 16#FFFF0000
16#FFFF00 | ST REF_OK
oo SMASE £
H ABC :

(1) If the input condition (%MO) is on, function DIREC_IN will be executed.

(2) The image scope to update will be %IW3.3.0 and %IW3.3.0 will be updated with
2#1010_1010_1110_1011 during the scan because a 16-contact module is installed and the lower 16-bit
data update is allowed (MASK_L = 16#FFFF0000).

(3) It doesn't matter what data are set in MASK_H because a 16-contact module is installed.

2. This is the program that updates the lower 16-bit data of the 32-contact module installed in the 4th slot
(slot number is 3) of the 3rd extension base of which input data are
2#0000_0000_1111 1111 1100 _1100_0011_0011.

LD IL
LD %MO
MO DIEEC_IN
I e § | JMPN ABC
LD 3
8 qBRSE OUTH= RET_OK 1 DIREC_IN BASE:= CURRENT RESULT
SLOT:= 3
b} 4 2LAaT
MASK_L:= 16#FFFF0000
1000000
00 JMARK] MASK_H:= 16#FFFFFFFF
_L
16§ FFFFFF ST REF_OK
FF 4MASE 4
_H ABC :

(2) If input condition (%MO) is on, function DIREC_IN will be executed.

(2) The image scope to update will be %ID3.3.0 but only %IW3.3.0 wil be updated with
2#1100_1100_0011_0011 during the scan because a 16-contact module is installed and the lower 16-bit
data update is allowed (MASK_L = 16#FFFF0000).

8-23

8. Basic Function/Function Block Library

3. This is the program that updates the lower 48-bit data of the 64-contact module installed in the 4th slot
(slot number is 3) of the 3rd extension base of which input data are 16#0000_FFFF_AAAA_7777
(2#0000_0000_0000_0000_1111 1111 1111 1111 1010 _1010_1010_1010_0111 0111 0111 0111).

LD IL
LD %MO
M0 DIREC_IN :
e o)] JMPN ABC
; LD 3
S LD RS - . DIREC_IN BASE:= CURRENT RESULT :
sLoT:= 3 5
2 Jsvor
: MASK_L:= 16#00000000
16£000000
o0 JMASE : MASK_H:= 16#FFFF0000
_L
16¢FFFFO0 ST REF_OK
ad Juazn]
_H ABC :

(2) If the input condition (%MO) is on, function DIREC_IN will be executed.
(2) The installed module is a 64-contact module and the image scope to update will be %IL3.3.0 (%ID3.3.0
and ID3.3.1).
%I1D3.3.0 will be updated because the lower 32-bit data update is allowed (MASK_L = 16#00000000).
%IW3.3.2 of %ID3.3.1 will be updated because only the lower 16-bit data update (among upper 32 bits) is
allowed (MASK_H = 16#FFFF0000).
Accordingly, the data update of the image scope is as follows:
%IL3.3.0 %ID3.3.0 %IwW.3.3.0: 2#0111_0111_0111_0111
|: I: %IW.3.3.1: 2#1010_1010_1010_1010
%ID3.3.1 %IW3.3.2: 2411111111 1111 1111
[%IW3.3.3: maintains the previous value
(3) If the input update is completed, output REF_OK will be 1.

8-24

8. Basic Function/Function Block Library

DIREC_O
Update output data Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application| @ | @ @ © © © | ©
Function Description
Input EN: executes the function in case of 1
BASE: base number of an input module installed
DIREC_O

SLOT: slot number of an input module installed
MASK_L: designates bits not to be updated
among lower 32-bit data of output
MASK_H: designates a bit not to update
among upper 32-bit data of output
Output ENO: without an error, it will be 1.
OUT: If update is completed, output will be 1.

BOOL - EN ENO= BOOL

USINT | BASE OUT=BOOL

USINT = SLOT
DWORD - MASK_L
DWORD 4 MASK_H

W Function
> If EN is 1 during the scan, DIREC_O function reads 64-bit data of an output module from the designated
position of BASE and SLOT and updates the unmasked (MASK (0)) data.

> DIREC_O is available to use when you want to change the ON/OFF state of output (%Q) during the scan.
> Generally, it's impossible to update input data during 1 scan (executing a scan program) because a scan-
synchronized batch processing mode executes the batch processing to read input data and produce output
data after a scan program.

D> It's available to update related output data, if you use DIREC_O function during program execution.

D> If the base/slot number is wrong or it is not available to write data normally in an output module, ENO and

OUT are '1' (without an error, it will be 1).

W Program Example
1. This is the program that produces output data 2#0111 0111 0111 0111 in a 16-contact relay output
module installed in the 5th slot (slot number is 4) of the 2nd extension base.

LD IL
tro.0.0 |DIREC_D
I - | LD %I10.0.0
JMPN AAA
2 JeasE ouTl DIm_om ; LD 2
DIREC_O BASE: = CURRENT RESULT
a JsnoT
SLOT: = 4
16¢FFFTO0
o0 Juask . MASK _L: = 16#FFFF0000
L
16#FTTTEF| MASK_H: = 16#FFFFFFFF
FF Juask ;
_H ST REF_OK
AAA

() Input the slot and base number in which an output module installed.

8-25

8. Basic Function/Function Block Library

(2) Set MASK L as 16#FFFF0000 because the output data to produce are the lower 16 bits among the

output contacts.

(3) If the transition condition (%10.0.0) is on, DIREC_O will be executed and the data of the output module
will be updated as 2#0111 0111 0111 0111 during the scan.

2. This is the program that updates the lower 24 bits of the 32-contact transistor output module, installed in
the 5th slot (slot number is 4) of the 2nd extension base, with 2#1111 0000 1111 0000 1111 0000

during the scan.

LD IL
LD %10.0.0
TI0.0.0 DIREC_0
IR N JMPN AAA
LD 2 ;
¢ qBASE 0T DIR DK DIREC_O BASE:= CURRENT RESULT
SLOT:= 4 :
3 SoLOT
MASK_L:= 16#FF000000
16 TF0000
oo fuasx MASK_H:= 16#FFFFFFFF
164 FFPFET | ST REF OK
IF JMasE -
_H AAA:

(1) Input the slot and base number in which an output module installed.

(2) Set MASK L as 16#FF000000 because the output data to produce are the lower 24 bits among the

output contacts.

(3) If the transition condition (%10.0.0) is off, function DIREC_O will be executed and the data of the output
module will be updated as 2#[1] 1] [JCJ[JC] 1111 0000 1111 0000 1111 0000 during the scan.

Maintains the previous value.

|

8-26

8. Basic Function/Function Block Library

DIV

Division Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application| @ | @ @ © © © | ©

Function Description

Input EN: executes the function in case of 1
IN1: the value to be divided (dividend)
IN2: the value to divide (divisor)

DIV
BOOL =EN ENOJ= BOOL
ANY_NUM=IN1 OUTR= ANY_NUM
ANY_NUM=1IN2

Output ENO: without an error, it will be 1.
OUT: the divided result (quotient)

The variable connected to IN1, IN2 and OUT should be all the
same data type.

W Function
It divides IN1by IN2 and produces an output omitting decimal fraction from the quotient.
OUT = IN1/IN2

IN1 IN2 ouT Remarks
7 2 3
! 2 -3 Decimal fraction omitted.
7 2 -3
7 -2 3
7 0 X Error
W Error

If the value to divide (divisor) is ‘0’, ERR, LER flags will be set.

B Program Example

LD IL
LD %I0.0.0
210.0.0 oIV
—{ p—fer EmoL . JMPN LL
LD VALUE1
waLvel Jm1 ourl ovr war | DIV IN1:= CURRENT RESULT
IN2:= VALUE2
vaLuE: J ; ST OUT_VAL
LL:

(2) If the transition condition (%10.0.0) is on, DIV function will be executed.
(2) If input VALUEL = 300 and VALUE2 = 100, then output OUT_VAL = 300/100 = 3.

Input (IN1): VALUEL (INT) = 300 (16#012C) | 0]o|o{o|o]o| o] 1] o] o 1] o] 1] 1] o] o
/ (DIV)
(IN2): VALUEZ2 (INT) = 100 (16#0064) |0|0|0|0|0|0| 0| 0| 0| 1| 1| 0| 0| 1| 0| 0|

Output (OUT): OUT_VAL (INT) = 3 (16#3) | 0|O|O|O|O|O| 0| 0| 0| 0| 0| 0| O| O| 1| 1|

8-27

8. Basic Function/Function Block Library

DIV_TIME

Time division Model | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application| @ | @ @ © © © | ©
Function Description
Input EN: executes the function in case of 1
IN1: Time to divide
DIV_TIME

BOOL =EN ENOFBOOL
TIME =IN1 OUTE= TIME

ANY_NUM =JIN2

IN2: The value to divide

Output ENO: without an error, it will be 1.
OUT: divided result time

W Function

It divides IN1 (time) by IN2 (number) and produces output OUT (divided time).

W Error

If a divisor (IN2) is 0, ERR and _LER flags will be set.

B Program Example

This is the program that calculates the time required to produce one product in some product line if the

‘working time of day is 12hr 24min 24sec and product quantity of a day is 12 in a product line.

LD IL
LD %I10.1.0
z10.1.0 |omv_TIME JMPN SS
X Ewol
— LD TOTAL_TIME
TOTAL_T IM TIME_PER_ —
t dm ot ERo DIV_TIME IN1:= CURRENT RESULT
IN2:;= PRODUCT_COUNT
PRODUCT_C
OUNT JINE ST TIME_PER_PRO
SS:

(1) If the transition condition (%10.1.0) is on, DIV_TIME function will be executed.
(2) If it divides TOTAL_TIME (T#12H24M24S) by PRODUCT_COUNT (12), the time required to produce one
product TIME_PER_PRO (T#1H2M2S) will be an output. That is, it takes 1hr 2min 2sec to produce one

product.

Input (IN1): TOTAL_TIME (TIME) = T#12H24M24S

/ (DIV_TIME)

(IN2): PRODUCT_COUNT (INT) = 12

\

Output (OUT): TIME_PER_PRO (TIME) = T#1H2M2S

8-28

8. Basic Function/Function Block Library

DT_TO_***

DT type conversion

Mode | GMR | GM1 [GM2 [GM3 | GM4 | GM6 | GM7
Application| @ | @ @ © © © | ©

Function Description
Input EN: executes the function in case of 1
IN: date and time of day data to convert
DT_TO_***
BOOL ~EN ENO = ESOL Output ENO: without an error, it will be 1.
DT AN ouT OUT: type-converted data
W Function

It converts Input IN type and produces output OUT.

Function Output type Description
DT_TO_LWORD LWORD Converts DT into LWORD type.
(The inverse conversion is available as there is no internal data change).
DT TO DATE DATE Converts DT into DATE type.
DT _TO TOD TOD Converts DT into TOD type.
DT TO STRING STRING Converts DT into STRING type.

W Program Example

LD IL

LD %M20

iMz0 DT_TO_DATE IJMPN L

— |—{ev =m0

LD IN_VAL

w val Jmwy ovrle ouT_var DT_TO_DATE
ST OUT VAL
L:

(2) If the transition condition (%M20) is on, DT_TO_DATE function will be executed.
(2) If input IN_VAL (DT) = DT#1995-12-01-12:00:00, output OUT_VAL (DATE) = D#1995-12-01.

Input (IN1): IN_VAL (DT) = DT#1995-12-01-12:00:00

\/ (DT_TO_DATE)

Output (OUT): OUT_VAL (DATE) = D#1995-12-01

8-29

8. Basic Function/Function Block Library

DWORD_TO_***

DWORD type conversion

Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7

Application| @ @ @ ©® @ | @

Function

Description

DWORD_TO_***

Input EN: executes the function in case of 1
IN: bit string to convert (32bit)

BOOL =EN ENOF **B*OOL Output ENO: without an error, it will be 1.
DWORD =IN OuT = OUT: type-converted data
B Function

It converts Input IN type and produces output OUT.

Function Output type

Description

DWORD _TO_SINT SINT

Takes the lower 8 bits and converts into SINT type.

DWORD TO INT INT

Takes the lower 16 bits and converts into INT type.

DWORD _TO_DINT DINT

Converts into DINT type without changing the internal bit array.

DWORD _TO_LINT LINT

Converts into LINT type filling the upper bits with 0

DWORD _TO_USINT | USINT

Takes the lower 8 bits and converts into USINT type.

DWORD _TO_UINT UINT

Takes the lower 16 bits and converts into UINT type.

DWORD _TO_UDINT [UDINT

Converts into UDINT type without changing the internal bit array.

DWORD _TO_ULINT ULINT

Converts into ULINT type filling the upper bits with 0.

DWORD _TO_BOOL BOOL

Takes the lower 1 bit and converts into BOOL type.

DWORD _TO_BYTE BYTE

Takes the lower 8 bits and converts into BYTE type.

DWORD _TO_WORD | WORD

Takes the lower 16 bits and converts into WORD type.

DWORD _TO_LWORD | LWORD

Converts into LWORD type filling the upper bits with 0.

DWORD _TO_REAL REAL

Converts into REAL type without changing the internal bit array.

DWORD _TO_TIME TIME

Converts into TIME type without changing the internal bit array.

DWORD _TO_TOD TOD

Converts into TOD type without changing the internal bit array.

DWORD _TO_STRING | STRING

Changes input value into decimal and converts into STRING type.

8-30

8. Basic Function/Function Block Library

B Program Example

LD IL

LD %MO
JMPN AA

M0 DWORD_TO_TOD LD IN VAL

— —{ev =m0) —

DWORD_TO_WORD

M wal JINl ouT|e ouT_waL ST OUT_VAL
AA :

(2) If the transition condition (%MO) is on, DWIRD_TO_TOD function will be executed.
(2) If output IN_VAL (DWORD) = 16#3E8 (1000), output OUT_VAL (TOD) = TOD#1S.

Input (IN1): IN_VAL (DWORD) = 16#3E8(1000) High [0]oJo]oJo o] o] o] o] o] o] o] o] o] o] o
Low [oJofJoJoJoJo]a] 1] 1] 1] 1] o] 1] o] 0] 9]
Converts a data type only
without changing a data
(internal bit array state)
Output (OUT): OUT_VAL(TOD) = TOD#1S High | 0 | 0 | 0 | 0 | 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0|

v [oToToTo o o1l [1] a 2o 1] o[o[

Calculates TIME, TOD by converting decimal into MS unit. That is, 1000 is 1000ms = 1s.
Refer to 3.2.4. Data Type Structure.

8-31

8. Basic Function/Function Block Library

El
Permits running for task program Model GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application| @ | @ @ © © © | ©
Function Description
Input EN: executes the function in case of 1
- REQ: requires to permit running for task program
BOOL :IEN ENOF BOOL Output ENO: without an error, it will be 1.
BOOL AREQ OUTL BOOL OUT: If El is executed, an output will be 1.
W Function

> If EN is 1 and REQ input is 1, task program blocked by 'DI' function starts normally.

> Once 'El' command is executed, task program starts normally even if REQ input is 0.

[> Task programs created when they are not permitted to operate will be executed after 'El' function or the
current-running task program execution.

B Program Example (refer to DI)

LD IL
LD %10.0.0
TI0.0.0 EI

e o) | JMPN LSB
LD EN_TASK

EN_TAST J4REQ 0ITf= EH_OE o E|
ST EN_OK
LSB:

If EN_TASK is 1, a task program starts normally.
If EI function permits running for a task program, output EN_OK will be 1.

8-32

8. Basic Function/Function Block Library

EQ
‘Equal to’ comparison Mode | GMR | GM1 [GM2 [GM3 | GM4 | GM6 | GM7
Application| @ | @ @ © © © | ©

Function Description

Input EN: executes the function in case of 1
IN1: the value to be compared
IN2: The value to compare
Input variable number can be extended up to 8.
IN1, IN2, ... should be the same type.

EQ
BOOL =|JEN ENO~ BOOL
ANY =] IN1 OUTp BOOL
ANY =] IN2

Output ENO: without an error, it will be 1.
OUT: comparison result value

B Function
If IN1 =IN2 =IN3 ... = INn (n : input number), output OUT will be 1.
In other cases, OUT will be 0.

W Program Example

LD IL
LD %I0.1.0
2I0.1.0 EQ
I Y N 2 S] J JMPN AA
LD VALUE1
vaLvEl 1 ourl zooon.1 J EQ IN1:= CURRENT RESULT
IN2:= VALUE2
PELUE S et 1 IN3:= VALUE3
ST %Q0.0.1
VALUEZ JINz AA -

(2) If the transition condition (%10.1.0) is on, EQ function will be executed.
(2) If VALUE1 = 300, VALUE2 = 300, VALUE3 = 300 (comparison result VALUE1 = VALUE2 = VALUE3),
output %Q0.0.1 = 1.

Input (IN1): VALUE1 (INT) = 300 (16#012C) | 0] oo |o]o[o]o] 1] o[o] 1] o] 1] 1] o] o

= (EQ)
(IN2): VALUE2 (INT) = 300 (16#012C) [o[o|o[ofo[o] o] 1] o] o] 1] o] 1] 1] o] 9
= (EQ)
(IN3): VALUEL (INT) = 300 (16#012C) |o0]o|o|o]o]o|o] 1] o] o] 1] of 1] 1] o] 0o
\%
Output (OUT): %Q0.0.1 (BOOL) = 1 (16#1)

8-33

8. Basic Function/Function Block Library

ESTOP

Emergency running stop by program Model | GMR | GM1 [GM2 |GM3 | G4 | GNG | GN7
Application| @ | @ @ © © © | ©

Function Description

Input EN: executes the function in case of 1
REQ: requires the emergency running stop

ESTOP
BOOL =EN ENOJ= BOOL

Output ENO: without an error, it will be 1.
BOOL JREQ OUTL BOOL

OUT: If ESTOP is executed, an output will be 1.

W Function

> If transition condition EN is 1 and the signal to require the emergency running stop by program REQ is 1,
program operation stops immediately and returns to STOP mode.

> In case that a program stops by 'ESTOP' function, it does not start despite of power re-supply.

D> If operation mode moves from STOP to RUN, it restarts.

> If 'ESTOP' function is executed, the running program stops during operation; if it is not a cold restart
mode, an error may occur when restarts.

B Program Example

LD IL
g LD %10.2.0
RI0._2.0 ESTOP .
E JMPN SSS
— —{er Ewol)
LD ACCIDENT
ACCIDENT JEER oUT|— DURRIY | ESTOP
(ST DUMMY)
SSS .

(2) If the transition condition (%10.2.0) is on, ESTOP function will be executed.
(2) If ACCIDENT = 1, the running program stops immediately and returns to STOP mode.
In case of emergency, it is available to use it as a double safety device with mechanical interrupt.

8-34

8. Basic Function/Function Block Library

EXP
Natural exponential operation Mode | GMR | GM1 [GM2 |GM3 | GM4 | GM6 | GM7
Application| @ | @ | @ o
* Applied only in GM4-CPUC among GM4 series
Function Description

Input EN: executes the function in case of 1
IN: input value of exponent operation

EXP
BOOL =EN ENO} BOOL
ANY_REAL= IN OUTpE ANY_REAL

Output ENO: without an error, it will be 1.
OUT: result value
IN, OUT should be the same data type.

W Function
It calculates the natural exponent with exponent IN and produces output OUT.
out =g

® Program Example]
LD IL

LD %M5
IE!-LEl -]E!:{l:'}::ml i | IJMPN JJ
LD INPUT
INPUT JIN1 OUTjp. EEZULT 4 EXP
ST RESULT
JJ:

(2) If the transition condition (%M5) is on, EXP function will be executed.
(2) If INPUT is 2.0, RESULT will be 7.3890...

e’® = 7.3890.....
Input (IN1): INPUT (REAL) = 2.0 High [0[ofojofofofofofofofofofofo]o]oq
Low Jofofofofofofa]a]a]1]1][o]1]o0]o0]q
(16#40000000)
¢ (EXP)

Output (OUT): RESULT (REAL) = 7.38905621E+00
High [oofofofofofo]of of of o] of o o o] o]
" [oToToTolofola]a] 1[1] 2] 0] 1] o[o]

(16#40EC7326)

8-35

8. Basic Function/Function Block Library

EXPT
Exponential operation Mode | GMR | GM1 |GM2 |GM3 | GM4 | GMB | GM7
Application| @ | @ | @ o
* Applied only in GM4-CPUC among GM4 series
Function Description

Input EN: executes the function in case of 1
IN1: real number
IN2: exponent

EXPT
BOOL =EN ENOj= BOOL
ANY_REAL = IN1 OUTP ANY_REAL

Output ENO: without an error, it will be 1.
ANY_NUM = IN2

OUT: result value

IN1 and OUT should be the same data type.

W Function
It calculates IN1 with exponent IN2 and produces output OUT.
ouT = IN1"™?

W Error
If an output is out of range of related data type, ERR and _LER flags will be set.

B Program Example

LD IL
LD %I0.1.0
jf' ' 1|i e _ JMPN LSB
LD IN_VAL
IF_vaL JIN1 ouT| oUT_vaL J EXPT IN1:= CURRENT RESULT
IN2:= VALUE
DU I F ! ST OUT_VAL
LSB :

(2) If the transition condition (%10.1.0) is on, ‘EXPT’ exponential function will be executed.
(2) If input IN_VAL = 1.5, VALUE = 3, output OUT_VAL =1.5°=15 X1.5 xX1.5 = 3.375.

Input (IN1): IN_VAL (REAL) = 1.5
(IN2): VALUE (INT) = 3
(EXPT)
Output (OUT): OUT_VAL (REAL) = 3.37500000E+00

8-36

8. Basic Function/Function Block Library

FIND
Finds a character string Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application| @ | @ @ © © © | ©
Function Description
Input EN: executes the function in case of 1
FIND IN1: input character string
BOOL =EN ENO = BOOL IN2: character string to find
STRING = IN1 OUT= INT
STRING = IN2 Output ENO: without an error, it will be 1.
OUT: location of character string to be found
W Function

It finds the location of character string IN2 from input character string IN1. If the location is found, it shows a
position of a first character of character string IN2 from character string IN1. Otherwise, output will be 0.

B Program Example

LD IL
LD %10.1.1
TIn.1.1 FIND
il e _ IMPM XYZ
LD IN_TEXT1
IN_TEXT1JINL OUT[. POSITION - FIND INLi= CURRENT RESULT
IN2:= IN_TEXT2
IN TEXT: JINZ
ST POSITION
XYZ:

(2) If the transition condition (%I10.1.1) is on, FIND function will be executed.
(2) If input character string IN_TEXT1="ABCEF’ and IN_TEXT2='BC’, then output variable POSITION = 2.
(3) The first location of IN_TEXT2 (‘BC’) from input character string IN_TEXT1 (‘ABCEF’) is 2",

Input (IN1): IN_TEXT1 (STRING) = ‘ABCEF’
(FIND)
(IN2): IN_TEXT2 (STRING) = ‘BC’

Output (OUT): POSITION (INT) =2

8-37

8. Basic Function/Function Block Library

GE

‘Greater than or equal to’ comparison Mode GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application| @ | @ @ © © © | ©

Function Description

Input EN: executes the function in case of 1
IN1: the value to be compared
IN2: the value to compare
Input variable number can be extended up to 8.
IN1, IN2, ... should be the same data type.

GE
BOOL =JEN ENO = BOOL
ANY =jN1 OUT} BOOL
ANY =IN2

Output ENO: without an error, it will be 1.
OUT: comparison result value

W Function
If IN1>IN2 > IN3... > INn (n: input number), an output will be 1.
Otherwise it will be 0.

B Program Example

LD I
: LD %M77
—|=m?|_}:n I;Eme:ru L] JMPN YY
E LD VALUE1
WALUTE1l 4IN1 0T fe 2Q0O_0.1 E GE |Nl: CURRENT RESULT
WALUE: Jwz] : IN2= VALUE2
IN3= VALUE3
WALUTEZ J4IN2 J ST %Q001
YY:

(1) If the transition condition (%M77) is on, GE function will be executed.

(2) If input variable VALUE1 = 300, VALUE3 = 200, comparison result will be VALUE1 > VALUE2 > VALUES3.
The output %Q0.01 = 1.

Input (IN1): VALUEL (INT) = 300 (16#012c) [0JoJoJoJoJoJoJ 1] of o] 1] o] 1] 1] o] 9]

> (GE)
(IN2): VALUE2 (INT) = 200 (16#00c8) [o0|o|ofo]o|o]o]o| 1] 1] o] o] 1] o] o] 9
= (GE)
(IN3): VALUE3 (INT) = 100 (16#0064) | 0]o]o]o]o]o]o] o] o[1] 1] 0] o] 1] o] o]
\%
Output (OUT): %Q0.0.1 (BOOL) = 1 (16#1)

8-38

8. Basic Function/Function Block Library

GT

‘Greater than’ comparison Mode | GMR | GM1 [GM2 [GM3 | GM4 | GM6 | GM7
Application| @ | @ @ © © © | ©

Function Description

Input EN: executes the function in case of 1
IN1: the value to be compared
IN2: the value to compare
Input variable number can be extended up to 8.
IN1, IN2, ... should be the same data type.

GT
BOOL =JEN ENO = BOOL
ANY =jN1 OUT= BOOL
ANY =IN2

Output ENO: without an error, it will be 1.
OUT: comparison result value

B Function

If IN1 > IN2 > IN3... > INn (n: input number), an output will be 1.
Otherwise it will be 0.

W Program Example

LD IL
LD %MO
|Hm| EN . ENO |- | JMPN AAA
LD VALUE1L
UALVEL [INL OUTI- 200-0-1 GT INL'= CURRENT RESULT
T - _ IN2:= VALUE2
IN3:= VALUE3
WALUEZ JIN2 J ST %QOO]_
AAA

(2) If the transition condition (%MO) is on, GT function will be executed.

(2) If input variable VALUE1 = 300, VALUE2 = 200, and VALUE3 = 100, comparison result will be VALUE1 >
VALUE2 > VALUES. The output %Q0.0.1 = 1.

Input (IN1): VALUEL (INT) = 300 (16#012C) |0|0|0|0|0|0| 0| 1| 0| 0| 1| 0| 1| 1| 0| 0|
> (GT)

(IN2): VALUEZ (INT) = 200 (16#00C8) [o [0 o 0] o] o] o] 1] 1] 0] o] 1] o] o] 9
> (GT)

(IN3): VALUES (INT) = 100 (16#0064) [oJo]o]o]o o] o] o] o] 1] 1] 0] o] 1] 0] 0]

1%
Output (OUT): %Q0.0.1 (BOOL) = 1 (16#1)

8-39

8. Basic Function/Function Block Library

INSERT
Inserts a character String Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application| @ | @ @ © © © | ©
Function Description
Input EN: executes the function in case of 1
INSERT) : .
IN1: character string to be inserted
BOOL | EN ENO = BOOL . . .
IN2: character string to insert
STRING ={IN1 OUT STRING) " . .
P: position to insert a character string
STRING ={IN2
INT P Output ENO: without an error, it will be 1.
OUT: output character string
W Function

It inserts character string IN2 after the P character of IN1 and produces output OUT.

W Error

If P < 0, ‘character number of variable IN1’ < P, or if the character number of result exceeds 30 (just 30
characters are produced), then ERR, LER flags will be set.

B Program Example

LD IL

LD %MO

MO INZERT

| —ex Ewof | JMPN AA

LD IN_TEXT1
IN_TEXT1{INL OUT|— OUT_TEXT 1 INSERT IN1:= CURRENT RESULT
IN_TEXTZ 4 INZ] IN2:= |N_TEXT2

P:= POSITION
FOSITION JP ; ST OUT_TEXT
AA:

(1) If the transition condition (%MO0) is on, INSERT function will be executed.
(2) If input variable IN_TEXT1 = ‘ABCD’, IN_TEXT2 = ‘XY’, and POSITON = 2,
output variable OUT_TEXT = ‘ABXYCD'.

Input (IN1): IN_TEXT1 (STRING) = ‘ABCD’
(IN2): IN_TEXT2 (STRING) = ‘XY’
(P): POSITION (INT) = 2

' (FIND)
Output (OUT): OUT_TEXT = ‘ABXYCD’

8-40

8. Basic Function/Function Block Library

INT_TO_***

Mode | GMR | GM1 [GM2 [GM3 | GM4 | GM6 | GM7
Application| @ | @ @ © © © | ©

INT type conversion

Function Description
INT TO Input El\.l:_executes the function in case of 1
- = IN: integer value to convert
BOOL =FN ENO = BOOL Output ENO: without an error, it will be 1.
INT qIN- OUT |- OUT: type-converted data
B Function
It converts input IN type and produces output OUT.
Function Output type Description
INT TO SINT SINT Ifinput is -128 ~ 127, normal conversion. Except this, an error occurs.
INT TO DINT DINT Converts into DINT type normally.
INT_TO_LINT LINT Converts into LINT type normally.
INT TO USINT USINT Ifinputis 0 ~ 255, normal conversion. Except this, an error occurs.
INT TO UINT UINT Ifinputis 0 ~ 32767, normal conversion. Except this, an error occurs.
INT TO UDINT | UDINT Ifinputis 0 ~ 32767, normal conversion. Except this, an error occurs.
INT TO ULINT ULINT Ifinputis 0 ~ 32767, normal conversion. Except this, an error occurs.
INT TO BOOL BOOL Takes the lower 1 bit and converts into BOOL type.
INT TO BYTE BYTE Takes the lower 8 bits and converts into BYTE type.
INT TO WORD | WORD Converts into WORD type without changing the internal bit array.
INT TO DWORD | DWORD |Converts into DWORD type filling the upper bits with 0.
INT TO LWORD | LWORD |Converts into LWORD type filling the high bit with 0.
INT TO BCD WORD If input is 0~9,999, normal conversion. Except this, an error occurs.
INT TO REAL REAL Converts INT into REAL type normally.
INT TO LREAL LREAL Converts INT into LREAL type normally.
W Error

If a conversion error occurs, ERR _LER flags will be set.
If an error occurs, take as many lower bits as the bit number of the output type and produces an output

without changing the internal bit array.

8-41

8. Basic Function/Function Block Library

B Program Example

LD IL
9
M0 INT_TO_TORD - oMo
- |_EH_ _I:HIJ JMPN AAA
LD IN_VAL
mwal Jiwl ouTl ouT_morn INT_TO_WORD
ST OUT_WORD
AAA:

(1) If the input condition (%MO) is on, INT_TO_WORD function will be executed.
(2) If input variable IN_VAL (INT) = 512 (16#200), output variable OUT_WORD (WORD) = 16#200.

Input (IN1): IN_VAL (INT) = 512 (164#200)

Output (OUT): OUT_WORD (WORD) = 164200

[ofoJofofofof1]o] of of of of of o] o 9]

V (INT_TO_WORD)

[ofJoJoJofool1]of of of of of o] o] 0] of

8-42

8. Basic Function/Function Block Library

LE

'Less than or equal to' comparison Modell GMR | GMT [GM2 |GM3 | GM4 | GMG

GM7

Application| @ @ @ ©® @ | @

Function Description

Input EN: executes the function in case of 1
IN1: the value to be compared
IN2: the value to compare
Input variable number can be extended up to 8.
IN1, IN2, ...should be the same data type.

LE
BOOL =|EN ENOPF BOOL
ANY =]IN1 OUTp BOOL
ANY = IN2

Output ENO: without an error, it will be 1.
OUT: comparison result value

B Function

If IN1 <IN2 <IN3... <INn (n: input number), output OUT will be 1.
Otherwise it will be 0.

W Program Example

LD IL

LD %MO
M0 LE

—] |—{ev Emo 1 JMPN BBB
LD VALUE1

WALUE1l JIN1 OUTE 2Q0.0.1 1 LE IN1:= CURRENT RESULT

IN2:= VALUE2

VALUE: JIN: IN3:= VALUES3
ST %Q0.0.1

WwALUE: Jima 1
BBB:

(2) If the transition condition (%MO) is on, LE function will be executed.
(2) If input variable VALUE1 = 150, VALUE2 = 200, and VALUE3 = 250, output %Q0.0.1 =1
(VALUE1L < VALUE2 < VALUED3).

Input (IN1): VALUEL (INT) = 150 (16#0096) |0|0|0|0|0|0| 0| 0| 1| 0| 0|]_| 0| 1| 1| o|

<(LE)

(IN2): VALUE2 (INT) = 200 (16#00C8) [Tg o a]o]o] o] o] 1]] 0] o] 1] o] o] 9
< (CE)

(IN3): VALUEL (INT) = 250 (16#0064) |0|0|0|0|0|0| 0| 0| 0| 1| 1| 0| 0| 1| o| 0|

Output (OUT): %Q0.0.1 (BOOL) = 1 (16#1)

1\

8-43

8. Basic Function/Function Block Library

LEFT
Takes the left side of a character string Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application| @ | @ @ © © © | ©
Function Description
Input EN: executes the function in case of 1
LEFT . .
IN: input character string
BOOL | EN ENO = BOOL) .
L: length of character string
STRING | IN OUT |+ STRING
INT =L Lo .
Output ENO: without an error, it will be 1.
OUT: output character string
W Function
It takes a left character string (L) of IN and produces output OUT.
W Error
IfL<0, ERRand_LER flags will be set.
B Program Example
LD IL
LD %MO
M0 LEFT
L e el JMPN FF
LD IN_TEXT
e) LEFT IN:= CURRENT RESULT
L:= LENGTH
LENGTH JL
ST OUT_TEXT

FF:

(2) If the transition condition (%MO) is on, function LEFT function will be executed.
(2) If input variable IN_TEXT = ‘ABCDEFG’ and LENGTH = 3, output character string OUT_TEXT = ‘ABC".

Input (IN1): IN_TEXT (STRING) = 'ABCDEFG'
(IN2): LENGTH (INT) = 3
v wEF
Output (OUT): OUT_TEXT (STRING) = ‘ABC’

8-44

8. Basic Function/Function Block Library

LEN
Finds a length of a character string Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application| @ | @ @ © © © | ©
Function Description
Input EN: executes the function in case of 1
IN: input character string
LEN
BOOL 4 EN ENQ= BOOL Output ENO: without an error, it will be 1.
STRING o IN OUT = INT OUT: the length of a character string

W Function

It produces a length (character number) of the input character string (IN).

B Program Example

5 LD IL
LD %MO

el CES JMPN Il
_I I_EH ENQ
LD IN_TEXT
IN_TEXT JIN1 OUT[. LENGTH LEN IN:= CURRENT RESULT

ST LENGTH
Il

(2) If the transition condition (%MO) is on, LEN function will be executed.
(2) If input variable IN_TEXT = ‘ABCD’, output variable LENGTH = 4.

Input (IN1): IN_TEXT (STRING) = ‘ABCD’
y (LEN)

Output (OUT): LENGTH (INT) = 4

8-45

8. Basic Function/Function Block Library

LIMIT
Limits upper and lower boundary Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application| @ | @ @ © © © | ©
Function Description
Input EN: executes the function in case of 1
MN: minimum value
LIMIT IN: the value to be limited
BOOL = EN ENOF= BOOL) .
MX: maximum value
ANY =IMN OUTE ANY
ANY =IN Output ENO: without an error, it will be 1.
ANY qMX OUT: value in the range
MN, IN, MX, OUT should be the same data type.
W Function

D> If input IN value is between MN and MX, the IN will be an output.

That s, if MN <IN < MX, OUT = IN
D> If input IN value is less than MN, MN will be an output. That is, if IN < MN, OUT = MN.
D> If input IN value is greater than MX, MX will be an output. That is, if IN > MX, OUT = MX

W Program Example

LD IL
LD %MO
: JMPN MM
L0 LIMIT
—] |—E¥ EWof : LD LIMIT_LOW
5 LIMIT MN:= CURRENT RESULT
[L IMIT_LOTIJETH OUT p 0T _WAL IN = |N_VALUE
MX:= LIMIT_HIGH
IN_WALVE J 1IN
i ST OUT_VAL
LIMIT_HIG MM:
H Jqec :

(2) If the transition condition (%MO) is on, LIMIT function will be executed.
(2) Output variable OUT_VAL for lower limit input LIMIT_LOW, upper limit input (LIMIT_HIGH) and limited
value input IN_ VALUE will be as follows:

LIMIT_LOW | IN_VALUE | LIMIT_HIGH | OUT_VAL
1000 2000 3000 2000
1000 500 3000 1000
1000 4000 3000 3000

Input (MN): LIMIT_LOW (INT) = 1000
(IN): IN_VALUE (INT) = 4000
(MX): IN_VALUE (INT) = 3000

J (LmIT)
Output (OUT): OUT_VAL (INT) = 3000

8-46

8. Basic Function/Function Block Library

LINT TO ***
LINT type conversion Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application] @ | @ | @
Function Description
Input EN: executes the function in case of 1
LINT TO *** IN: long integer value to convert
BOOL =EN ENO = BOOL
LINT =N OUT = *** OUtpUt ENO: without an error, it will be 1.
OUT: type converted data
W Function

It converts input IN type and produces output OUT.

Function Output type Description
LINT TO_ SINT SINT If inputis -128 ~ 127, normal conversion. Otherwise an error occurs.
If input is —32,768 ~ 32,767, normal conversion.
LINT_TO_INT INT i
-~ Otherwise an error occurs.
LINT TO DINT DINT If input is -2°* ~ 2.1, normal conversion. Otherwise an error occurs.
LINT TO USINT USINT If input is 0~ 255, normal conversion. Otherwise an error occurs.
LINT TO UINT UINT If input is 0~ 65,535, normal conversion. Otherwise an error occurs.
LINT_TO_UDINT UDINT Ifinputis 0 ~ 2%-1, normal conversion. Otherwise an error occurs.
LINT TO ULINT ULINT If inputis 0 ~ 2%-1, normal conversion. Otherwise an error occurs.
LINT TO BOOL BOOL Takes the lower 1 bit and converts into BOOL type.
LINT TO BYTE BYTE Takes the lower 8 bits and converts into BYTE type.
LINT TO WORD WORD Takes the lower 16 bits and converts into WORD type.

LINT TO_DWORD | DWORD Takes the lower 32 bits and converts into DWORD type.

LINT TO LWORD | LWORD Converts into LWORD type without changing the internal bit array.

If input is 0~9,999,999,999,999,999, normal conversion.

LINT_TO_BCD LWORD .
- Otherwise an error occurs.

Converts LINT into REAL type.

LINT _TO_REAL REAL) . -
- During the conversion, an error caused by the precision may occur.

Converts LINT into LREAL type.

LINT_TO_LREAL LREAL . . .
- - During the conversion, an error caused by the precision may occur.

W Error

If a conversion error occurs, ERR and _LER flags will be set.

If an error occurs, take as many lower bits as the bit number of the output type and produces an output
without changing the Internal bit array.

8-47

8. Basic Function/Function Block Library

B Program Example

LD IL
LD %10.0.0
 — ;
TI0O_0_OLINT_TO_DINT :
—] —{ew Emo | JMPN AAA
§ LD IN_VAL
IN WAL JIN1 0UT|= ouUT_vaL 1 LINT _TO_DINT
5 ST OUT_VAL
AAA:

(2) If the input condition (%10.0.0) is on, LINT_TO_DINT function will be executed.
(2) If input variable IN_VAL (LINT) = 123 _456_ 789, output variable OUT_VAL (DINT) = 123_456_789.

Input(INl): |N_VAL(L|NT)=123,456,789 | 0 | 0 | 0 | 0 | 0 | O| 0| 0| 0| 0| 0| 0| 0| 0| 0| O|
(16#75BCD15)

[oJofofofofofofof of of of o] of of o] o

[oJofojofofafaf1]of1fof1]1]of1]1

[1]2]ofofafafof1]of ofof1] 0] 1fof1
V (LINT_TO_DINT)

Output (OUT): OUT_VAL (DINT) = 123,456,789 |0|0|0|0|0| 1| 1| 1| 0| 1| 0| 1| 1| 0| 1| 1|

(16#75BCD15)

[1]s]ofofsfsfof1]of ofof 1] of 1] of 1]

8-48

8. Basic Function/Function Block Library

LN
Natural logarithm operation Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application] @ | @ | @
Function Description
Input EN: executes the function in case of 1
IN: input value of natural logarithm operation
LN
BOOL =EN EN BOOL Output ENO: without an error, it will be 1.
ANY_REAL= IN OU ANY_REAL OUT: natural logarithm value
IN, OUT should be the same data type.
W Function
It finds a natural logarithm value of IN and produces output OUT.
OUT =InIN
W Error

If an input is 0 or a negative number, ERR and _LER flags will be set.

B Program Example

LD IL
LD %MO
0 LK
—] |—eF EWOL . JMPN AE
LD INPUT
INFUT J4IN1 OUT|fm EBESULT o LN
ST RESULT
AE:

(2) If the transition condition (%M0) is on, LN function will be executed.
(2) If input variable INPUT is 2.0, output variable RESULT will be 0.6931
In (2.0) = 0.6931...

Input (IN1): INPUT (REAL) = 2.0

V' (LN)
Output (OUT): RESULT (REAL) = 6.93147182E-01

8-49

8. Basic Function/Function Block Library

LOG
Base 10 Logarithm operation Mode | GMR | GM1 [GM2 |GM3 | GM4 | GM6 | GM7
Application] @ | @ | @
Function Description
Input EN: executes the function in case of 1
oG IN: input value of common logarithm operation
L

BOOL |{EN ENO = BOOL
ANY_REAL= IN OUT = ANY_REAL

Output END: without an error, it will be 1.
OUT: the value of common logarithm operation
IN, OUT should be the same data type.

B Function

It finds the value of Base 10 Logarithm of IN and produces output OUT.

OUT =1og10 IN =log IN

W Error

If input value IN is O or a negative number, _ ERR and _LER flags will be set.

B Program Example

LD IL
LD %MO
E1L0] LoG
—] |—eF EWOL JMPN BB
LD INPUT
INFUT JIN1 0OUTj ERESULT LOG
ST RESULT
BB:

(2) If the transition condition (%MO0) is on, LOG function will be executed.
(2) If input variable INPUT is 2.0, output variable RESULT will be 0.3010

l0gw (2.0) = 0.3010. ..

Input (IN1): INPUT (REAL) = 2.0
{ (LOG)

Output (OUT): RESULT (REAL) = 3.01030010E-01

8-50

8. Basic Function/Function Block Library

LREAL_TO_***

LREAL type conversion Mode | GMR | GM1 [GM2 [GM3 | GM4 | GM6 | GM7
Application] @ | @ | @

Function Description
e Input EN: executes the function in case of 1
LREAL_TO_ IN: LREAL value to convert
BOOL =| EN ENO B*?*OL Output ENO: without an error, it will be 1.
LREAL =|IN ouT OUT: type converted data
B Function

It converts input IN type and produces output OUT.

Function Output type Description

If integer number of input is -128 ~ 127, normal conversion.

LREAL_TO_SINT SINT . .
-~ Otherwise an error occurs (decimal round off).

If integer number of input is -32768 ~ 32767, normal conversion.

LREAL_TO_INT INT i ,
- - Otherwise an error occurs (decimal round off).

If integer number of input is -2%* ~ 23!-1, normal conversion.

LREAL_TO_DINT DINT i ,
- - Otherwise an error occurs (decimal round off).

If integer number of input is -2%® ~ 2%-1, normal conversion.

LREAL_TO_LINT LINT) ,
- Otherwise an error occurs (decimal round off).

If integer number of inputis 0 ~ 255, normal conversion.

LREAL_TO USINT USINT . :
- Otherwise an error occurs (decimal round off).

If integer number of inputis 0 ~ 65,535, normal conversion.

LREAL_TO_UINT UINT) .
- - Otherwise an error occurs (decimal round off).

If integer number of inputis 0 ~ 2%-1, normal conversion.
LREAL_TO_UDINT UDINT . :
- Otherwise an error occurs (decimal round off).

If integer number of inputis 0 ~ 2%-1, normal conversion.
Otherwise an error occurs (decimal round-off).
LREAL TO LWORD | LWORD [Converts into LWORD type without changing the internal bit array.
Converts LREAL into REAL type normally.

During the conversion, an error caused by the precision may occur.

LREAL_TO_ULINT ULINT

LREAL_TO_REAL REAL

W Error
If an overflow occurs because an input value is greater than the value available for the output type, ERR
and _LER flags will be set. If an error occurs, an output will be 0.

8-51

8. Basic Function/Function Block Library

B Program Example 7
: LD IL

e — LD LREAL_VAL
M0 LREAL_TO_REAL
— p—fer Emo ! LREAL_TO_REAL
ST REAL_VAL

ILEEAL VALJIN]1 OUT . FEAL_FAL

(2) If the input condition (%MO0) is on, LREAL_TO_REAL function will be executed.
(2) If input variable LREAL_VAL (LREAL) =-1.34E-12, output variable REAL_VAL (REAL)= -1.34E-12.

Input (IN1): LREAL_VAL (LREAL) = -1.34E-12
(LREAL_TO_REAL)
Output (OUT): REAL_VAL (REAL) = -1.34E-12

8-52

8. Basic Function/Function Block Library

LT
‘Less than’ comparison Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application| @ | @ @ © © © | ©
Function Description
Input EN: executes the function in case of 1
IN1: the value to be compared
LT .
IN2: the value to compare
BOOL |EN EN{= BOOL .
Input variable number can be extended up to 8.
ANYSIN1 - OUTI=BOOL IN1, IN2, ...should be the same data type.
ANY=] IN2
Output ENO: without an error, it will be 1.
OUT: comparison result value
W Function

If IN1 <IN2 < IN3... <INn (n: input number), output value OUT will be 1.
Otherwise output OUT will be 0.

B Program Example

LD IL
LD %MO
JMPN AA
MO LT
— |—{e¥ EwO[| LD VALUE1
LT IN1:= CURRENT RESULT
WALUE]1 J4IN1 0T . 20001 o |N2:: VALUE2
IN3:= VALUE3
VALUEE A INE 1 ST %Q0.0.1
AA:
TWALUE: 4 IN2

(2) If the transition condition (%MO) is on, LT function will be executed.
(2) If input variable VALUEL = 100, VALUEZ2 = 200, and VALUE3 = 300, output %Q0.0.1 = 1.

Input (IN1): VALUE1 (INT) = 100 (16#0064) [0 oJo]oJoJoJoJo] o] 1] 1] o] o]] 0] 0]
<(LT)

(IN2): VALUEZ2 (INT) = 200 (16#00C8) |0|0|0|0|0|0| 0| 0| 1| 1| 0| 0| 1| 0| 0| 0|
< (LCT)

(IN3): VALUES (INT) = 300 (16#012C) [gToJoJo]o]o]o] 1] o] o] 1] o] 1] 1] o] 0]
Vv
Output (OUT): %Q0.0.1 (BOOL) = 1 (16#1)

8-53

8. Basic Function/Function Block Library

LWORD_TO_***

LWORD type conversion Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7

Application] @ | @ | @

Function Description

LWORD TO * Input EN: executes the function in case of 1

BOOL = EN ENO k BOOL IN: bit string to convert (64bit)

LWORD 4 IN OUT = ***
Output ENO: without an error, it will be 1.

OUT: type-converted data

W Function
It converts input IN type and produces output OUT.

Function Output type Description
LWORD _TO_SINT SINT Takes the lower 8 bits and converts into SINT type.
LWORD _TO_INT INT Takes the lower 16bits and converts into INT type.
LWORD TO_DINT DINT Takes the lower 32bits and converts into DINT type.
LWORD TO LINT LINT Converts into LINT type without changing the internal bit array.
LWORD TO_USINT USINT Takes the lower 8 bits and converts into USINT type.
LWORD _TO _UINT UINT Takes the lower 16 bits and converts into UINT type.
LWORD _TO_UDINT UDINT Takes the lower 32bits and converts into UDINT type.
LWORD TO_ULINT ULINT Converts into ULINT type without changing the internal bit array.
LWORD TO BOOL BOOL Takes the lower 1 bit and converts into BOOL type.
LWORD TO BYTE BYTE Takes the lower 8 bits and converts into BYTE type.
LWORD TO WORD | WORD Takes the lower 16 bits and converts into WORD type.
LWORD TO_DWORD | DWORD Takes the lower 32 bits and converts into DWORD type.
LWORD TO LREAL LREAL Converts LWORD into LREAL type.
LWORD TO DT DT Converts into DT type without changing the internal bit array.
LWORD _TO_STRING | STRING Converts input value into STRING type.

8-54

8. Basic Function/Function Block Library

B Program Example

LD IL
LD %MO
| — | :
M0 LWORD_To_L INT :
—| p—Jer Emo . JMPN PPP
LD IN_VAL
IN "fal. J4IN1 OUT 0T _"aL o LWORD TO LINT
5 ST OUT_VAL
PPP:

(2) If the input condition (%MO0) is on, LWORD_TO_LINT function will be executed.
(2) If input variable IN_VAL (LWORD) = 16#FFFFFFFFFFFFFFFF, output variable OUT_VAL (LINT) will be
-1 (16#FFFFFFFFFFFFFFFF).

Input (IN1): IN_VAL (LWORD) = 16#FFFFFFFFFFFFFFFF
Vv (LWORD_TO_LINT)
Output (OUT): OUT_VAL (LINT) = -1

8-55

8. Basic Function/Function Block Library

MAX
Maximum value Model GMR | GM1 [GM2 [GM3 | GM4 | GM6 | GM7
Application| @ | @ @ © © © | ©

Function Description

Input EN: executes the function in case of 1
IN1: the value to be compared
IN2: the value to compare
Input variable number can be extended up to 8.

MAX
BOOL =|EN ENOPF BOOL
ANY =lIN1 OUTPE ANY

ANY = IN2 Output ENO: without an error, it will be 1.
OUT: maximum value among input
IN1, IN2,..., OUT should be the same data type.
W Function

It produces the maximum value among input IN1, IN2,..., INn (n: input number).

B Program Example

LD IL
LD %MO
MO MaX
—] |}—{e¥ EWo} J JMPN GG
LD VALUE1
VALUEL JIN1 OUT| OUT_UL : MAX IN1:= CURRENT RESULT
IN2:= VALUE2
VALUEE THE ST OUT_VALUE
GG:

(2) If the transition condition (%6MO0) is on, MAX function will be executed.
(2) As the result of comparing input variable (VALUE1 = 100 and VALUEZ2 = 200), maximum value is 200.
Output OUT_VAL will be 200.

Input (IN1): VALUEL (INT) = 100 (16#0064) lolofofo|ofo]ofo[o]1]1]0]o0]1]0]0
(MAX)
(IN2): VALUE2 (INT) = 200 (16#00C8) [oJoJoolo]o]o]o] 1] z] o] o] 1] o] o] 0]

8-56

8. Basic Function/Function Block Library

MID

Takes the middle part of a character string Mode GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application| @ | @ @ © © © | ©

Function Description

Input EN: executes the function in case of 1
IN: input character string
L: the length of character string to output
P: starting location of character string to output

MID
BOOL =EN ENOjJ= BOOL
STRING -{IN OUTE STRING

INT qL Output ENO: without an error, it will be 1.
INT 4P OUT: output character string
W Function

It produces a character string (L) of IN from the P character.

W Error
If (character number of variable IN) <P, P <=0 or L <0, then ERR and _LER flags will be set.

B Program Example

LD IL
LD %I10.0.0
TI0.0.0 MID
I [S (] ; JMPN MM
LD IN_TEXT
IN_TEXT J1¥ ouUT|= ouT_tTEXT 1 MID IN:= CURRENT RESULT
L:= LENGTH
LENGTH JL P: = POSITION
ST OUT_TEXT
FOSITION JF
MM:

(2) If the transition condition (%10.0.0) is on, MID function will be executed.
(2) If input character string IN_TEXT = ‘ABCDEFG’, the length of character string LENGTH = 3, and starting
location of character starting POSITION = 2, output variable OUT_TEXT = ‘BCD’.

Input (IN): IN_TEXT1 (STRING) = ‘ABCDEFG’
(L): LENGTH (INT) = 3
(P): POSITION (INT) = 2
V' (MID)
Output (OUT): OUT_TEXT = ‘BCD’

8-57

8. Basic Function/Function Block Library

MIN

Minimum value

Mode | GMR | GM1 [GM2 [GM3 | GM4 | GM6 | GM7
Application| @ | @ @ @ © @ | @

Function Description

Input EN: executes the function in case of 1
IN1: value to be compared

MIN .
IN2: value to compare
BOOL =N ENOF BOOL Input variable number can be extended up to 8
ANY =] IN1 OUTj ANY
ANY =1 IN2 Output ENO: without an error, it will be 1

OUT: minimum value among input values

IN1, IN2, ..., OUT should be all the same data type.

W Function
Produces the minimum value among input IN1, IN2, ... , INn (n: input number).

H Program Example

LD IL
LD %M100
=100 MIN
— p—{ev Emof ; JMPN BBB

LD VALUE1

VALUEL JINL OUT[mOUT_VALUE - ~ MIN INl:= CURRENT RESULT
IN2:= VALUE2

ALTEE e ' ST OUT_VALUE
BBB:

(1) If the transition condition (%M100) is ON, MIN function is executed.
(2) The output is OUT_VALUE = 100 because its minimum value is 100 as the result of comparing VALUE1

=100 to VALUEZ2 = 200.

Input (IN1): VALUEL (INT) = 100 (16#0064) [o[oJoJoJoJo]of o] of 1] 1] o] o] 1] o] 0]
(MIN)

(IN2): VALUE2 (INT) = 200 (16400C8) [0]o]o]o]o]o] o] 1] 1] 0] o] 1] o] o] 0|

Output (OUT): OUT_VAL (INT) = 100 (16#0064) 9T o oo o] o] o] o] o] 1] 1] o] o] 1] 0]]

8-58

8. Basic Function/Function Block Library

MOD

Dividing result (remainder)

Mode | GMR | GM1 [GM2 [GM3 | GM4 | GM6 | GM7
Application| @ | @ @ @ © @ | @

Function Description

Input EN: executes the function in case of 1
IN1: dividend

MOD IN2: divisor
BOOL =JEN ENOJ BOOL

ANY_INT 4 INL - OUTE ANY_INT Output ENO: without an error, it will be 1
ANY_INT 1 IN2 OUT: dividing result (remainder)

IN1, IN2, ..., OUT should be all the same data type.

W Function
Divides IN1 by IN2 and outputs its remainder as OUT.
OUT = IN1 - (IN1/IN2) XIN2 (if IN2 = 0, OUT = 0)

IN1 IN2 ouT
7 2 1
7 -2 1

-7 2 -1
-7 -2 -1
7 0 0

H Program Example

LD IL
LD %M100
100 MoD JMPN BB
—] |—qe¥ Ewol q LD VALUE1
MOD IN1:= CURRENT RESULT
VALTE]l JIN1 OUT . OUT_fFAL o IN2:= VALUE2
ST OUT_VAL
YALVEZ J 1Nz q BB:

(2) If the transition condition (%M100) is ON, MOD function is executed.
(2) If the dividend VALUE1 = 37 and the divisor VALUE2 = 10, the remainder value OUT_VAL is 7 as a

result of dividing 37 by 10.

Input (IN1): VALUEL (INT) = 37 (16#0025) [ofofofoJoJofofof ofof 1] o] of 1] 0] 1
(MOD)

(IN2): VALUE2 (INT) = 10 (16#000A) |0]0[ofofofo[of o] o] o] o] o] 1] o] 1] o
\%

Output (OUT): OUT_VAL (INT)=7 (16#0007) | 0]o|o]ofo]ofo] o] o] o] o]o] o] 1] 1]1]

8-59

8. Basic Function/Function Block Library

MOVE

Data movement (Copy data) Model GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application| @ @ @ @ © @ | ©

Function Description

Input EN: executes the function in case of 1
IN: value to be moved

MOVE
BOOL -|EN ENO= BOOL
ANY = IN OUT| ANY

Output ENO: without an error, it will be 1
OUT: moved value

Variables connected to IN and OUT are the same type.

W Function
Moves an IN value to OUT.

B Program Example
This is a program that transfers the 8-contact inputs %I10.0.0~%]I0.0.7 to the variable D and then moves

Vthem to output %Q0.4.0~%Q0.4.7.

LD IL
LD %M100
2M100 MOVE AAA
_I : EN ENO - b JMPN
LD %I1B0.0.0
TIE0.0.0JINL OUT |] 1 MOVE
ST D
LD D
MOVE
I I MOVE
j ST %QB0.4.0
D JIN1 O0UT |- :QE0.4.0 1 AAA:

(2) If the transition condition (%M100) is ON, MOVE function is executed.
(2) It moves 8-contact input module data to the variable D by the first MOVE function and moves them
to %Q0.4.0~%Q0.4.7.

Lof of of 1] 1] o of o

Input (IN1): %IB0.0.0 (BYTE) = 16#18

V(MovE)
D (BYTE) = 16#18 [o] o] of 1] 1] o] o] 9]
V(MOVE)
Output (OUT): %QBO0.4.0 (BYTE) = 16#18 [o] o] of 1] 1] o] o] o

8-60

8. Basic Function/Function Block Library

MUL

Multiplication Mode | GMR | GM1 [GM2 [GM3 | GM4 | GM6 | GM7
Application| @ | @ @ @ © @ | @

Function Description

Input EN: executes the function in case of 1
IN1: multiplicand
IN2: multiplier
Input is available to extend up to 8.

MUL

BOOL=| EN ENO}=BOOL
ANY_NUM-| IN1 OUT ANY_NUM
ANY NUm IN2 Output ENO: without an error, it will be 1
B OUT: multiplied value

Variables connected to IN1, IN2, ..., OUT are all the same
data type.

W Function

Multiplies an IN1, IN2,..., INn (n: input number) and outputs the result as OUT.
OUT =IN1 XIN2 X... XINn

W Error
If an output value is out of its data-type range, ERR and _LER flags are set.

B Program Example

LD IL
LD %MO
~ JMPN ABC
I U | _ LD VALUE1
~ MUL INLl:= CURRENT RESULT
vaLvel Jmwl outle ovr_varn J IN2:= VALUE2
IN3:= VALUE3
TALUEZ J4INZ o ST OUT_VAL
ABC:
TALUEZ J4INM2

(2) If the transition condition (%MO0) is ON, MUL function is executed.

(2) If input variables of MUL function, VALUE1 = 30, VALUE2 = 20, VALUE3 = 10, then the output variable
OUT_VAL =30 X20 <10 =6000.

Input (IN1): VALUEL (INT) = 30 (16#001E) loJoJofofofolofolofofof[a[1]1]1]0q]
+ (MUL)

(IN2): VALUE2 (INT) = 20 (16#0014) lojofofofofolo[ofofofof1]o]1][0]q
+ (MUL)

(IN3): VALUE3 (INT) = 10 (16#000A) [ofofofofofolofolofofofo[1]of1]0

Output (OUT): OUT_VAL (INT) = 6000 (16#1770) [oJoJo 1o 1] 1] 1] o] 1] 1] 1] o] o] o] 0|

8-61

8. Basic Function/Function Block Library

MUL_TIME
Application | @ @ @ @ © @ | @
Function Description
Input EN: executes the function in case of 1
IN1: time to be multiplied
MUL_TIME

IN2: multiplying value
BOOL | EN ENO |~ BOOL

TIME= IN1 OUT} TIME

Output ENO: without an error, it will be 1
ANY_NUM = IN2

OUT: multiplied result

W Function
Multiplies the IN1 (time) by IN2 (humber) and outputs the result time as OUT.

W Error
If an output value is out of its TIME-data range, ERR and _LER flags are set.

B Program Example
This is the program that sets the required working time: the average estimated time per unit product is 20min

2sec and the number of product to produce a day is 20 in one productline.

LD IL
. LD %MO

0 IE-IL'II._TI!-!:E: 0

| —jer Ewol J JMPN ABC
TOTAL_TIM LD UNIT_TIME

UNIT_T IMEJIHN1 00T fm E 1 : MUL_TIME IN1:= CURRENT RESULT
FPRODUCT_C IN2:= PRODUCT_COUNT

G e ' ST TOTAL_TIME

ABC:

(1) Write input variable (IN1: the estimated time per unit product) UNIT_TIME: T#20M2S.

(2) Write input variable (IN2: quantity of production) PRODUCT_COUNT: 20.

(3) Write TOTAL_TIME to the output variable (OUT: total required working time).

(4) If the transition condition (%MO) is on, T#6H40M40S will be produced in output TOTAL_TIME.

Input (IN1): UNIT_TIME (TIME) = T#20MS2S
(MUL_TIME)
(IN2): PRODUCT_COUNT (INT) = 16#18

\’

Output (OUT): TOTAL_TIME (TIME) = T#6H40M40S

8-62

8. Basic Function/Function Block Library

MUX

Selection from multiple inputs Mode! | GMR | GMT |GM2 |GM3 | GM4 | GN6 | GM7
Application | @ @ @ @ © @ | @

Function Description

Input EN: executes the function in case of 1
K: selection
INO: the value to be selected
IN1: the value to be selected
Input variable number can be extended up to 8

MUX
BOOL |EN ENQg—~ BOOL
INT= K OUT= ANY

ANY = INO
ANY = INL Output ENO: without an error, it will be 1.
OUT: the selected value
INO, IN1, ..., OUT should be the same time.
W Function
Selects one among several inputs (INO, IN1, ..., INn) with K value and produces it.

If K=0, INO will be an output; if K =1, IN1 will be an output; if K = n, INn will be an output.

W Error
If K is greater than or equal to the number of input variable INn, then INO will be an output and ERR, LER
flags will be set.

H Program Example .
5 LD IL

LD %MO
MO T
—] |—pE¥ ENOL : JMPN ABC
LD S
S Y MUX K== CURRENT RESULT
INO:= VALUEO
FALUED 4 IND
INL:= VALUE1
varver | IN2:= VALUE2
ST OUT VAL
VALUEZ JIWz | ABC:

(2) If the transition condition (%MO) is on, MUX function will be executed.
(2) Input variable is selected by selection variable S and is moved to OUT.
Input (K): S (INT) =2
(INO): VALUEO (WORD) = 16#11
(IN1): VALUE1 (WORD) = 16#22
(IN2): VALUE2 (WORD) = 16#33
\l/ (MUX)
Output (OUT): OUT_VAL (WORD) = 16#33

8-63

8. Basic Function/Function Block Library

NE

‘Not equal to’ comparison Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application | @ @ @ @ © @ | @

Function Description

Input EN: executes the function in case of 1
IN1: The value to be compared
IN2: The value to be compared
IN1, IN2 should be the same data type.

NE
BOOL |EN ENO= BOOL
ANY =1 IN1 OUTE BOOL

ANY =1 IN2 Output ENO: without an error, it will be 1.

OUT: the compared result value

W Function
If IN1 is not equal to IN2, output OUT will be 1.
If INI is equal to IN2, output OUT will be 0.

B Program Example

LD IL
LD %10.0.0
=Io.o.0 HE
| |—jer Ewol . JMPN PP
LD VALUE1
e - - NE INL= CURRENT RESULT
IN2:= VALUE2
TELTEE TR ST 9%Q0.0.1
PP:

(2) If the transition condition (%10.0.0) is on, NE function will be executed.
(2) If input variable VALUE1 = 300, VALUEZ2 = 200 (the compared result VALUE1 and VALUE?2 are different),
output result value will be %Q0.0.1 = 1.

Input (IN1): VALUEL (INT) = 300 (16#012c) | 0 [0]oJofofofof 1] o[o[1[0 1 1] o] o]
(NE)
(IN2): VALUE2 (INT) = 200 (16#0C8) [o[ofoJo[ofof o] of 1] 1] o] o] 1] o] o] o]

Output (OUT): %Q0.0.1 (BOOL) = 1 (1641)

8-64

8. Basic Function/Function Block Library

NOT

Reverse Logic (Logic inversion) Model | GMR | GM1 |GM2 |GM3 | G4 | GG | GM7
Application | @ @ @ @ © @ | @

Function Description

Input EN: executes the function in case of 1
IN: the value to be logically inverted

NOT
BOOL - EN ENg= BOOL

Output ENO: without an error, it will be 1
ANY_BIT= IN OUTF ANY_BIT

OUT: the inversed (NOT) value

IN, OUT should be the same data type.

W Function

It inverts the IN (by bit) and produces output OUT.
IN 1100 1010
OUT 0011 0101

H Program Example

LD IL
LD %MO
0] woT :
—] p—fer Emol] JMPN AAA
: LD %MB10
IMEL0 JINL OUTL 30B0.0.0 : NOT IN:= CURRENT RESULT
ST %QB0.0.0
AAA:

(2) If the transition condition (%MO) is on, NOT function will be executed.
(2) If NOT function is executed, input data value of %MB210 will be inversed and will be written in %QB0.0.0.

Input (IN1): %MB10 (BYTE)=16#cCc | 1]1[ofo] 1] 1] o] o
Vv (NOT)
Output (OUT): %QB0.0.0 (BYTE)=16#33 | 0| 0| 1| 1] o] o] 1] 1]

8-65

8. Basic Function/Function Block Library

NUM_TO_STRING

Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application | @ @ @ @ © @ | @

Converts number to a character string

Function Description

Input EN: executes the function in case of 1
IN: input data to be converted to STRING

NUM_TO_STRING

BOOL =EN ENG |- BOOL Output ENO: without an error, it will be 1.
ANY_NUMLIN ouT STRING OUT: converted data (character)
W Function

It converts the numeric data of IN to the character data and produces output OUT.

‘B Program Example

LD IL
—_— ST 9%MO
M0 NME_TO_STEING :
—] p—fex o - IMPN AAA
0UT_STRIN LD IN_VALUE
_waLvE J1imL ouT 1 . NUM_TO_STRING
ST OUT_STRING

(1) If the transition condition (%MO0) is ON, function NUM_TO_STRING will be executed.
(2) If IN_VALUE (INT) = 123, OUT_STRING will be ‘123’; if IN_VALUE (REAL) = 123.0, OUT_STRING wiill
be ‘1.23E2'.

Input (IN1): IN_VALUE (INT) = 123
V' (NUM_TO_STRING)
Output (OUT): OUT_STRING (STRING) = ‘123’

8-66

8. Basic Function/Function Block Library

OR
Logical OR Mode | GMR | GM1 [GM2 |GM3 | GM4 | GMB | Gu7
Application | @ @ @ @ | ©® @ | @
Function Description
Input EN: executes the function in case of 1
IN1: input 1
OR IN2: input 2
BOOL =[EN ENOr BOOL Input variables can be extended up to 8.
ANY _BIT=| IN1 OUT} ANY_BIT
ANY_BIT =| IN2 Output ENO: without an error, it will be 1.
OUT: OR result
IN1, IN2, OUT should be all the same data type.
W Function

It performs a logical OR on the input variables by bit and produces output OUT.

IN1 1111..... 0000
OR

IN2 1010 1010
OuUT 1111 1010

B Program Example

LD IL
LD %MO
MO OE
—] |—Jer Ewol J JMPN AAA
LD %MB10
WEL0 JINL OUT[- 2QB0.0.0] OR IN1:= CURRENT RESULT
IN2:= ABC
ARG qINE 1 ST %QB0.0.0

(2) If the transition condition (%MO) is on, function OR will be executed.
(2) The result of a logic sum (OR) for %MB10 = 11001100 and ABC = 11110000 will be produced

in %QB0.0.0 = 11111100.

Input (IN1): %MB10 (BYTE) = 16#CC [1] 1] of o] 1] 1] o] o]
Logical OR operation
(IN2): ABC (BYTE) = 16#F0 [1] 1] 1] 1] o] o] o] o]
v
Output (OUT): %QB0.0.0 (BYTE) = 16#FC | 1| 1| 1| 1| 1| 1| O| o|

8-67

8. Basic Function/Function Block Library

REAL_TO_***
REAL type conversion Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application | @ | @ | @
Function Description
Input EN: executes the function in case of 1
REAL_TO_*** .
IN: the REAL value to be converted

BOOL AEN ENO E?OL Output ENO: without an error, it will be 1.

REAL =N ouT OUT: type-converted data
B Function

It converts the IN type and outputs it as OUT.

Function Output type Description
REAL_TO_SINT SINT If integer part of input is -128 ~ 127, normal conversion. Otherwise an
error occurs. (Decimals round-off)
REAL_TO_INT INT If integer part of input is -32768 ~ 32767, normal conversion.
Otherwise an error occurs. (Decimals round-off)
REAL_TO_DINT DINT If integer part of input is -2** ~ 2%-1, normal conversion. Otherwise an
error occurs. (Decimals round-off)
REAL_TO_LINT LINT If integer part of input is -2°* ~ 2%-1, normal conversion. Otherwise an

error occurs. (Decimals round-off)

REAL_TO_USINT USINT If integer part of input is 0 ~ 255, normal conversion. Otherwise an
error occurs. (Decimals round-off)

REAL_TO_UINT UINT If integer part of inputis 0 ~ 65,535, normal conversion. Otherwise an
error occurs. (Decimals round-off)

REAL_TO_UDINT | UDINT |If integer part of input is 0 ~ 2%-1, normal conversion. Otherwise an
error occurs. (Decimals round-off)

REAL_TO_ULINT ULINT If integer part of input is 0 ~ 2%-1, normal conversion. Otherwise an
error occurs. (Decimals round-off)

REAL TO DWORD | DWORD [Converts into DWORD type without changing the internal bit array.
REAL TO LREAL LREAL Converts REAL into LREAL type normally.

W Error
If overflow occurs (an input value is greater than the value to be stored in output type), ERR, LER flags
will be set. If an error occurs, the output will be 0.

8-68

8. Basic Function/Function Block Library

B Program Example

LD IL
LD %MO
1 H
M0 EEAL_TO_DINT :
—] p—{ew Ewo | JMPN AAA
LD REAL_VAL
EEAL_ VAR JINL OUT |— D INT 2R J REAL_TO_DINT
5 ST DINT VAL

(2) If the transition condition (%MO0) is ON, function REAL_TO_DINT will be executed.
(2) If REAL_VAL (REAL type) = 1.234E4, DINT_VAL (DINT) = 12340.

Input (IN1): REAL_VAL(REAL) = 1.234E4
(REAL_TO_DINT)
Output (OUT): DINT_VAL(DINT) = 12340

8-69

8. Basic Function/Function Block Library

REPLACE
Replace a string (Character string replacement) Mode | GMR | GMT |GM2 |GM3 | G4 | GM6 | GM7
Application | @ @ @ @ | ©® @ | @
Function Description
Input EN: executes the function in case of 1
IN1: character string to be replaced
REPLACE

IN2: character string to replace
L: the length of character string to be replaced
P: position of character string to be replaced

BOOL |EN ENOJ BOOL
STRING ={IN1 OUTE STRING

STRING =IN2
INTq L Output ENO: without an error, it will be 1.
INTq P OUT: output character string
W Function

Its function is to remove the L-length charter from IN1 (starting from P) and put IN2 in the removed position
as output OUT.

W Error

_ERR, _LER flags will be set if:

> P<OorL<O

> P > (input character number of IN1)
> character number of result > 30

‘B Program Example

LD IL
; W %MO
200 BEPLACE JMPN MBC
i ' D IN_TEXT1

REPLACE IN1:= CURRENT RESULT
IN2: = IN_TEXT2
L:= LENGTH
; P:= POSITION
— | ST OUT_TEXT
ABC:

IN TEXT1J4IN1 OUT | OOT_TEXT

IN_TEXTE 4 INZ

POZITION JF

8-70

8. Basic Function/Function Block Library

(1) If the transition condition (%MO0) is ON, function REPLACE (character string replacement) will be

executed.

(2) If input variable of character string to be replaced IN_TEXT1 = "ABCDEF’, input variable of character
string to replace IN_TEXT2 = "X, input variable of character string length to be replaced LENGTH = 3
and input variable of character string position designation to be replaced POSITION = 2, then ‘BCD’ of
IN_TEXT will be replaced with ‘X’ of IN_TEXT2 and output variable OUT_TEXT will be ‘AXET".

Input (IN1): IN_TEXT1 (STRING) = 'ABCDEF
(IN2): IN_TEXT2 (STRING) = "X’
(L): LENGTH (INT) =3
(P): POSITION (INT) = 2 ¥

Output (OUT): OUT_TEXT (STRING) = "AXET’

8-71

8. Basic Function/Function Block Library

RIGHT

To take the right of character string Model | GMR | GM1|GM2 |GM3 | GM4 | GNG | GM7
Application | @ | @ @ @ ©® ©® O

Function Description

Input EN: If EN is 1, function executes.
IN: input character string

RIGHT L: length of character string

BOOL |1EN ENQ~ BOOL
STRING = IN OUT= STRING
INT = L

Output ENO: without an error, it will be 1.
OUT: output character string

W Function
It takes a right L-length character string of IN and produces output OUT.

W Error
IfL<0, ERRand _LER flags will be set.

H Program Example

IL
LD 9%10.0.0
sIo.o.0 R IGHT
] —{ev e} J JMPN AAA
LD IN_TEXT
IN_TEXT JIK OUT |- OUT_TEXT 1 RIGHT IN:= CURRENT RESULT
: L: = LENGTH
LERETH AqE ST OUT_TEXT
AAA:

() If the transition condition (%I10.0.0) is on, function RIGHT (to take the right of character string) will be
executed.

(2) If character string declared as input variable IN_TEXT = "TABCDEFG" and the length of character string to
output LENGTH = 3, output character string variable OUT_TEXT = "EFG".

Input (IN1): IN_TEXT (STRRING) = "ABCDEFG"
(L): LENGTH (INT) = 3
v (RIGHT)
Output (OUT): OUT_TEXT (STRRING) = EFG"

8-72

8. Basic Function/Function Block Library

ROL
Rotate to left Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application | @ @ @ @ © @ | @

Function Description

Input EN: executes the function in case of 1
IN: the value to be rotated
N: bit number to rotate

ROL
BOOL |EN ENO= BOOL
ANY_BIT =IN OUTE ANY_BIT

INT =N

Output ENO: without an error, it will be 1
OUT: the rotated value

W Function
It rotates input IN to the left as many as N bit number.

B Program Example
This is the program that rotates the value of input data (1100_1100_1100_1100:16#CCCC) to the left by 3
bits if input %10.0.0 is on.

LD IL

LD 910.0.0

TI0.0.d ROL

— |—qEN ENU|- : JMPN PPP

LD IN_VALUE

MLEEEOuAD pai] SO nian s 1 ROL IN:= CURRENT RESULT

N:= 3
3 <N

ST OUT_VALUE
PPP:

(1) Set input variable IN_VALUE to rotate.

(2) Set the value to be rotated (3).

(3) Set output variable to output the rotated data value as OUT_VALUE.

(4) If the transition condition (%10.0.0) is ON, function ROL will be executed and a data bit set as input
variable will be rotated to the left by 3 bits and produces output OUT_VALUE.

Input (IN1): IN_VALUE (WORD) = 16#CCCC [1]2]ofo]1]1]of o] 1] 1] o] o] 1] 1] o] o
(N): 3 Vv (ROL)
Output (OUT): OUT_VALUE (WORD) = 16#6666 [o[1]1]0]0] 1] 1] o] 0] 1] 1] 0] o] 1] 1]

8-73

8. Basic Function/Function Block Library

ROR

Rotate to right Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application | @ @ @ @ © @ | @

Function Description

Input EN: executes the function in case of 1
IN: the value to be rotated
N: bit number to rotate

ROR
BOOL 2EN ENO= BOOL
ANY_BIT=1 IN OUTL ANY_BIT

INTq N Output ENO: without an error, it will be 1.

OUT: the rotated value

W Function
It rotates input IN to the right as many as N bit number.

B Program Example
This is the program that rotates input data value (1110001100110001: 16#E331) to the right by 3 bits if
iinput %I10.0.0 is ON.

LD IL

] LD %10.0.0
=Io.o_0 ROER JMPN PO
— |—c¥ Enop 1 LD IN_VALUE1
ROR IN1:= CURRENT RESULT
IN TALUTE1J IN 0T peaDTT 57 ALITE
- - N:= 3
ST OUT_VALUE

PO

(1) Set input variable of a data value to rotate as IN_VALUEL1.

(2) Insert bit number 3 into bit number input N.

(4) If the transition condition (%10.0.0) is ON, function ROR (rotate Right) will be executed and data bit set as
input variable will be rotated to the right by 3 bits and produces output OUT_VALUE.

Input (IN1): IN_VALUE1 (WORD) = 16#E331 | 1]1[1]olo]ol1][1] o] o] 1] 1] o] o] 0] 1f
(N): 3 V(ROR)
Output (OUT): OUT_VALUE(WORD) = 16#3C66 [o1]1]1] 1] 0] 0] 0] 1] 1] 0] o] 1] 1] 0]

8-74

8. Basic Function/Function Block Library

SEL
Selection from two inputs Mode| GMR | GM1 |GM2 [GM3 | GM4 | GM6 | GM7
Application | @ @ @ @ | ©® @ | @
Function Description
Input EN: executes the function in case of 1
G: selection
SEL .
INO: the value to be selected
BOOL |EN ENQ~ BOOL

IN1: the value to be selected
BOOL G OUTE ANY

ANY =INO Output ENO: without an error, it will be 1
ANY AINL OUT: the selected value
IN1, IN2, OUT should be all the same type.
W Function

If G is 0, INO will be an output and if G is 1, IN1 will be an output.

® Program Example

LD IL

LD %MO
O SEL JMPN PPP
_I I_EH ENQ = o
LD S
3 4= OUT |- 2qwo_ a0 4 SEL G:= CURRENT RESULT
IN1:= VALUE1l
as s 2820 1 IN2:= VALUE2
ST %QWO0.0.0
WALUEZ J4IN1
PPP:

(2) If the transition condition (%MO) is ON, function SEL will be executed.
(2) If S=1and VALUEL = 16#1110, VALUE2 = 16#FF00, then output variable %QW0.0.0 = 16#FFO0.

Input (G): S=1
(INO): VALUE1 (WORD) = 16#1110
(IN1): VALUE2(WORD) = 16#FF00

v (SEL)
Output (OUT): %QW0.0.0 (WORD) = 16#FF00

8-75

8. Basic Function/Function Block Library

SHL
Shift Left Model | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application | @ @ @ @ | ©® @ | @
Function Description
Input EN: If EN is 1, function is executed.
IN: bit string to be shifted
SHL N: bit number to be shifted
BOOL =HEN ENOpF BOOL
ANY_BITIN - OUTI= ANY_BIT Output ENO: without an error, it will be 1
INTAN OUT: the shifted value
W Function

It shifts input IN to the left as many as N bit number.
N number bit on the rightmost of input IN will be filled with 0.

o| o
[1 Nwill be filled with 0.

W Program Example
This is the program that shifts input data value (1100 _1100 1100 1100:16#CCCC) to the left by 3 bits if

input %10.0.0 is ON.

LD IL
LD %10.0.0
TI0.0.0 SHL
—] |}—{e¥ EWo} J JMPN ABC
LD IN_VALUE
SRRl jan PRSI U e B 1 SHL IN:= CURRENT RESULT
N:i= 3
1 i]
ST OUT_VALUE
: ABC:

(1) Set the input variable IN_VALUE (11001110:16#CE).

(2) Insert bit number 3 into N.
(3) If the transition condition (%20.0.0) is ON, function SHL (shift Left) will be executed and data bit set as

input variable shifts to the left by 3 bits and produces output OUT_VALUE.

Input (IN1): IN_VALUE (WORD) = 16#CCCC l1]afofofa[a]ofofa[1]ofof1]1][0]q
(N): 3 Vv (SHL)
Output (OUT): OUT_VALUE (WORD) =16#6660 | o | 1|10 o] 1] 1] 0] o] 1] 1] o] o] o] o] of

8-76

8. Basic Function/Function Block Library

SHR
Shift Right Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application | @ @ @ @ | ©® @ | @
Function Description
Input EN: executes the function in case of 1
IN: bit string to be shifted
SHR N: bit number to be shifted
BOOL 4EN ENO= BOOL
ANY_BITHIN- OUTE ANY_BIT Output ENO: without an error, it will be 1.
INT N OUT: the shifted value
W Function

It shifts input IN to the right as many as N bit number.
N number bit on the leftmost of input IN will be filled with 0.

OO (110 |2|1f(1(O
N will be filled with O. I

® Program Example

LD IL
LD %MO
M0 SHE
— p—{ev Emof J JMPN AAA
LD IN_VALUE
IN_VALUEL{IN OUTLOUT_VALUE 1 SHR IN:= CURRENT RESULT
N:= SHIFT_NUM
. ' ST OUT_VALUE

(2) If the transition condition (%MO) is on, function SHL (Shift Left) will be executed.
(2) Data bit set as input variable shift to the right by 3 bits and produces outputs OUT_VALUE.

Input (IN1): IN_VALUE (WORD) = 16#E331 l1]a]1]ofofol1] 1]l ofol1]1] 0] 0] 0]
(N): 3 V' (SHR)

Output (OUT): OUT_VALUE (WORD) = 16#1C66 | 0|0 | 0 | 1|1| 1| o| o| o| 1| 1| o| o| 1| 1| o|

8-77

8. Basic Function/Function Block Library

SIN

Sine operation Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application | @ @ @ @ © @ | @

Function Description

Input EN: executes the function in case of 1
IN: input value of Sine operation (radian)

SIN
BOOL | EN ENQ= BOOL

Output ENO: without an error, it will be 1
ANY_REAL= IN OUTE ANY_REAL

OUT: Sine operation result value

IN, OUT should be the same data type.

W Function
Finds the Sine operation value of IN and produces output OUT.
OUT = SIN (IN)

B Program Example

LD IL
LD %10.0.0
ZI0.0.0 SIN
— —ev Ewof ! JMPN PPP
LD INPUT
wrrr Jmr ourl mEsULT . SIN
ST RESULT
PPP;

(2) If the transition condition (%10.0.0) is ON, function SIN (Sine operation) will be executed.
(2) If the value of input variable INPUT is 1.0471 (n/3 rad = 60°), RESULT declared as output variable will
be 0.8660 (V3/2).
SIN (n/3) =V 3/2 = 0.8660

Input (IN1): INPUT (REAL) = 1.0471

V' (SIN)
Output (OUT): RESULT (REAL) = 8.65976572E-01

8-78

8. Basic Function/Function Block Library

SINT_TO_#***
SINT type conversion Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application | @ @ @ @ | ©® @ | @
Function Description
Input EN: executes the function in case of 1
SINT_TO_*¥

IN: short Integer value
BOOL =EN ENO = BOOL

- I
SINT =N ouT Output ENO: without an error, it will be 1.

OUT: type-converted data

B Function
It converts the IN type and outputs it as OUT.
Function Output type Description

SINT TO_INT INT Converts into INT type normally.
SINT TO DINT DINT Converts into DINT type normally.
SINT TO LINT LINT Converts into LINT type normally.
SINT TO USINT USINT Ifinputis 0 ~ 127, normal conversion. Otherwise an error occurs.
SINT TO UINT UINT Ifinputis 0 ~ 127, normal conversion. Otherwise an error occurs.
SINT TO UDINT | UDINT Ifinputis 0 ~ 127, normal conversion. Otherwise an error occurs.
SINT TO ULINT ULINT Ifinputis 0 ~ 127, normal conversion. Otherwise an error occurs.
SINT TO BOOL BOOL Takes the lower 1 bit and converts into BOOL type.
SINT TO BYTE BYTE Converts into BYTE type without changing the internal bit array.
SINT TO WORD | WORD Converts into WORD type filling the upper bits with 0.
SINT TO DWORD | DWORD Converts into DWORD type filling the upper bits with O.
SINT TO LWORD | LWORD Converts into LWORD type filling the upper bits with 0.
SINT TO BCD BYTE If input is 0 ~ 99, normal conversion. Otherwise an error occurs.
SINT TO REAL REAL Converts SINT into REAL type normally.
SINT TO LREAL | LREAL Converts SINT into LREAL type normally.

W Error

If a conversion error occurs, _ERR and _LER flags will be set. If an error occurs, take the lower bits as many
as bit number of output type and output it without changing the internal bit array.

8-79

8. Basic Function/Function Block Library

B Program Example

LD IL
LD %MO
M0 SINT_To0_ECD
g _ IVMPN AAA
LD IN_VAL
IN VAL JINL oUT|e BCD_waL SINT_TO_BCD
ST BCD_VAL
AAA:

(1) If the input condition (% MO) is ON, function SINT_TO_BCD will be executed.
(2) If input variable IN_VAL (SINT) = 64 (2#0100_0000), output variable OUT_VAL (BCD type) = 16#64

(2#0110_0100).

Input (IN1): IN_VAL(SINT) = 64(16#40) [o] 1] o] of o] o] o o
\/ (SINT_TO_BCD)

Output (OUT): OUT_VAL(BCD) = 16#64(16#64) | 0] 1| 1| o] o] 1| o] o]

8-80

8. Basic Function/Function Block Library

SQRT

Calculate SQRT (Square root operation) Mode!| GMR | GM1 |GM2 |GM3 | GM4 | GMG | GM7
Application | @ | @ | @

Function Description

Input EN: executes the function in case of 1
IN: input value of square root operation

SQRT
BOOL 4EN ENCG+ BOOL

Output ENO: without an error, it will be 1.
ANY_REALS IN OUT= ANY_REAL

OUT: square root value
IN, OUT should be the same data type.

W Function
It finds the square root value of IN and output it as OUT.

OUT =+ IN

W Error
If the value of IN is a negative number, ERR and _LER flag will be set.

W Program Example

LD IL
LD %MO
20 BQRT 5
| |—jew Emol ; JMPN AAA
: LD INPUT
INFUT JIN1 OUT|= ERESULT 1 SQRT
ST RESULT
AAA:

(2) If the transition condition (%MO) is ON, function SQRT (square root operation) will be executed.
(2) If the value of input variable declared as INPUT is 9.0, RESULT declared as output variable will be 3.0.
V9.0=3.0

Input (IN1): INPUT (REAL) = 9.0
(SQRT)
Output (OUT): RESULT (REAL) = 3.0

8-81

8. Basic Function/Function Block Library

STOP
Stop running by program Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application | @ @ @ @ | ©® @ | @
Function Description
Input EN: executes the function in case of 1
RE: requires the operation stop by program
STOP

BOOL | EN ENQ= BOOL

Output ENO: without an error, it will be 1.
BOOL || REQ OUTl= BOOL

OUT: If STOP function is executes, it will be 1.

W Function

D> If EN and REQ are 1, stop running and return to STOP mode.

> If function 'STOP' is executed, the program stops after completing scan program in executing.

> Program restarts in case of power re-supply or the change of operation mode from STOP to RUN.

W Program Example

LD IL
LD 9%10.0.0
2I0.0.0 BT OF

—] p—fer EmOl | JMPN PT
LD LOG_OuUT

LoGs_ovT JEER 0UT|- SHUT_oFF STOP
ST SHUT_OFF
PT:

(2) If the transition condition (%10.0.0) and LOG_OUT is 1, it becomes to STOP mode after completing the
scan program in executing.

(2) It is recommended to turn off the power of PLC in the stable state after executing 'STOP' function
declared as input variable.

8-82

8. Basic Function/Function Block Library

STRING_TO_***

STRING type conversion Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application | @ | @ | @ @ © | © | O

Function Description
STRING TO * Input EN: If ENis 1, fu'nction converts.
sooL 4 En - ET\IO- BOOL IN: character string
STRING 4 IN OuTE ™ Output ENO: without an error, it will be 1.
OUT: type-converted data
B Function
Converts the IN type and outputs it as OUT.

Function Output type Description
STRING TO SINT SINT Converts STRING into SINT type.
STRING TO INT INT Converts STRING into INT type.
STRING TO DINT DINT Converts STRING into DINT type.
STRING TO LINT LINT Converts STRING into LINT type.
STRING TO USINT USINT Converts STRING into USINT type.
STRING TO UINT UINT Converts STRING into UINT type.
STRING TO UDINT UDINT Converts STRING into UDINT type.
STRING TO ULINT ULINT Converts STRING into ULINT type.
STRING TO BOOL BOOL Converts STRING into BOOL type.
STRING TO BYTE BYTE Converts STRING into BYTE type.
STRING TO WORD WORD Converts STRING into WORD type.
STRING TO DWORD | DWORD Converts STRING into DWORD type.
STRING TO LWORD LWORD Converts STRING into LWORD type.
STRING TO REAL REAL Converts STRING into REAL type.
STRING TO LREAL LREAL Converts STRING into LREAL type.
STRING TO DT DT Converts STRING into DT type.
STRING TO DATE DATE Converts STRING into DATE type.
STRING TO TOD TOD Converts STRING into TOD type.
STRING TO TIME TIME Converts STRING into TIME type.

W Error

If input character type does not match with output data type, ERR and _LER flags will be set.

8-83

8. Basic Function/Function Block Library

W Program Example

LD IL
LD %MO
M0 STRING_TO_FEAL il\[;lPN IﬁZVAL
| —{er Ewo —
STRING_TO_REAL
w_varn i ourl owr_war ST OUT_VAL
ZZ:

(2) If the input condition (%MO) is ON, function STRING_TO_REAL will be executed.
(2) If input variable IN_VAL (STRING) = ‘-1.34E12’, output variable OUT_VAL (REAL) = -1.34E12.

Input (IN1): IN_VAL (STRING) = ‘-1.34E12’

(STRING_TO_REAL)

Output (OUT): OUT_VAL (REAL) = -1.34E12

8-84

8. Basic Function/Function Block Library

STRING_TO_ARY

Convert a string into a byte array Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application | @ | @ @ | @ @ @ | @
Function Description

STRING_TO_ARY

BOOL — EN ENO = BOOL
STRING =1 IN1 OUT —BOOL
BYTE_ARY — /A2

IN: string input

Input EN: If EN is 1, function converts.

Output ENO: without an error, it will be 1.
OUT: dummy output

In/Out IN2: converted byte array output

W Function
It converts a string into 30 byte arrays.

W Program Example

FEYTE_ARY { /A2

o

STRING_EY,
M2 TE
e BN

FOINPUT q INT OUTP= DUMMY

(2) If the transition condition (%M2) is on, STRING_BYTE function is executed.
(2) If input variable INPUT is “GM4-CPUA”, In/Out variable BYTE_ARY is as follows:
16#{22(*), 47(G), 4D(M), 34(4), 2D(-), 43(C), 50(P), 55(U), 41(A), 22(*)}.

8-85

8. Basic Function/Function Block Library

SUB

Subtraction Model GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application | @ @ @ @ © @ | @

Function Description

Input EN: executes the function in case of 1
IN1: the value to be subtracted
IN2: the value to subtract

SuUB
BOOL |1 EN EN(= BOOL
ANY_NUM =1 IN1 OUP= ANY_NUM

Output ENO: without an error, it will be 1.
ANY_NUM =1 IN2

OUT: the subtracted result value

The variables connected to IN1, IN2 and OUT should be all
the same data type.

W Function
It subtracts IN2 from IN1 and outputs it as OUT.
OUT =IN1 —IN2

W Error
If output value is out of range of related data type, ERR and _LER flags will be set.

B Program Example

LD IL
LD %MO
JMPN AAA
M0 S1IB
] —{er Ewof] LD VALUE1

SUB IN1:= CURRENT RESULT

TALUTE]l S IN1 OUT pu OUT_WFAL o IN2:= VALUE2
ST OUT_VAL

VALUE: J INZ
AAA:

(2) If the transition condition (%MO) is ON, function SUB will be executed.
(2) If input variables VALUE1 = 300, VALUE2 = 200, OUT_VAL will be 100 after operation.

Input (IN1): VALUE1 (INT) = 300 (16#012C) lolofofolofo]o[1] o]l o]1]0] 1] 1] o]0
- (SUB)
(IN2): VALUE2 (INT) = 200 (16#00C8) lofofo]ofo]ofof 1] 1] o] o o] 1] o] o] of

Output (OUT): OUT_VAL (INT) = 100 (16#0064) [oJoJoJoJo]o] o] o] 1] 1] o o] of 1] of 0

8-86

8. Basic Function/Function Block Library

SUB_DATE

Date subtraction

Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application | @ @ @ @ © @ | @

Function Description
Input EN: executes the function in case of 1
IN1: standard date
SUB_DATE IN2: the date to subtract

BOOL |EN ENQ= BOOL

DATE =IN1 OUT= TIME Output ENO: without an error, it will be 1.

DATE =IN2 OUT: produces the difference between two dates

as time data.

B Function

It subtracts IN2 (specific date) from IN1(standard date) and outputs the difference between two dates as

OUT.

W Error

If output value is out of range (TIME data type), ERR and _LER flags will be set.
An error occurs: 1) when date difference exceeds the range of TIME data type (T#49D17H2M47S295MS); 2)
the result of date operation is a negative number.

B Program Example

LD IL
LD %I10.0.0
JMPN PPP
210.0.0 |swE_pare
] —few Ewof LD CURRENT_DATE
e SUB_DATE IN1:= CURRENT RESULT
are Jm owrl work_pav IN2:= START_DATE
START_DAT ST WORK_DAY
S PPP:

(1) If the transition condition (%10.0.0) is ON, function SUB_DATE will be executed.
(2) If input variable CURRENT_DATE is D#1995-12-15 and START_DATE is D#1995-11-1, the working
days declared as output variable WORK_DAY will be T#44D.

Input (IN1): CURRENT_DATE (DATE) = D#1995-12-15
(SUB_DATE)

(IN2): START_DATE (DATE) = D#1995-11-1

Output (OUT): WORK_DAY (TIME) = T#44D

8-87

8. Basic Function/Function Block Library

SUB_DT

Date and Time subtraction

Model

GMR

GM1 |GM2 |GM3 | GM4 | GM6 | GM7

Application | @

Function Description
Input EN: executes the function in case of 1
IN: standard date and time of day
SUB_DT) .
- IN2: date and time of day to subtract
BOOL =EN ENO~ BOOL
DATE_AND_TIMER INL - OUTf= TIME Output ENO: without an error, it will be 1.

DATE_AND_TIME" IN2

OUT: the subtracted result time

B Function

It subtracts IN2 (specific date and time of day) from IN1 (standard date and time of day) and outputs the time

difference as OUT.

W Error

If output value is out of range of TIME data type, ERR and _LER flags will be set.
If the result of date and time of day subtraction operation is a negative number, an error occurs.

B Program Example

LD IL
LD %MO
a0 m—— JMPN PPP
— —fc¥ IHop LD CURRENT_DT
CURRENT_D SUB_DT IN1:= CURRENT RESULT
T - IN1 OUT TIORE_T IME |N2:= START_DT
ST WORK_TIME
START_DT 4 INZ
PPP:

(2) If the transition condition (%MO) is ON, function SUB_DT (Time and Date subtraction) will be executed.

(2) If the current date and time of day CURRENT_DT is DT#1995-12-15-14:30:00 and the starting date and
the time of day to work START_DT is DT#1995-12-13-12:00:00, the continuous working time declared as
output variable WORK_TIME will be T#2D2H30M.

Input (IN1): CURRENT_DT (DT) = DT#1995-12-15-14:30:00

(SUB_DATE)

(IN2): START_DT (DT) = DT#1995-12-13-12:00:00

%

Output (OUT): WORK_TIME (TIME) = T#2D2H30M

8-88

8. Basic Function/Function Block Library

SUB_ TIME
Time subtraction Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application | @ @ @ @ | ©® @ | @
Function Description
Input EN: executes the function in case of 1
IN1: standard time of day
SUB_TIME

IN2: the time to subtract
Output ENO: without an error, it will be 1.
OUT: the subtracted result time or time of day
OUT data type is the same as the input IN1 type.
That is, if IN1 type is TIME, OUT type should be TIME.

BOOL =EN ENOpR BOOL
TIME, TOD,DT=IN1 OUT TIME,TOD,DT
TIME={IN2

W Function
D> If IN1 is TIME, it subtracts the time from the standard time and produces OUT (time difference).

> If IN1 is TIME_OF_DAY, it subtracts the time from the standard time of day and outputs the time of a day
as OUT.

D> If IN1 is DATE_AND_TIME, it subtracts the time from the standard date and the time of day and
produces the date and the time of day as OUT.

W Error
If the output value is out of range of related data type, ERR and _LER flags will be set.

If the result subtracting the time from the standard time is a negative number or the result subtracting the
time from the time of day is a negative number, an error occurs.

® Program Example

LD IL
LD %10.0.0
; JMPN AAA
tI0.0.0 |sUB_TIME
L —lew el | LD TARGET_TIME
SUB_TIME IN1:= CURRENT RESULT
TARGET_TI TIME_TO_G .
e Jm ol @) IN2:= ELAPSED_TIME
ST TIME_TO_GO
ELAFEED_T :
IME JIn: ; AAA:

(2) If the transition condition (%10.0.0) is ON, function SUB_TIME (time subtraction) will be executed.

(2) If total working time declared as input variable TARGET_TIME is T#2H30M, the elapsed time
ELAPSED TIME is T#1H10M30S300MS, the remaining working time declared as output variable
TIME_TO_GO will be T#1H19M29S700MS.

Input (IN1): TARGET_TIME (TIME) = T#2H30M
(SUB_TIME)
(IN2): ELAPSED_TIME (TIME) = T#1H10M30S300MS

%

Output (OUT): TIME_TO_GO (TIME) = T#1H19M29S700MS

8-89

8. Basic Function/Function Block Library

SUB TOD
TOD Subtraction Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application | @ @ @ @ | ©® @ | @
Function Description
Input EN: executes the function in case of 1
IN1: standard time of day
SUB_TOD

IN2: the time of day to subtract
BOOL |EN ENO} BOOL

TIME_OF_DAY={ IN1 OUTE= TIME

Output ENO: without an error, it will be 1.
TIME_OF_DAY= IN2

OUT: the subtracted result time

B Function

It subtracts the IN2 (specific time of day) from IN1 (standard time of day) and outputs the time difference as
OUT.

W Error

If the result subtracting the time of day from the time of day is a negative number, an error occurs.

B Program Example

LD IL
LD %I10.0.0
$I0.0.0 | 3UE_TOD JMPN AAA
— " Eer - LD END_TIME

SUB_TOD IN1:= CURRENT RESULT
IN2:= START_TIME
SRS ST WORK_TIME
E - INZ o
AAA:

END_TIME JIN1 0QUT|WORE T IME

(2) If the transition condition (%10.0.0) is ON, function SUB_TOD (time of day subtraction) will be executed.
(2) If END_TIME declared as input variable is TOD#14:20:30.5 and the starting time to work START_TIME is

TOD#12:00:00, the required time to work WORK TIME declared as output variable will be
T#2H20M30S500MS.

Input (IN1): END_TIME (TOD) = TOD#14:20:30.5
(SUB_TOD)
(IN2): START_TIME (TOD) = TOD#12:00:00

v

Output (OUT): WORK_TIME (TIME) = T#2H20M30S500MS

8-90

8. Basic Function/Function Block Library

TAN
Tangent Operation Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application | @ | @ | @ d
* Applied only in GM4-CPUC among GM4 series
Function Description

Input EN: executes the function in case of 1
IN: tangent input value (radian)

TAN
BOOL |1 EN EN(= BOOL

Output ENO: without an error, it will be 1
ANY_REAL= IN OUTE ANY_REAL

OUT: the result value of Tangent operation
IN, OUT should be the same data type.

W Function
It performs Tangent operation of IN and produces output OUT.
OUT = TAN (IN)

® Program Example .
LD IL

; LD %MO
a0 — JMPN BBB
L] o - LD INPUT

TAN
INFUT JIN1 0OUTj EBESULT ST RESULT
BBB:

(2) If the transition condition (%MO) is ON, function TAN (Tangent operation) will be executed.
(2) If the value of input variable declared as INPUT is 0.7853... (n/4 rad = 45°), RESULT declared as output
variable will be 1.0000.

TAN (n/4) = 1
Input (IN1): INPUT (REAL) = 0.7853

U (TAN)
Output (IN2): RESULT (REAL) = 9.99803722E-01

8-91

8. Basic Function/Function Block Library

TIME_TO_***

TIME type conversion

Model GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7

Application | @ @ @ @ © @ | @

Function Description
Input EN: executes the function in case of 1
IN: time data to be converted
TIME_TQ_***
BOOL —EN ENG— ?SOL Output ENO: without an error, it will be 1
TIME 1IN OUTH- OUT: type-converted data
B Function

It converts the IN type and produces OUT.

Function

Output type

Description

TIME_TO_UDINT

UDINT

Converts TIME into UDINT type. It converts only data type without
changing the data (internal bit array state).

TIME_TO_DWORD | DWORD |Converts TIME into DWORD type. It converts only data type without
changing the data (internal bit array state).
TIME_TO_STRING | STRING |Converts TIME into STRING type.

H Program Example

D IL
TMO0 TIME TO _UDINT LD %MO
_I I_EH_ _EHIJ JMPN AA
LD IN_VAL
IN "fal J4IN1 ouT 01T _WiaL T|ME_TO_UD|NT
ST OUT_VAL

AA:

(1) If the transition condition (%MO0) is ON, function TIME_TO_UDINT will be executed.
(2) If input variable IN_VAL (TIME) = T#120MS, output variable OUT_VAL (UDINT) = 120.

Input (IN1): IN_VAL (TIME) = T#120MS (16#78) [o0]o|oo|olo|o|of o] 1] 1] 1] 1] o] o] 0]

Vv (TIME_TO_UDINT)

Output (OUT): OUT_VAL (UDINT) =120 (16#78) | o|o|o|o|o|o] o] o] o] 1] 1| 1] 1] o] o] 0o

8-92

8. Basic Function/Function Block Library

TOD_TO_***

TOD type conversion

Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application | @ @ @ @ © @ | @

Function Description
Input EN: executes the function in case of 1
IN: time of a day data to be converted
TOD_TOQ_***
BOOL =EN ENG= E;(iOL Output ENO: without an error, it will be 1
TOD IN ouT= OUT: type-converted data
W Function

It converts the IN type and outputs it as OUT.

Function Output type Description
TOD_TO_UDINT | UDINT Converts TOD into UDINT type.
Converts only data type without changing a data (internal bit array state).
TOD_TO_DWORD| DWORD Converts TOD into DWORD type.
Converts only data type without changing a data (internal bit array state).
TOD_TO_STRING| STRING Converts TOD into STRING type.

H Program Example

LD IL

LD % MO

M0 TOD_TO_STRING

—] I_E_H " Emn JMPN AA

LD IN_VAL

IN_ WAL JIN1 OUT|= OUT_vaL DATE TO STRING
ST OUT_VAL
AA:

(1) If the transition condition (%MO) is ON, function TOD_TO_STRING will be executed.
(2) If input variable IN_VAL (TOD) = TOD#12:00:00, output variable OUT_VAL (STRING) = ‘TOD#12:00:00'.

Input (IN1): IN_VAL (TOD) = TOD#12:00:00

(TOD_TO_STRING)

Output (IN2): OUT_VAL (STRING) = ‘TOD#12:00:00’

8-93

8. Basic Function/Function Block Library

TRUNC
Set TRUNC (Round off the decimal fraction of IN and Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
converts into integer number) Application | @ @ @ @ | ©® @ | @
Function Description
Input EN: executes the function in case of 1
IN: REAL value to be converted
TRUNC

BOOL | EN EN({= BOOL
ANY_REAL= IN OUT ANY_INT

Output ENO: without an error, it will be 1.
OUT: the Integer converted value

W Function
Function Input type Output type Description
TRUNC REAL DINT Round off the decimal fraction of input IN and outputs
LREAL LINT the Integer value as OUT.
W Error

_ERR, LER flags will be set: 1) if the converted value is greater than maximum value of data type
connected to OUT; 2) if the variable connected to OUT is Unsigned Integer and the converted output value is

a negative number, the output is 0.

B Program Example

LD IL
LD REAL_VALUE
M0 TERUNHC
I I EH ENO L. TRUNC
epeL Ly ST INT_VALUE
E o IN1 OUT e INT_WELUE

(2) If the transition condition (%MO) is ON, function TRUNC will be executed.
(2) If input variable REAL_VALUE (REAL) = 1.6, output variable INT_VALUE (INT) = 1.

If REAL_VALUE (REAL) = -1.6, INT_VALUE (INT) = -1

Input (IN1): REAL_VALUE (REAL) = 1.6
V' (TRUNC)
Output (OUT): INT_VALUE (INT)= 1

8-94

8. Basic Function/Function Block Library

UDINT TOQ ***
UDINT type conversion Mode| GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application | @ @ @ @ | ©® @ | @

Function Description

Input EN: executes the function in case of 1
UDINT_TO_**4

EN ENg- BOOL
IN ouTl™ ***

IN: Unsigned Double Integer value to be converted

Output ENO: without an error, it will be 1

OUT: type-converted data

W Function
It converts the IN type and outputs it as OUT.

Function Output type Description
UDINT _TO_SINT SINT If input is 0~127, normal conversion. Otherwise an error occurs.
UDINT TO INT INT If input is 0~32767, normal conversion. Otherwise an error occurs.
UDINT_TO_DINT DINT If input is 0~2,147,483,64, normal conversion. Otherwise an error

occurs.

UDINT TO LINT LINT Converts UDINT into LINT type normally.
UDINT TO USINT USINT If input is 0~255, normal conversion. Otherwise an error occurs.
UDINT TO UINT UINT If input is 0~65535, normal conversion. Otherwise an error occurs.
UDINT_TO_ULINT ULINT Converts UDINT into ULINT type normally.
UDINT TO BOOL BOOL Takes the lower 1 bit and converts into BOOL type.
UDINT TO BYTE BYTE Takes the lower 8 bits and converts into BYTE type.
UDINT TO WORD WORD Takes the lower 16 bits and converts into WORD type.

UDINT TO DWORD | DWORD Converts into DWORD type without changing the internal bit array.

UDINT TO LWORD | LWORD Converts into LWORD type filling the upper bits with O.

UDINT_TO_BCD DWORD If input is 0 ~ 99,999,999, normal conversion.

Otherwise an error occurs.
UDINT_TO_REAL REAL Converts UDINT into REAL type.

During the conversion, an error caused by the precision may occur.
UDINT_TO_LREAL LREAL Converts UDINT into LREAL type.

During the conversion, an error caused by the precision may occur.
UDINT TO TOD TOD Converts into TOD type without changing the internal bit array.
UDINT TO TIME TIME Converts into TIME type without changing the internal bit array.

W Error

If a conversion error occurs, ERR and _LER flags will be set. If an error occurs, take the lower bits as many
as a bit number of an output data type and produces the output without changing the internal bit array.

8-95

8. Basic Function/Function Block Library

‘B Program Example

LD IL
LD %MO
| p— |
L0 VD INT_TO_T IME JMPN Y4
—] |—ew Ew0
LD IN_VAL
IN_7aL JIN1 OUT| OUT_WaL UDINT_TO_TIME
ST OUT_VAL
77

(2) If the input condition (%MO0) is ON, function UDINT_TO_TIME will be executed.
(2) If input variable IN_VAL (UDINT) = 123, output variable OUT_VAL (TIME) = T#123MS.

Input (IN1): IN_VAL (UDINT) = 123

Output (OUT): OUT_VAL (TIME) = T#123MS

8-96

8. Basic Function/Function Block Library

UINT TO ***
UINT type conversion Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application | @ @ @ @ | ©® @ | @
Function Description
Input EN: executes the function in case of 1
UINT_TQ_***) .
- = IN: Unsigned Integer value to be converted
BOOL = EN ENg= BOOL
- - kkk
UINT N ouT Output ENO: without an error, it will be 1
OUT: type-converted data
B Function
It converts the IN type and outputs it as OUT.
. Output L
Function utbu Description
type
UINT_TO_SINT SINT If input is 0~127, normal conversion. Otherwise an error occurs.
UINT_TO_INT INT If input is 0~32,767, normal conversion. Otherwise an error occurs.
UINT TO DINT DINT Converts UINT into UDINT type normally.
UINT_TO_LINT LINT Converts UINT into ULINT type normally.
UINT_TO_USINT USINT If input is 0~255, normal conversion. Otherwise an error occurs.

UINT TO UDINT UDINT Converts UINT into UDINT type normally.

UINT_TO_ULINT ULINT Converts UINT into ULINT type.

UINT TO BOOL BOOL Takes the lower 1 bit and converts into BOOL type.

UINT TO BYTE BYTE Takes the lower 8 bits and converts into BYTE type.

UINT TO WORD WORD Converts into WORD type without changing the internal bit array.

UINT_ TO DWORD | DWORD | Converts into DWORD type filling the upper bits with 0.

UINT TO LWORD | LWORD | Converts into LWORD type filling the upper bits with 0.

UINT TO BCD BCD If input is 0~99,999,999, normal conversion. Otherwise an error occurs.
UINT TO REAL REAL Converts UINT into REAL type.
UINT TO LREAL LREAL Converts UINT into LREAL type.
UNIT TO DATE DATE Converts into DATE type without changing the internal bit array.
W Error

If a conversion error occurs, _ERR and _LER flags will be set. If error occurs, it takes as many lower bits as
a bit number of output type and produces an output without changing its internal bit array.

8-97

8. Basic Function/Function Block Library

B Program Example

LD IL
LD %MO
smo viNT_To_woRn JMPN PO
— =R LD IN_VAL
IN_ VAL JIN1 oUT| ouT_valL UINT_TO_WORD
ST OUT_VAL
PO:

(2) If the input condition (%MO) is ON, function UINT_TO_WORD will be executed.
(2) If input variable IN_VAL (UINT) = 255 (2#0000_0000 1111 1111),
output variable OUT_VAL (WORD) = 2#0000_0000_1111 1111.

Input (IN1): IN_VAL (UINT) = 255

Output (OUT): OUT_VAL (WORD) = 16#FF

[oJoJoJofoJofofof 1fafafafa]a]1]a

V' (UINT_TO_WORD)

[ofolofofofofofol sfafafafafa]a]1]

8-98

8. Basic Function/Function Block Library

ULINT_TO_***

ULINT type conversion

Mode | GMR | GM1 |GM2
Application | @ | @ | @

GM3 | GM4 | GM6 | GM7

Function Description
Input EN: executes the function in case of 1

ULINT_TO_*** i .

- = IN: Unsigned Long Integer value to be converted
EN ENg= BOOL

o *k%
IN ouT Output ENO: without an error, it will be 1
OUT: type-converted data

B Function

It converts the IN type and outputs it as OUT.

Function Output type Description

ULINT_TO_SINT SINT If input is 0~127, normal conversion. Otherwise an error occurs.
ULINT TO INT INT If input is 0~32,767, normal conversion. Otherwise an error occurs.
ULINT _TO _DINT DINT If input is 0~2%"-1, normal conversion. Otherwise an error occurs.
ULINT TO LINT LINT If input is 0~2°%-1, normal conversion. Otherwise an error occurs.
ULINT_TO_USINT USINT If input is 0~255, normal conversion. Otherwise an error occurs.
ULINT TO UINT UINT If input is 0~65,535, normal conversion. Otherwise an error occurs.
ULINT TO UDINT UDINT If input is 0~2%-1, normal conversion. Otherwise an error occurs.
ULINT_TO_BOOL BOOL Takes the lower 1 bit and converts into BOOL type.
ULINT _TO BYTE BYTE Takes the lower 8 bits and converts into BYTE type.
ULINT TO WORD WORD Takes the lower 16 bits and converts into WORD type.
ULINT TO DWORD | DWORD | Takes the lower 32 bits and converts into DWORD type.
ULINT TO LWORD | LWORD Converts into LWORD type without changing the internal bit array.
ULINT TO BCD BCD If input is 0~9,999,999,999,999,999, normal conversion. Otherwise an

-~ error occurs.

Converts ULINT into REAL type.

ULINT_TO_REAL REAL ,) .

- During the conversion, an error caused by the precision may occur.

Converts ULINT into LREAL type.

ULINT_TO_LREAL LREAL

During the conversion, an error caused by the precision may occur.

W Error

If a conversion error occurs, ERR and _LER flags will be set. If error occurs, it takes as many lower bits as

a bit number of output type and produces an output without changing its internal bit array.

8-99

8. Basic Function/Function Block Library

® Program Example

LD IL
LD %MO
20 ULINT_TO_LINT
- |—EH_ — JMPN PP
LD IN_VAL
IN VAL JIN1 OUT = OUT_WaL ULINT_TO_LINT
ST OUT_VAL
PP:

(1) If the input condition (%MO) is ON, function ULINT_TO_LINT will be executed.
(2) If input variable IN_VAL (ULINT) = 123,567,899, then output variable OUT_VAL (LINT) = 123,567,899.

Input (IN1): IN_VAL (ULINT) = 123,567,899
(ULINT_TO_LINT)

Output (OUT): OUT_VAL (LINT) = 123,567,899

8-100

8. Basic Function/Function Block Library

USINT TO ***
USINT type conversion Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application | @ @ @ @ | ©® @ | @
Function Description
Input EN: executes the function in case of 1
USINT_TO_***
BOOL =EN ENO= BOOL IN: Unsigned Short Integer value to be converted
USINT = IN OUT ***
Output ENO: without an error, it will be 1
OUT: type-converted data
W Function

It converts the IN type and outputs it as OUT.

. Output .
Function Description
type

USINT TO_ SINT SINT If input is 0~127, normal conversion. Otherwise an error occurs.
USINT TO_INT INT Converts USINT into INT type normally.

USINT TO DINT DINT Converts USINT into DINT type normally.

USINT_TO_LINT LINT Converts USINT into LINT type normally.

USINT TO UINT UINT Converts USINT into UINT type normally.

USINT TO UDINT [UDINT Converts USINT into UDINT type normally.

USINT TO_ ULINT ULINT Converts USINT into ULINT type normally.

USINT TO BOOL BOOL Takes the lower 1 bit and converts into BOOL type.

USINT TO BYTE BYTE Converts into BYTE type without changing the internal bit array.

USINT TO WORD | WORD Converts into WORD type filling the upper bits with 0.

USINT TO DWORD| DWORD | Converts into DWORD type filling the upper bits with 0.

USINT TO LWORD | LWORD | Converts into LWORD type filling the upper bits with O.

USINT TO BCD BCD If input is 0 ~ 99, normal conversion. Otherwise an error occurs.

USINT TO REAL | REAL Converts USINT into REAL type.

USINT TO LREAL | LREAL Converts USINT into LREAL type.

W Error

If a conversion error occurs, _ERR and _LER flags will be set. If error occurs, it takes as many lower bits as
a bit number of output type and produces an output without changing its internal bit array.

8-101

8. Basic Function/Function Block Library

B Program Example

LD IL
LD %MO
M0 USINT_TO_SINT
| |—{ew =m0 JMPN LL
LD IN_VAL
IN WAL JIN1 OUT|= 0UT_vaL USINT TO SINT
ST OUT_VAL
LL:

(1) If the input condition (%MO) is ON, function ULINT_TO_SINT will be executed.
(2) If input variable IN_VAL (USINT) = 123, output variable OUT_VAL (SINT) = 123.

Input (IN1): IN_VAL (USINT) = 123 (16#7B)

Lol af 1] 1] 1] of of 1]

\V (ULINT_TO_SINT)

Output (OUT): OUT_VAL (SINT) =123 (16#7B) [o] 1] 1] 1] 1] o { 0|

8-102

8. Basic Function/Function Block Library

WDT_RST

Initialize Watch_Dog timer

Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application | @ @ @ @ © @ | @

Function

Description

BOOL
BOOL

Input EN: executes the function in case of 1
REQ: requires to initialize watchdog timer

Output ENO: without an error, it will be 1
OUT: After Watch_Dog timer initialization,
output will be 1.

W Function

D> It resets Watch-Dog Timer among the programs.

> Available to use in case that scan time exceeds Watch-Dog Time set by the condition in the program.

D> If scan time exceeds the scan Watch_Dog Time, please, change the scan time with the setting value of
scan Watch_Dog Timer in the ‘Basic Parameters’ of GMWIN.

[> Care must be taken so that either the time from 0 line of program to WDT_RST function T1 or the time

from WDT_RST function to the time by the end of program T2 does not exceed the setting value of scan
Watch_Dog Timer.

Program starting

WDT-RST Program Ending

A

T1

A

Y

T2

WDT_RST function is available to use several times during 1 scan.

8-103

8. Basic Function/Function Block Library

B Program Example
This is the program that the time to execute the program becomes 300ms according to the transition
condition in the program of which scan Watch_Dog timer is set as 200ms.

LD IL

Program that has 300MS scan time. Program that has 300MS scan time.

| | |

Program that has 150MS scan time.

Program that has 150MS scan time.

M0 WDT_EST LD %MO
l | EN ENO |] JMPN EG
LD 1
1 JrE0 O0UT|= WDT_OK
WDT_RST
ST WDT_OK
Program that has 150MS scan time. FG:

Program that has 150MS scan time.

(2) If the transition condition (%MO) is ON, function WDT-RST will be executed.
(2) If WDT-RST function is executed, it is available to set the program that extends the scan time to 300ms
according to the transition condition of program within the scan Watch_Dog Time (200mg).

8-104

8. Basic Function/Function Block Library

WORD_TO_**

WORD type conversion

Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application | @ @ @ @ © @ | @

Function Description
o Input EN: executes the function in case of 1
WORD_TO_ IN: Bit string to be converted (16 bit)
BOOL =HEN ENg- BOOL
- = kkk
WORD IN ouT Output ENO: without an error, it will be 1
OUT: type-converted data
W Function

It converts the IN type and outputs it as OUT.

Function Output type Description
WORD TO_SINT SINT Takes the lower 8 bits and converts into SINT type.
WORD TO INT INT Converts into INT type without changing the internal bit array.
WORD _TO_DINT DINT Converts into DINT type filling the upper bits with 0.
WORD _TO_LINT LINT Converts into LINT type filling the upper bits with 0.
WORD TO USINT USINT Takes the lower 8 bits and converts into SINT type.
WORD TO UINT UINT Converts into INT type without changing the internal bit array.
WORD TO UDINT UDINT Converts into DINT type filling the upper bits with 0.
WORD TO ULINT ULINT Converts into LINT type filling the upper bits with O.
WORD TO BOOL BOOL Takes the lower 1 bit and converts into BOOL type.
WORD TO BYTE BYTE Takes the lower 8 bits and converts into SINT type.
WORD TO DWORD | DWORD Converts into DWORD type filling the upper bits with 0.
WORD TO LWORD LWORD Converts into LWORD type filling the upper bits with O.
WORD TO DATE DATE Converts into DATE type without changing the internal bit array.
WORD TO_STRING | STRING Converts WORD into STRING type.
W Program Example
5 LD IL
LD %MO
=M Um
L1 p—fer Emo JMPN PO
LD IN_VAL
IN "fal. J4IN1 0OT 01T _ AL WORD_TO_INT
ST OUT_VAL
PO:

(2) If the input condition (%MO) is ON, function WORD-TO-INT will be executed.
(2) If input variable IN_VAL (WORD) = 2#0001_0001_0001_0001, output variable OUT_VAL (INT) = 4096 +

256 + 16 + 1 = 4,369.

Input (IN1): IN_VAL (WORD) = 16#1111

[oJoJof1fofofo]1] ofofof1]o0]ofo]1
(WORD-TO-INT)

Output(OUT): OUT_VAL(INT) = 4,369 (16#1111) [0 |o|o|1][o] o] o] 1] o] o] o] 1] o] o] o] 1]

8-105

8. Basic Function/Function Block Library

XOR

Exclusive OR

Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application | @ @ @ @ © @ | @

Function Description

Input EN: executes the function in case of 1

IN1: the value to be XOR
XOR IN2: the value to be XOR
BOOL =EN ENQ= BOOL Input variable number can be extended up to 8.
ANY_BIT= IN1 OU ANY_BIT
ANY_BIT = IN2 Output ENO: without an error, it will be 1.
OUT: the result of XOR operation

IN1, IN2, OUT should be all the same data type.

B Function
Do XOR operation for IN1 and IN2 per bit and produces OUT.

IN1 1111... 0000

XOR

IN2 1010..... 1010

OUT o0101..... 1010
v Program Example

LD IL
: LD %MO
MO X0OR
_I I—EH ENOj o JMPN ZZ
LD %MB10
MWEL0 JIN1 OUT|- 2QB0.0.0 : XOR IN1:= CURRENT RESULT
: IN2:= ABC
AR - INZ

ST %QB0.0.0
Z7:

(2) If the transition condition (%MO) is ON, function XOR will be executed.
(2) If input variable %MB10 = 11001100, ABC = 11110000, the result of XOR operation for two inputs will

be %QB0.0.0 = 00111100.

Input (IN1): %MB10 (BYTE) = 16#CC [1] 1] o] o] 1] 1] o] o]
(XOR)
(IN2): ABC (BYTE) = 16#F0 ([1 d d q o
V%

Output (OUT): %QB0.0.0 (BYTE) = 16#3C |0| O| 1| 1| 1| 1| d 0|

8-106

8. Basic Function/Function Block Library

8.2 Application Function Library

This chapter describes application function library (MASTER-K and others).

8-107

8. Basic Function/Function Block Library

ARY_ASC _TO_BCD

BYTE_ARY — IN2

In/Out

IN2: BCD Array output

ENO: without an error, it will be 1
OUT: Dummy output

Converts ASCI| array into BCD array Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application| @ @ @ | @ @ @ | ©®
Function Description
Input
ARY_ASC_T EN: executes the function in case of 1
0_BCD IN1: ASCII Array input
BOOL — EN ENO p—BOOL Outout
WORD_ARY = N1 OUT = BOOL o

B Function

It converts a word array input (ASCII data) to a byte array output (BCD data).

IN1[0]

IN1[1]

IN1[n]

W Error

B15 B12B11 B8 B7 B4B3 BO
3 0 3 liq 1’
3 3 9
3 3 3 4

IN2[0]

IN2[1]

IN2([n]

B7 B4 B3 BO
0 1
9
3 4

> If the number of each input array is different, there’s no change in IN2 data, and _ERR and _LER flags are set.
> If the elements of IN1 array are not between 0 and 9 (hexadecimal), its responding elements of IN2 array are

16#00 (while other elements of IN1 are normally converted), and _ERR and _LER flags are set.

B Program example

5
—]

I

I ASC_ARY

I BCD_ARY

LD

ARY_ASC_T)
0 0_BCD
e NG

NT - OUTp= DUMMY

-~

N2

(2) If the transition condition (%MO) is on, ARY_ASC_TO_BCD function is executed.
(2) If the input ASC_ARY data is:

ASC_ARY[0] 3031H
ASC_ARY[1] 3839H
ASC_ARY/[2] 3334H

8-108

8. Basic Function/Function Block Library

In/Out BCD ARY data is as follows:

BYTE_ARY][0] 01H
BYTE_ARY[1] 89H
BYTE_ARY/[2] 34H

8-109

8. Basic Function/Function Block Library

ARY_ASC _TO BYTE

In/Out

IN2: BYTE Array Output

Converts ASCI| array into BYTE array Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application| @ @ @ @ @ @ | ©®
Function Description
Input
ARY_ASC_T EN: executes the function in case of 1
0_BYTE IN1: ASCII Array input
BOOL — EN ENO —BOOL
Output
gg?g—ﬁgi _ Illl:ll; OUT = B0oL ENO: without an error, it will be 1
- OUT: Dummy Output

B Function

It converts a word array input (ASCII data) to a byte array output (hexadecimal).

B15 BI12B11 B8 B7 B4 B3 BO B7 B4 B3 BO
IN1[O]| 3 4 4 1:d ‘A’ IN2[O] [4 A
INT[1] [3 3 4 6 |:'> IN2[1]1 [3 F
INI[n] [3 2 3 9 IN2[n] | 2 9

W Error

> If the number of each input array is different, there’s no change in IN2 data, and _ERR and _LER flags are set.
> If the elements of IN1 array are not between 0 and F (hexadecimal), its responding elements of IN2 array are 0

(while other elements of IN1 are normally converted), and _ERR and _LER flags are set.

B Program example

(2) If Input ASC_ARY is as below:

HMO 0_BYTE
—EN EN

I ASC_ARY

F BYTE_ARY { /42

ARY_ASC_Tj

N1 OUTR= DUMMY

LD

ASC_ARYJ[0] 3441H
ASC_ARY[1] 3346H
ASC_ARY|[2] 3239H

(1) If the transition condition is (%Mo) is on, ARY_ASC_TO_BYTE function is executed.

8-110

8. Basic Function/Function Block Library

In/Out BYTE ARY data is as follows:

BYTE_ARY][0] 4AH
BYTE_ARY[1] 3FH
BYTE_ARY/[2] 29H

8-111

8. Basic Function/Function Block Library

ARY_AVE ***
Finds an average of an array Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ @ @ @ © © | @
Function Description
Input
ARY_AVE EN: executes the function in case of 1
BOOL ENO b= BooL IN: data array for average
ANY NUM. ARY = EN B INDX: starting point to average in an array
- _INT : H:IIDX OUT 1= ANY_NUM LEN: number of array elements for average
INT =1 LEN Output
ENO: without an error, it will be 1
OUT: average of an array
B Function

> ARY_AVE_** function finds an average for a specified length of an array .

> Input and output array is the same type.

> If LEN is a minus value, it finds an average between INDX (Array index) and ‘INDX — |LEN].
> Its output is rounded off.

Function Output type Description
ARY_ AVE SINT SINT Finds an average for SINT value (decimal is rounded off)
ARY AVE INT INT Finds an average for INT value (decimal is rounded off)
ARY_ AVE DINT DINT Finds an average for DINT value (decimal is rounded off)
ARY AVE LINT LINT Finds an average for LINT value (decimal is rounded off)
ARY AVE USINT USINT Finds an average for USINT value (decimal is rounded off)
ARY_ AVE UINT UINT Finds an average for UINT value (decimal is rounded off)
ARY AVE UDINT UDINT Finds an average for UDINT value (decimal is rounded off)
ARY AVE ULINT ULINT Finds an average for ULINT value (decimal is rounded off)
ARY_AVE_REAL REAL REAL.
ARY_AVE_LREAL LREAL LREAL.

W Error
> If it is designated beyond the array range, ERR and _LER flags are set.
> If an error occurs, the output is 0.

% An error occurs when:
INDX < 0 or INDX > max. number of IN
INDX + LEN > max. number of IN

8-112

8. Basic Function/Function Block Library

B Program example

LD
ARY _AVE_ |
%11.1.6 WT
— EN ENC=
FOIN_ARY 1IN OUTP= RESULT
3 MO
B LEN
{“ 11245
1 23454
I 2764
3l psez [
IN ARY |,
= 18764
9563+ 18764 + 7765+ 29215 + 21004 +10048
10-1WT < S T 6 =16044.83 =16045
array
§ 20215
21004
8l 10043 |
kg 12081

(2) If input transition condition (%I1.1.6) is on, ARY_AVE_INT function is executed.
(2) If an array is as the above, it finds an average between INDX 3 and 9.
(3) The output value is rounded off.

8-113

8. Basic Function/Function Block Library

ARY_BCD_TO_ASC

In/Out
IN2: ASCII array output

Converts BCD array into ASCI| array Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ @ @ ©® © @ O
Function Description
Input
ARY_BCD_T EN: executes the function in case of 1
0_ASC IN1: BCD array input
BOOL — EN ENO —=BOOL Output
BYTE_ARY — IN1 OUT = B0OOL ENO: without an error, it will be 1
WORD_ARY — IN2 OUT: dummy output

B Function

It converts a byte array input (BCD) to a word array (ASCII).

B7 B4 B3 BO

INL[0] [0 1

IN1[1]]| § 9 |::> IN2[1] | 3 8 3 9

INI[n]| 4 5

W Error

B15 B12B11 B8 B7 B4 B3 BO

IN2[0] 3 0 3 1“1

IN2[n] 3 4 3 5

> If the number of each input array is different, there's no change in IN2 data, and _ERR and _LER flags are set.
> If the elements of IN1 array are not between 0 and 9 (hexadecimal), its responding elements of IN2 array are
16#3030 ("00") (while other elements of IN1 are normally converted), and ERR and LER flags are set.

W Program example

LD

ARY_BCD_Tj
0_ASC

MO L
F— BN ENOe

4
—

F BCD_ARY { INT OUTE= DUMMY

F ASC_ARY (/N2

'(1) If the transition condition (%MO0) is on, ARY_BCD_TO_ASC function is executed.

(2) If the input BCD_ARY is as below:

BYTE_ARY/[0]

01H

BYTE_ARY[1]

89H

BYTE_ARY/[2]

45H

8-114

8. Basic Function/Function Block Library

The Infout ASC ARY is as follows:

ASC_ARY[0] 3031H
ASC_ARY[1] 3839H
ASC_ARY[2] 3435H

8-115

8. Basic Function/Function Block Library

ARY_BYTE_TO_ASC

In/Out
IN2: ASCII Array Output

Converts BYTE array into ASCII array Mode | GMR | GM1|GM2 |GM3 | GM4 | GM6 | GM7
Application @ @ @ @ @ @ | @
Function Description
Input
EN: executes the function in case of 1
ARY_BYTE_ IN1: BYTE array input
TO_ASC
BOOL — EN ENO BOOL Output o
BYTE_ARY — N1 oUT F BooL ENO: without an error, it will be 1
WORD_ARY = IN2 OUT: Dummy output

B Function

It converts a byte array input (HEX) to a word array (ASCII).

B7

B4

B3

BO

IN1[0] 4 A
IN1[1] 3 F
IN1[n] 2 9

W Error

—>

B15 B12Bl11 B8 B7 B4 B3 BO
IN2[0] 3 4 4 1 ‘A’
IN2[1] 3 3 4 6

IN2[n] 3 2 3 9

If the number of each input array is different, there's no change in IN2 data, and _ERR and _LER flags are

set.

B Program example

—EN

F BYTE_ARY

N1

b ASC_ARY (/M2

ARY_BYTE
SO TO_ASC

LD

ENCl=

CUTE= DU

(2) If the transition condition (%MO0) is on, ARY_BYTE_TO_ASC function is executed.
(2) If the input BYTE_ARY is as below:

BYTE_ARYI[0] 4AH
BYTE_ARY[1] 3FH
BYTE_ARY[2] 29H

8-116

8. Basic Function/Function Block Library

The output ASC_ARY is as follows:

ASC_ARY[0] 3441H
ASC_ARY[1] 3346H
ASC_ARY[2] 3239H

8-117

8. Basic Function/Function Block Library

ARY _CMP_***
Array comparison Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ @® @ @ ©® @ @
Function Description
Input
EN: executes the function in case of 1
ARY_CMP IN1: first array to compare
BOOL -~ EN ENO —BOOL IN1_INDX : starting point in 1% array for comparison
ANY_ARY — N1 OUT [~ BOOL IN2: second array to compare
INT = IN1_INDX IN2_INDX : starting point in 2 array for comparison
ANY_ARY — N2 LEN: number of elements to compare
INT — IN2_INDX
ENO: without an error, it will be 1
OUT: if two arrays are equal, it will be 1
B Function

> It compare two arrays whether they have the same value.
> If LEN is minus, it compare two arrays between IN*_INDX (Array INDX) and “Array INDX — |LEN]".

Function Inptj;paerray Description
ARY_CMP_BOOL BOOL Compares two BOOL Arrays.
ARY_CMP_BYTE BYTE Compares two BYTE Arrays.
ARY_CMP_WORD WORD Compares two WORD Arrays.
ARY_CMP_DWORD DWORD Compares two DWORD Arrays.
ARY_CMP_LWORD LWORD Compares two LWORD Arrays.
ARY_CMP_SINT SINT Compares two SINT Arrays.
ARY_CMP_INT INT Compares two INT Arrays.
ARY_CMP_DINT DINT Compares two DINT Arrays.
ARY_CMP_LINT LINT Compares two LINT Arrays.
ARY_CMP_USINT USINT Compares two USINT Arrays.
ARY_CMP_UINT UINT Compares two UINT Arrays.
ARY_CMP_UDINT UDINT Compares two UDINT Arrays.
ARY_CMP_ULINT ULINT Compares two ULINT Arrays.
ARY_CMP_REAL REAL Compares two REAL Arrays.
ARY_CMP_LREAL LREAL Compares two LREAL Arrays.
ARY_CMP_TIME TIME Compares two TIME Arrays.
ARY_CMP_DATE DATE Compares two DATE Arrays.
ARY_CMP_TOD TOD Compares two TOD Arrays.
ARY_CMP_DT DT Compares two DT Arrays.

8-118

8. Basic Function/Function Block Library

W Error
> If it is designated beyond the array range, ERR and LER flags are set.

% An error occurs when:
IN1_INDX < 0 or IN1_INDX > max. number of IN1
IN2_INDX < 0 or IN2_INDX > max. number of IN2
IN1_INDX + LEN > max. number of IN1
IN2_INDX + LEN > max. number of IN2

H Program example

LD
ARY_CMP_Ty
SO IME
—EN ENOF
w1.3.2
EIN_ARYT { INT QU e e
10 INT_
[NCX
b IN_ARYZ { IN2
0 [N2_
[N
10 LEN

(2) If the input transition condition (%MO) is on, ARY_CMP_TIME function is executed.
(2) When IN_ARY1 is a time array with 100 elements and IN_ARY?2 is a time array with 10 elements, if the
elements from 11" to 20" of IN_ARY1 and the elements of IN_ARY 2 are equal, the output %Q1.3.2 is on.

8-119

8. Basic Function/Function Block Library

ARY FLL ***
Filling an array with data Mode | GMR | GM1|GM2 |GM3 | GM4 | GM6 | GM7
Application @ @ | @® @® @ @ | @
Function Description
Input
ARY_FLL_#*** EN: executes the function in case of 1
BOOL — EN ENO f— BOOL DATA: the data to fill an array
ANY —{ DATA oUT — BOOL INDX: starting point of an array to be filled
ANY ARY = IN LEN: number of array elements to be filled
INT = INDX
INT = LEN Output
ENO: without an error, it will be 1
OUT: without an error, it will be 1
In/Out
IN: an array to be filled
W Function

> Itfills an array with the input data.

> If LEN is minus, it fills an array from INDX to “INDX — |LEN]".

Function In/Out Array type Description
ARY FLL BOOL BOOL Fills a BOOL Array with the input data.
ARY FLL BYTE BYTE Fills a BYTE Array with the input data.
ARY FLL WORD WORD Fills a WORD Array with the input data.
ARY FLL DWORD DWORD Fills a DWORD Array with the input data.
ARY FLL LWORD LWORD Fills a LWORD Array with the input data.
ARY FLL SINT SINT Fills a SINT Array with the input data.
ARY FLL INT INT Fills a INT Array with the input data.
ARY FLL DINT DINT Fills a DINT Array with the input data.
J,ARY FLL LINT LINT Fills a LINT Array with the input data.
ARY FLL USINT USINT Fills a USINT Array with the input data.
ARY FLL UINT UINT Fills a UINT Array with the input data.
ARY FLL UDINT UDINT Fills a UDINT Array with the input data.
ARY FLL ULINT ULINT Fills a ULINT Array with the input data.
ARY FLL REAL REAL Fills a REAL Array with the input data.
ARY FLL LREAL LREAL Fills a LREAL Array with the input data.
ARY FLL TIME TIME Fills a TIME Array with the input data.
ARY FLL DATE DATE Fills a DATE Array with the input data.
ARY FLL TOD TOD Fills a TOD Array with the input data.
ARY FLL DT DT Fills a DT Array with the input data.

8-120

8. Basic Function/Function Block Library

W Error

> If it is designated beyond the array range, ERR and LER flags are set
> If an error occurs, there’s no change in arrays and OUT is off.

¥ An error occurs when:

INDX < 0 or INDX > max. element number of IN
INDX + LEN > max. element number of IN

B Program example

LD
ARY_FLL_ |
MO MT
— EN ENC=
34 DATA OUTE
b IN_ARY { /N
2 INDX
4 LEN
_ERR _LER %3315
I { | {
IN_ARY
e
Ly 1 7 3 ' 3 ‘ 7 8 s
3 31 34 34 34 34 45 Q8 23 32

Fillz 4 elements staring from IND,

(1) If input condition (%M0) is on, ARY_FLL_INT function is executed.
(2) It fills 4 elements of IN_ARY starting from INDX with 34.

(3) IFLEN is 9, it is beyond the array range and an error occurs; _ERR and _LER flags are set and the output
(%Q1.13.15) is on.

8-121

8. Basic Function/Function Block Library

ARY MOVE
Array move Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ @® @ ©® © @ @
g al o g
Input
EN : executes the function in case of 1
MOVE_NUM: array number to move
ARY_MOVE IN1: array variable to move (STRING type, unavailable)
BOOL — EN ENO = BOOL IN2: array variable to be moved

INT — MOVE_NUM OUT [~ BOOL
ANY_ARRAY — IN1
ANY_ARRAY — IN2

(STRING type, unavailable)

IN1_INDX: starting pointer of array to move
IN2_INDX: starting pointer of array to be moved

INT =1 IN1_INDX Output
= IN2_IND
INT IN2_INDX ENO: without an error, it will be 1
OUT: without an error, it will be 1
B Function

> If ENis 1, it moves IN1 data to IN2.

> It copies MOVE_NUM elements of IN1 (from IN1_INDX) and pastes it in IN2 (from IN2_INDX).
> IN1 and IN2 are the same data type (The number of each array can be different).

> The data size is as follows:

Data size Variable type
1 Bit BOOL
8 Bit BYTE, SINT, USINT
16 Bit WORD / INT / UINT / DATE
32 Bit DWORD / DINT / UDINT / TIME / TOD
64 Bit DT

W Error

> An error occurs when IN1 and IN2 data size are different.

> An error occurs when:

1) the array number of IN1 Array < (IN1_INDX + MOVE_NUM)
2) the array number of IN2 Array < (IN2_INDX + MOVE_NUM)
Then ARY_MOVE function is not executed, OUT is 0, ENO is off and ERR and _LER flags are set.

8-122

8. Basic Function/Function Block Library

B Program example

__ o
fh ARY_MOVE
Row 0 —] ——FEN ENO-
Row 1 5 -MVE OUT- DOMNE
_HUM
Fow 2 ARY_SRC - M1
Row 3 ARY_DES - [N2
Fow 4 B - IMI_
[HO
Fow & 10 - IN2_
[MD
Fow &
Variable name Variable type Array number
ARY_SRC INT 10
ARY_DES WORD 15

(2) If the transition condition (A) is on, ARY_MOVE function is executed.

(2) It moves 5 elements from ARY_SRC[5] to ARY_DESJ[10].
Now the data type of ARY_DES is WORD, it's hexadecimal.

Before After
ARY_SRCJ0] 0 ARY DESJ0] 16#0 | ARY_SRCI(] 0 ARY DESJ0] 16#0
ARY_SRC[1] 11 ARY_DES[1] 16#1 | ARY_SRC[]1] 11 ARY _DES[1] 16#1
ARY_ SRC[2] 22 ARY DES[2] 16#2 | ARY _SRC[2] 22 ARY DESJ[2] 16#2
ARY_SRCJ3] 33 ARY_DESJ3] 16#3 | ARY_SRC[3] 33 ARY_DESJ3] 16#3
ARY_SRC[4] 44 ARY_DES[4] 16#4 | ARY_SRC[4] 44 ARY_DES[4] 16#4
ARY_SRCJ[5] 55 ARY DESI5] 16#5 | ARY _SRC[5] 55 ARY DESI5] 16#5
ARY_SRCJ[6] 66 ARY_DES[6] 16#6 | ARY_SRC[6] 66 ARY_DESI6] 16#6
ARY_ SRCJ[7] 77 ARY DESJ[7] 16#7 | ARY SRC[7] 77 ARY DESJ[7] 16#7
ARY_SRCJ[8] 88 ARY _DESJ8] 16#8 | ARY_SRC[g] 88 ARY _DESI8] 16#8
ARY_ SRCJ[9] 99 ARY_ DES[9] 16#9 | ARY _SRC[9] 99 ARY_ DESJ[9] 16#9
ARY DESJ[10] | 16#A ARY DESJ[10] | 16#37
ARY_DES[11] | 16#B ARY_DESJ[11] | 16#42
ARY DES[12] | 16#C ARY DES[12] | 16#4D
ARY DES[13] | 16#D ARY _DESJ[13] | 16#58
ARY DES[14] | 16#E ARY DES[14] | 16#63

8-123

8. Basic Function/Function Block Library

ARY ROT C ***
Bit rotation of array with carry Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application| @ @ @ | @ @ @ | ©®
Function Description
Input
ARY_ROT_C_*+* EN: executes the function in case of 1
STRT: starting bit to rotate
ANY BITBA(\)%] ggc %’[ﬁ :Eggt END: ending bit to rotate
- UINT - sTRT N: number to rotate
ltlellle : END Output
BOOL ARJ _ ’(\JIYO ENO: without an error, it will be 1
- OUT: without an error, it will be 1
In/Out
SRC: Source Array to rotate
CYO: output Carry bit Array
B Function

> It rotates as many bits of array elements as they're specified.

> Setting:

- Scope: it sets a rotation scope with STRT and END.

- Rotation direction and time: it rotates N times from STRT to END.
- Output: the result is stored in ANY_BIT_ARY and a bit array data from END to STRT is written at CYO.

= [2]
5 d-ward array a N de
MIE b 4 LIE
s i i Jofafefafafafifafofifi]1 0 [
se[T[T]T [a[o[o[T[T{I|1[T]o]a]a]1]] [0 |cwon Before
srep (1o fo]ofofofififi]ojojolofaf1 0 [ewog
srepl|L|ofofo]ofojofjolifjo]o]jofojofalo 0 [
1 hit rotation " !
@ PYel'de
U R I R N E N F R EE RN RN AR N ! =0
e[11 ofofo i i a i oa ool]a 1 [ewom After
e (1 (1 jojojofjojlfijijojogagoiojolo [0 |ewop
sep]]l jojojojojojojijojojoopeiojofl =
Function In/out Array type Description
ARY ROT C BYTE BYTE
ARY_ROT_C WORD WORD It rotates elements of an array as many bits as they're
ARY ROT C_DWORD DWORD specified.
ARY_ROT _C LWORD LWORD

8-124

8. Basic Function/Function Block Library

W Error
> If the number of SRC and CYO Arrays are different, ERR and LER flags are set.
> If STRT and END are out of bit range of SRC, an error occurs.
> When an error occurs, there’s no change in SRC and CYO.

B Program example

LD

ARY_ROT
M2 _WORD
— BN ENCG

2 N OUTp= QUT

I SRC_ARY SR
13 STRT
4 END
Yo (cyo

(2) If the input condition (%M2) is on, ARY_ROT_C_WORD function is executed.
(2) It rotates 2 times the bit (from 4 to 13 bit) arrays of SRC_ARY from STRT to END.
(3) The result is stored at SRC_ARY and the carry bit arrays are written in CYO BOOL Array.

L]

=1
a d-word array & VYo
(Before) MiE 13 4 LiE
SRC_ARY : 16#F7F7 SANARDARRNABERNTRRE w:[0] m
16#E3E3 v ofofofefe et fofo o]t 1[0] M Before
16#C1C1 (11 fofofofofafiaufofo]o]olot (0] m
16#8080 s[1]ojofafofofofofijafolololololo (0] B
%er) ' 2 2-hit rotation R .
SRC_ARY : 16#FDF7 @ * vo
16#E8SF3
16#C071 SARARAADRARARRCRRAR nll] m
16#8020 sl o jofofoafafafifaloli]t L] m o After
CYO . 2#1100 a1 fofofolofofofofafifi]ololoft (0] m
s |ofofofooafofofofifololofala (0] R

8-125

8. Basic Function/Function Block Library

ARY SCH ***
Array search Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ @ @ ©® © @ O
Function Description
Input
EN: executes the function in case of 1
BOOL — N ARY_SCH ENO k= BooL DATA: data to search
ANY = DATA ouT | BooL IN: array to search
ANY—lAm(: lPN Output
INT — ENO: without an error, it will be 1
N OUT: if it finds, it will be 1
In/Out
P: first position of an object array
N: total number of array elements equal to an
object
B Function

It finds an equal value of input in arrays and produces its first position and total number. When it finds at least one
which is equal to an object in arrays, OUT is 1.

Function Input Array type Description
ARY SCH BOOL BOOL Search in BOOL Array.
ARY SCH BYTE BYTE Search in BYTE Array.
ARY SCH WORD WORD Search in WORD Array.
ARY_SCH DWORD DWORD Search in DWORD Array.
ARY_SCH_LWORD LWORD Search in LWORD Array.
ARY SCH SINT SINT Search in SINT Array.
ARY SCH_INT INT Search in INT Array.
ARY SCH DINT DINT Search in DINT Array.
ARY SCH LINT LINT Search in LINT Array.
ARY_SCH_USINT USINT Search in USINT Array.
ARY SCH UINT UINT Search in UINT Array.
ARY_SCH_UDINT UDINT Search in UDINT Array.
ARY_SCH_ULINT ULINT Search in ULINT Array.
ARY SCH REAL REAL Search in REAL Array.
ARY _SCH LREAL LREAL Search in LREAL Array.
ARY SCH TIME TIME Search in TIME Array.
ARY SCH DATE DATE Search in DATE Array.
ARY SCH TOD TOD Search in TOD Array.
ARY SCH DT DT Search in DT Array.

8-126

8. Basic Function/Function Block Library

B Program example

... o
ARY_SCH_|
a1 YTE
— EN BN
%1.3.0
16422 {DATA OUT] —
FOIN_ARY 1IN
POS 1=
HUM N
IN_ARY 10-hbyte array
e
ry 1 2 3 + 3 i 7 & P
1lh | 22h | 33h | 44k | 22h | 66k | 77h | 22k | 88h | 9%h

x A x

(2) If the input condition (%M1) is on, ARY_SCH_BYTE function is executed.
(2) When IN_ARY is a 10-byte array, if you search for “22h” in this array, three bytes are found as the above.

(3) The resultis: 1) 1, the first position of an array, is stored at POS; 2) 3, the total number, is stored at NUM.
The total number is 3, so the output %Q1.3.0 is on.

8-127

8. Basic Function/Function Block Library

ARY_SFT _C_***

Array bit shift left with carry Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ @® @ ©® © @ @
Function Description

ARY_SFT_C_#**

Input

EN: executes the function in case of 1
CYI: Input Carry bit Array

BOOL — EN ENO |~ BOOL STRT: starting bit to shift
BOOL_ARY — (Y1 OUT BOOL END: ending bit to shift
ANY_BIT_ARY = SRC N: bit number to shift
UINT = STRT
UINT = END Output o
UINT = N ENO: without an error, it will be 1
UINT = cY0 OUT: without an error, it will be 1
In/Out
SRC: Source Array to shift
CYO: Output Carry bit Array after shift
B Function

> It shifts as many bits of array elements as they're specified.

> Setting:

- Scope: it sets a shifting scope with STRT and END.
- Shifting direction and time: it shifts N times from STRT to END.
- Input data: it fills the empty bits with input data (CY1).
- Output: the result is stored in ANY_BIT_ARY and an overflowing bit array data from END is written

at CYO.
i =
OV a d-word array % SV
MiE 13 2 LiE
cap[1] s i i ifo i Ta e fala i s 0 | ewop
cwp)| 0] =seem{g 1o fofofoafalae {1 {of{e{of]1 0 |ewon Before
euap| 0| sew (1|]ofoo]o]oli]illololalolo]s 0 | e
eupl| 1| #er |1 |o]oo]o]o]o]oli]o]olo]a][ofo]o 0]ewop
1-hit shift R
kY
CYI oY
eap1] sem |t 2 afafoeaafa[a[a]a]oft]s 1]ewm
cum (| sem|t] ol fofofo]ififa{ifa]ofoft]t 0] ewm Af
e I] I I 1 £ I [[1 E D S E D [0 e ter
eup (1| sep [0 fofofofofo]o][afoJo]ofo]o 0] ewm
l.\ !‘.
Function In/Out Array type Description
ARY SFT C BYTE BYTE
ARY SFT C WORD WORD . : , .
ARY SFT C_DWORD DWORD It shifts as many bits of array elements as they're specified.
ARY_SFT C LWORD LWORD

8-128

8. Basic Function/Function Block Library

W Error
> If the number of CYI, SRC and CYO Array are different, ERR and LER flags are set.
> An error occurs if STRT and END are out of SRC range.
> When an error occurs, there’s no change in SRC and CYO.

B Program example

LD

ARY_SET_
P WORD
&

m
=
1

CYl CYl QU= ouT

P SHC_ARY (SRE
13 STRT
4 END
5) M
CYo (o

(2) If input condition (%M?2) is on, ARY_SFT_C_WORD function is executed.

(2) It shifts a bit array (from 4 to 13 bit) of SRC 3 times from STRT to END.

(3) The bit array after shifting is filled with CYI (2#0011).

(4) It produces its shifting result at SRC_ARY and a carry bit array is written at CYO.

Sk =
(Before) H d-word array E]
CYI: 240011 L e 35 4 Yo
SRC_ARY: 16#F7F7 w{n| w[t1JaJ1Jo]a]i]1 o:[10]
16#E3E3 (0| u{1[i[1]ofofoli]d (0] Before
16#C1C1 z[1| z[1|t]ofo]ofo]a]t z:(0]
16#8080 x[1] =[1[ofo[ofo[ofo]o w0
(N): 3 d-hit shifting
(Aften et [| oo
SRC_ARY: 16#C6F7 o[o] o[i[iJofJofofaafoeaafafoli]1]t 0:[1]
16#C473 u[n| u[iiofofofifofofoli]iifofof1]1 11| After
16#F831 x[1] e{iifalififolofofoofififojofolt zl1]
16#B810 [s[jolif1i]1fo]ofo]ofo]o]1]o]o]a]o 5:]0]
CYO: 241110 L\ A

8-129

8. Basic Function/Function Block Library

ARY_SWAP_***

Upper/lower elements swapping of an array Mode | GMR | GM1 |GM2 |GM3 | GM4

GM6

GM7

Application @ @ @ @ | @

Function

Description

ANY_BIT_ARY —

ARY_SWAP_s#xx

BOOL — EN ENO —~BOOL

IN1 OUT =B00L
ANY_BIT_ARY = IN2

Input
EN: executes the function in case of 1
IN1: array input

Output
ENO: without an error, it will be 1
OUT: Dummy output

In/Out
IN2: array output after swapping

B Function

It swaps upper/lower elements after dividing an array.

Function Input type Description
ARY_SWAP_BYTE BYTE Swaps upper/lower nibble of byte elements.
ARY_ _SWAP WORD WORD Swaps upper/lower byte of WORD elements.

ARY_SWAP_DWORD DWORD

Swaps upper/lower WORD of DWORD elements.

ARY_SWAP_LWORD LWORD

Swaps upper/lower DWORD of LWORD elements.

W Error

_ERR and _LER flags are set if two arrays are different; there’s no change in an IN2 array.

B Program exampl

e

LD

ARY_SWHAP
M0 WORD |
—En o Enop

FIM_ARY

NT - OUTR= DUMMY

I OUT_ARY {/42

(2) If the transition condition (%MO0) is on, ARY_SWAP_WORD function is executed.
(2) If IN_ARY data is as below:

IN_ARY[0] 12ABH
IN_ARY[1] 23BCH
IN_ARY/[2] 34CDH

8-130

8. Basic Function/Function Block Library

OUT_ARY data is as follows:

OUT_ARYJ[0] AB12H
OUT_ARY[1] BC23H
OUT_ARY[2] CD34H

8-131

8. Basic Function/Function Block Library

ASC TO BCD
Converts ASCII to BCD Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ @ @ ©® © @ O
Function Description
Input
EN: executes the function in case of 1.
ASC_TO_BCD IN: ASCII input
BOOL — EN ENO f~BOOL
WORD = INT1 OUT —BYTE
Output

ENO: without an error, it will be 1
OUT: BCD output

B Function

It converts two ASCII data into two-digit BCD (Binary Coded Decimal) data.

H Error

If IN is not hexadecimal number between 0 ~ 9, the output is 16#00 and _ERR and _LER flags will be set.

B Program example

(2) If the transition condition (%MO) is on, ASC_TO_BCD function is executed.
(2) If input variable ASCII_VAL (WORD) = 16#3732 = “72”, output variable BCD_VAL (BYTE) = 16#72.

LD
ASC_TO_B
0 D
BN EN
FASCHI VALY IN - OUTR= BCD_VAL

8-132

8. Basic Function/Function Block Library

ASC_TO_BYTE
Converts ASCI | to BYTE data Mode! | GMR [GM1 |GM2 |GM3 | G4 | GM6 | GM7

Application @ @ ©® ©® © @ @

Function Description
Input
ASC_TO_BYTE EN :executes the function in case of 1.
B00L - en ENO |- B00L IN : ASCIlinput
WORD = IN1 OUT —=BYTE
Output
ENO : without an error, it will be 1
OUT : BYTE Output
B Function

It converts two ASCII data to 2-digit hexadecimal (HEX).

W Error
If IN is not between ‘0’ and ‘F’, its output is 0 and _ERR/_LER flags are set.

®m program example

ASC_TO_BY)
MO TE
EN EN

FASCHI VALY IN - QUTI=BYTE_YAL

(2) If the transition condition (%6MO0) is on, ASC_TO_BYTE function is executed.
(2) Ifinput ASCII_VAL (WORD) = 16#4339, output BYTE_VAL (BYTE) = 16#C9.

8-133

8. Basic Function/Function Block Library

BCD TO ASC
Converts BCD to ASCI| data Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ @ @ ©® ©® © | ©
Function Description
Input
BCD_TO_ASC :ENI\.I:Beégcil:]tejtthe function in case of 1.
BOOL —{ EN ENO |~ BOOL ‘ P
BYTE — IN1 OUT —=WORD
Output
ENO: without an error, it will be 1
OUT: ASCII Output

W Function

It converts two BCD data to two ASCI| data.

W Error

If IN is not between 0 and 9, its output is 16#3030 (“00”) and _ERR/_LER flags are set.

B Program example

F BCD_VAL

BCD_TO_A
BN EN

IN - OUT=ASCI] _WAL

(1) i the wansiton condition (G6MO) s on. BCD. 0 ASC functon s executed.
(2) If input BCD_VAL (BYTE) = 16#85, output ASCI_VAL (WORD) = 16#3835 = “85”.

8-134

8. Basic Function/Function Block Library

BIT BYTE
Combines 8 bits into BYTE Mode! | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ @ @ ©® © @ O
Function Description
Input
BIT_BYTE EN: executes the function in case of 1.
BOOL — EN ENO =BOOL IN1 ~ IN8: Bit input
BOOL = N1 OUT —BYTE
BOOL = IN1 Output
BOOL = IN1 ENO: without an error, it will be 1
BOOL = IN1 OUT: Byte output
BOOL =—{ IN1
BOOL =—{ IN1
BOOL —{ INT
BOOL =—| IN1
B Function

It combines 8 bits into one byte.
IN8: MSB (Most Significant Bit), IN1: LSB (Least Significant Bit)

B Program example
LD

M3 BIT_BYTE
—] BN BN

FINFUTT q INT QUTp= OUTFUT
FINFUTZ 9 IN2
F INPUTS { IN3
FINPUTA o IN4
FINFUTS 9 INS
F INFUTE 9 ING
EINPUTT o INT

F INFUTS 9 INS

(2) If the transition condition (%6M3) is on, BIT_BYTE function is executed.
(2) If 8 input are (from INPUT1 to INPUT 8) {0,1,1,0,1,1,0,0}, OUTPUT (BYTE) = 2#00110110.

8-135

8. Basic Function/Function Block Library

BMQV_***
Moves part of a bit string Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ @ @ @ © @ | @
Function Description
Input
BMOV_*** .
BOOL ENO BOOL EN : executes the function in case of 1.
B W DL = EN B IN1: String data having bit data to be combined
BWDL] m; OuT ~B.W.0,L IN2: String data having bit data to be combined
Y INT = NP IN1_P: Start bit position on IN1 set data
- IN2_P: Start bit position on IN2 set data
INT — IN2_P = .
INT = N N: Bit number to be combined
Output
ENO: without an error, it will be 1
OUT: Combined bit string data output
W Function

>If EN is 1, it takes N bits of IN1 starting from the IN1_P bit and moves it to IN2 starting from IN2_P bit.
>1f N1 = 1111 0000 1111 0000, IN2 = 0000 1010 1010 1111, IN1_P =4, IN2_P = 8, N = 4, then output data
is 0000 1111 1010 1111. Input data types are B (BYTE), W (WORD), D (DWORD), L (LWORD);
L (LWORD) are available for GM1/2. You can use one of functions (ENCO_B’, ‘ENCO_W’, ‘ENCO_D’,
‘ENCO_L") according to input data.
W Error
If IN1_P and IN2_P exceed the data range or N is negative or N bit of IN1_P and IN2_P exceeds the data
range, ERR and LER flags are set.

W Program example

LD IL
LD %MO
JMPN LSB
200 BUOV_T) LD SOURCE
— —{er Wl ; BMOV_W IN1:= CURRENT RESULT
IN2:= DESTINE
SOURCE JIN1 OUT|= DESTINE . IN1_P:= 0
IN2_ P:= 8
N:= 4
DESTINE JINZ J ST DESTINE
LSB:
o Jimi
i3
& Jimwz_
i3
a I

8-136

8. Basic Function/Function Block Library

(1) If the transition condition (%MO0) is on, BMOV_W function is executed.

(2) If input SOURCE = 2#0101 1111 0000 1010, DESTINE = 2#0000 0000 0000 0000, IN1_P =0, IN2_P =8,
N = 4, then the result DESTINE is 2#0000 1010 0000 0000.

Input (IN1): SOURCE (WORD) = 16#5F0A O[1]O0[11 |1]1f1 0|0 [O0]O]1]0|1]O
(IN2): DESTINE (WORD) = 16#0000 olololololololololololololololo
(IN1I_P)=0
(IN2_P)=8
(N)=4

l (BMOV_W)
Output (OUT): DESTINE (WORD) = 16#0A00

lolololol 1lo]1fo]oJofofolololo]o

8-137

8. Basic Function/Function Block Library

BSUM ***
Counts on-bit number of input Model GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ @ @ ©® © @ O
Function Description
Input
BSUM_* P " f
EN: executes the function in case of 1.
BOOL — EN ENO =BOOL . .
BW.O.L— IN 0UT b= INT IN: input data to detect ON bit
Output
ENO: without an error, it will be 1
OUT: Result data (sum of on-bit number)
B Function

If EN is 1, it counts bit number of 1 among IN bit string and produces output OUT. Input data types are
BYTE, WORD, DWORD, LWORD. LWORD is available only for GM1/2.

FUNCTION IN type Description

BSUM_BYTE BYTE
BSUM _WORD WORD
BSUM _DWORD | DWORD
BSUM _LWORD | LWORD

You can select one of these functions according to input data.

v Program example

LD i
%10.0.0 [BSUM_WOR LD %10.0.0
4 - JMPN AAA
EN ~ ENO-

B LD SWITCHS

b SWITCHS { INT - QUTh= ON_COUNT BSUM_WORD
ST ON_COUNT
AAA:

(2) If the transition condition (%MO) is on, BSUM_WORD function is executed.
(2) If input SWITCHS (WORD) = 2#0000 0100 0010 1000, then it counts on-bit number, 3. So the output
ON_COUNT (INT) = 3.

8-138

8. Basic Function/Function Block Library

BYTE BIT
Divides byte into 8 bits Mode | GMR | GM1|GM2 |GM3 | GM4 | GM6 | GM7
Application @ @ @ @ © @ | @
Function Description
Input
BYTE_BIT EN: executes the function in case of 1.
BOOL — EN ENO —BOOL IN: byte input
BYTE —{ IN OuUT —B00L
BOOL — Q01 Output -
BOOL — Q02 ENO: without an error, it will be 1
BOOL —{ Qo3 OUT: Dummy output
BOOL — Q04
BOOL —Q05 In/Out ,
BOOL — Q06 QO1~8: bit output
BOOL — Q07
BOOL — Q08
W Function

It divides one byte into 8 bits (Q0O1~Q02).
QO8: MSB (Most Significant Bit), QO1: LSB (Least Significant Bit)

B Program example
LD

M3 BYTEBIT
—EN ENC

FINPUT

N QUTE= DUMMY

BITT {@or

BIT2 {@oz

BIT3 {@o#

BIT4 (@C#

BITS @05

BITe Q06

BIT? {@o7

BIT8 {QO§

'(1) If the transition condition (%M0) is on, BYTE_BIT function is executed.
(2) If INPUT = 16#AC = 2#10101100, it distributes INPUT from Q01 to Q08 in order.
The order is 2#{0, 0, 1, 1,0, 1, 0, 1}.

8-139

8. Basic Function/Function Block Library

BYTE_TO_ASC

Converts byte into ASCI | Model GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7

Application @ @ | ©® © © © | @

Function Description
Input
EN: executes the function in case of 1.
BYTE_TO_ASC IN: BYTE input
BOOL — EN ENO = BOOL
BYTE = IN1 oUT F—WORD
Output
ENO: without an error, it will be 1
OUT: ASCII output

B Function
D> It converts 2-digit hexadecimal into two ASCII data.
Ex) 16#12 -> 3132
> In case of 16#A~F, it produces ASCII data for character.

W Program example

FBYTE_YAL{ IN OUTR=ASCII_YAL

(2) If the transition condition (%MO) is on, BYTE_TO_ASC function is executed.
(2) Ifinput BYTE_VAL (BYTE) = 16#3A, output ASCII_VAL (WORD) = 16#3341 = ‘3’, ‘A"

8-140

8. Basic Function/Function Block Library

BYTE WORD
Combines 2 bytes into WORD

Model GMR [GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ @ | ©® © © © | @

Function Description

Input
BYTE_WORD EN: executes the function in case of 1.
BOOL — EN ENO b=BoOL LOW: lower BYTE Input

BYTE — LOW ouT = worD HIGH: upper BYTE Input
BYTE — HIGH

Output

ENO: without an error, it will be 1
OUT: WORD output

B Function
It combines two bytes into one word.

LOW: lower byte input, HIGH: upper byte input
B Program example

D

M3 [BYTE_WOR
—] | ENO

FBYTE_INT{LCW OUTpR= OUTPUT

FEYTE_INZqHIGH

(l)lf the transiton cond |t|on(%M3) s on. BY TE_WORDfun donsexecuted.
(2) If input BYTE_IN1 = 16#56 and BYTE_IN2 = 16#AD, output variable OUTPUT = 16#AD56.

8-141

8. Basic Function/Function Block Library

DEC_***

Decrease IN data by 1 bit

Model GMR [GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ @ ©® ©® © @ | @

Function o 94
Input
DEC_*** P
EN: executes the function in case of 1.
BOOL —| EN ENO = B00L IN: input data to decrease
ANY_BIT — IN OUT FANY_BIT
Output
ENO: without an error, it will be 1
OUT: result data
v Function

If EN is 1, it produces an output after decreasing bit-string data of IN by 1.
Even though the underflow occurs, an error won't occur and if the result is 16#0000, then the output result

data is 16#FFFF.

Input data types are BYTE, WORD, DWORD and LWORD. LWORD is available only for GM1/2.

FUNCTION IN/OUT type Description
DEC BYTE BYTE
DEC_WORD WORD . . :
DEC_DWORD DWORD You can select one of these functions according to in/out data type.
DEC_LWORD LWORD
v Program example
LD IL
LD %MO
a0 [oEC_WORD JMPN KKK
N T ENG- LD %MW100
DEC_WORD
L SMIIO0 { INT OUTR W20 ST %MW20
KKK:

(2) If the transition condition (%MO) is on, DEC_WORD function is executed.

(2) If input variable %MW100 = 16#0007 (2#0000 0000 0000 0111), output variable %MW20 = 16#0006
(2#0000 0000 0000 0110).

8-142

8. Basic Function/Function Block Library

DECO_***
Decodes the designated bit position Mode | GMR | GM1|GM2 |GM3 | GM4 | GM6 | GM7
Application @ @ @ @ @ @ | @
Function Description
Input
DECO_**x he f .
EN: executes the function in case of 1.
BOOL — EN ENO [—BOOL o ;
IN: t data for decod
INT = IN OUT |~ ANY_BIT nputt data for decocing
Output
ENO: without an error, it will be 1
OUT: decoding result data
v Function

If EN is 1, it turns on ‘the designated position bit of output bit-string data’ according to the value of IN, and
produces an output. Output data types are BYTE, WORD, DWORD and LWORD. LWORD is available only

for GM1/2.
FUNCTION OUT type Description
DECO_BYTE BYTE
DECO_WORD WORD : .
DECO_DWORD | DWORD You can select one of these functions according to output data type.
DECO_LWORD | LWORD
v Error

If input data is a negative number or bit position data is out of output-type range, (in case of DECO_WORD,
it's more than 16), then OUT is 0 and _ERR/_LER flags are set.

v Program example

LD IL
LD %MO
WM |DECO_WOR JMPN AAA
e LS o LD ON_POSITION
ON_POSI T DECO_WORD
+ UM [T OUTp= RELAYS ST RELAYS
AAA:

(2) If the transition condition (%MO0) is on, DECO_WORD function is executed.
(2) If ON_POSITON (INT) = 5, then RELAYS (WORD) = 2#0000 0000 0010 0000.

8-143

8. Basic Function/Function Block Library

DEG_***
Converts radian into degree Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ | @ | @
Function Description
Input
EN: executes the function in case of 1.
DEG) S
IN: radian input
BOOL — EN ENO f—BOOL
ANY_REAL — IN OUT = ANY_REAL
Output
ENO: without an error, it will be 1
OUT: degree output
B Function

It converts radian input into degree output.

Function Input type | Output type Description

DEG_REAL | REAL REAL
DEG_LREAL | LREAL LREAL

It converts input (radian) into output (degree).

B Program example]
L

W0 [DEG_LREA
—EN ENCE

F RAD_VAL

N QUTk= DEG_YAL

(1) fthe transiton condition (%MO) son. DEG_L REAL functon s executed.
(2) If input variable RAD_VAL = 1.0, then output variable DEG_VAL = 5.7295779513078550e+001.

8-144

8. Basic Function/Function Block Library

DIS_**
Data distribution Mode | GMR | GM1|GM2 |GM3 | GM4 | GM6 | GM7
Application @ @ @ @ © © | @
Function Description
Input
EN: executes the function in case of 1.
DIS_*** IN1: input data
BOOL — EN ENO [~ BOOL SEG: designated bit array for data distribution
ANY_BIT = N1 OUT = BOOL
ANY_BIT_ARY =1 IN2 ENO: without an error, it will be 1
OUT: Dummy Output
In/Out
IN2: distributed WORD-array Output
W Function

It distributes input data over IN2 after segmenting input data by bit number set by SEG.

Function Input type Description
DIS_BYTE BYTE
DIS WORD WORD

DIS DWORD DWORD It segments IN1 input by bit number set by SEG and produces IN2 array.

DIS_LWORD LWORD

S SR[] £ £R[i] |
3 4 3

-~ o] e =
] Fanll) Fonll) Fanll

m EBi15E14p13E12E11EI0|Eo B2 BT |RB6 |ES [R4|B2 B2 |B1 [BO]

data distribution @
LR

W
mep] | EF ER EDN
nmu|m |Elr5|B§|B4|Bh;|
nmz]|m tElllIBlDlBD|BE|Bh;|
nm-:1|m te15|1314|1313|13?2|
W Error

If the sum of designated number of SEG exceeds input variable bit number, ERR/_LER flags are set.

8-145

8. Basic Function/Function Block Library

W Program example

LD
w0 [D1s_worp
=B ENOR

P WORD_IN { INT OUTE= DUMMY

I SEG_ARY 1 SEG

FDIS_DATA /N2

(2) If the transition condition (%MO) is on, DIS_WORD function is executed.
(2) If input variable WORD_IN = 16#3456, SEG_ARY = {3, 4, 5, 4}, then, output variable DIS_DATA is:
DIS_DATA[0] = 16#0006
DIS_DATA[1] = 16#000A
DIS_DATA[2] = 16#0008
DIS_DATA[3] = 16#0003

8-146

8. Basic Function/Function Block Library

DWORD_LWORD

Combines two DWORD data into LWORD

Model GMR [GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ | @ | @

Function Description
Input
EN: executes the function in case of 1.
DWORD_LWORD LOW: lower DWORD Input
BOOL =— EN ENO —=B0OOL HIGH: upper DWORD Input
DWORD — LOW OUT = LWORD
DWORD — HIGH Output
ENO: without an error, it will be 1.
OUT: LWORD Output
B Function

It combines 2 DWORD data into one LWORD data.
LOW: lower DWORD Input, HIGH: upper DWORD Input

B Program example

11

FINFUTT

b INPUTZ

—EN ENOm

LD

DIWORD_L W
FD

LOW OUT= RESULT

HIGH

(2) If the transition condition (%6M11) is on, DWORD_LWORD function is executed.
(2) If input variable INPUT1 = 16#1A2A3A4A5A6A7A8A and INPUT2 = 16#8C7C6C5C4C3C2C1C, then,
output variable RESULT = 16#8C7C6C5C4C3C2C1C1A2A3A4A5A6ATABA.

8-147

8. Basic Function/Function Block Library

DWORD_WORD

Divides DWORD into 2 WORD data Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ @ @ @ @ @ | @
Function Description
Input
EN: executes the function in case of 1.
DWORD_HORD IN: DWORD Input
BOOL — EN ENO p—BOOL
ODWORD — IN OUT [~ BOOL Output
WORD — LOW ENO: without an error, it will be 1.
WORD — HIGH OUT: Dummy Output
In/Out
LOW: lower WORD Output
HIGH: upper WORD Output
W Function
It divides one DWORD into two WORD data.
LOW: lower WORD Output, HIGH: upper WORD Output
B Program example)
.

DWORD_WOF‘
pAlis) D
—] F—{EN ENCG-

INFUT o IN CUTR= DUMMY

FWORD_OUT 1{ LOw

FWORD_OUT2 Hi GH

(1) If the transition condition (%M5) is on, DWVORD_WORD function is executed.

(2) If input variable INPUT = 16#11223344AABBCCDD, then,
WORD_OUT1 = 16#AABBCCDD and WORD_OQUT2 = 16#11223344.

8-148

8. Basic Function/Function Block Library

ENCO_***
Encodes the on—bit position of IN Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ @ @ @ @ @ | @
Function Description
Input
ENCO_xx EN he function i f1
: executes the function in case of 1.
BOOL — EN ENO [—BOOL -
IN: tdatatob ded
ANY_BIT —{ IN UT f= INT input data to be encode
Output
ENO: without an error, it will be 1
OUT: result data after encoding
v Function

If EN is 1, the output is the highest on-bit position among IN bit string. Input data types are BYTE, WORD,
DWORD and LWORD. LWORD is available only for GM1/2.

FUNCTION IN type Description
ENCO _BYTE BYTE
ENCO_WORD WORD
ENCO DWORD | DWORD
ENCO_LWORD | LWORD

You can select one of these functions according to the input data type.

v Error
_ERR and _LER flags are set and OUT is —1 if no bit is 1.

v Program example

LD IL
LD %MO
%MO |ENCO_WOR JMPN AAA
I—EN ~ ENOR LD SWITCHS
ON_POSITI ENCO_W
L SWITCHS { INT - OUTR= ~ ON ST ON_POSITION
AAA:

(2) If the transition condition (%MO) is on, ENCO_WORD function is executed.
(2) If SWITCHS (WORD) = 2#0000 1000 0000 0010, then, the highest on-bit position is 11. Therefore, output
ON_POSITON (INT) is ‘11",

8-149

8. Basic Function/Function Block Library

GET _CHAR
Gets one character from a character string Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ @ @ @ @ @ | @
Function Description
Input
GET_CHAR EN: executes the function in case of 1.
IN: STRING input
BOOL — EN ENO —BOOL N: position in a character STRING
STRING — IN OUT =BYTE
INT 4 N Output
ENO: without an error, it will be 1.
OUT: Byte Output
W Function

It extracts one byte from a character STRING starting from N.

B Error

> _ERR/_LER flags are set if N exceeds the number of byte in STRING.
> If an error occurs, the output is 16#00.

W Program example

LD

] GET_CHAR
P—{EN ENOm

INFUT 1IN QUT= OUTFUT

4 N

(2) If the transition condition (%MO) is on, GET_CHAT function is executed.

(2) When input INPUT (STRING) = “LG GLOFA PLC", if you extract 4™ character from this string, output
variable OUTPUT is 16#47 (“G").

8-150

8. Basic Function/Function Block Library

INC *%%
Increase IN data by 1 Model GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ @ @ ©® © @ O
Function Description
NG Input
e Y i mecutes e functon ncase of 1
ANY_BIT = IN OUT [~ ANY_BIT -1np
Output
ENO: without an error, it will be 1
OUT: result data after increase
v Function

If ENis 1, it increases IN bit string data by 1 and produces an output.
An error does not occur when there’s an overflow; the result is 16#0000 in case of 16#FFFF.
Input data types are BYTE, WORD, DWORD and LWORD. LWORD is available only for GM1/2.

FUNCTION IN/OUT type Description
INC BYTE BYTE
INC_ WORD WORD . .
INC_DWORD DWORD You can select one of these functions according to the data type.
INC_LWORD LWORD
v Program example
LD IL
LD %MO
MO | INC_WORD JMPN BBB
e B LD %MW100
INC_WORD
FOSMWTO0 TN OUT= SMWT00 ST %MW100
AAA:;

(2) If the transition condition (%MO) is on, INC_WORD function is executed.
(2) If input variable %MW100 = 16#0007 (2#0000 0000 0000 0111), then
output variable %MW100 = 16#0008(2#0000 0000 0000 1000).

8-151

8. Basic Function/Function Block Library

LWORD_DWORD

Divides LWORD into two DWORD data Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7

Application @ | @ | @

Function Description

Input
EN: executes the function in case of 1.
LWORD_OWORD IN: LWORD Input
BOOL — EN ENO = BOOL
LWORD — IN OUT = BOOL Output
OWORD = LOW ENO: without an error, it will be 1.
OWORD = HIGH OUT: Dummy Output

In/Out
LOW: lower DWORD Output
HIGH: upper DWORD Output

W Function
> It divides one LWORD into two DWORD data.
LOW: lower DWORD Output, HIGH: upper DWORD Output

W Program example
LD

L WORD_Ci
HM10 RD
—EN ENO-

INPUT 9 [N OUTR= DUMMY
F OWO_OUTY { Low

F DWO_CUTZ { M/ 8H

(2) If the transition condition (%6M10) is on, LWORD_DWORD function is executed.

(2) If the input variable INPUT = 16#AAAABBBBCCCCDDDDABCDABCDABCDABCD, then,
DWO_OUT1 = 16#ABCDABCDABCDABCD
DWO_OUT2 = 16#AAAABBBBCCCCDDDD.

8-152

8. Basic Function/Function Block Library

MCS

Master Control

Model GMR [GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ @ ©® ©® © @ @

Function Description
Input
MCS) L
EN: executes the function in case of 1.
BOOL — EN ENO —BOOL NUM: Nesting (0~15)
INT = NUM OUT p=BOOL

Output
ENO: If MCS is executed, it will be 1
OUT: Dummy (always 0)

B Function

> If EN is on, MCS function is executed and the program between MCS and MCSCLR function is

normally executed.

D> If EN is off, the program between MCS and MCSCLR function is executed as follows:

Instruction Description
Timer Current value (CV) becomes 0 and the output (Q) becomes off.
Counter Output (Q) becomes off and CV retains its present state.
Call All becomes off.
Negated coil All becomes off.

Set coil, reset coil

All retains its current value.

Function, function block

All retains its current value.

> Even when EN is off, scan time is not shortened because the instructions between MCS and MCSCLR
function are executed as the above.
> Nesting is available in MCS. That is to say, Master Control is divided by Nesting (NUM). You can set up
Nesting (NUM) from 0 to 15 and if you set it more than 16, MCS is not executed normally.

Note: if you use MSC without ‘MCSCLR’, MCS function is executed till the end of the program.

8-153

8. Basic Function/Function Block Library

W Program example

[f A is on, it’s executed.

Y |

If A and B are on, it’s
executed

Y |

[f A, B, and C are on, it’s
executed.

Y |

[f A and B are on, it’s executed

Y |

[f A is on, it’s executed.

[If A, B, and C are on, it’s
executed.

|
|
3
|

|

|
3
|

|

|
3
|

|

|
3
|

|

|
-
|

|

|
o

8-154

8. Basic Function/Function Block Library

MCSCLR
Master Control Clear Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application| @ @ @ | @ @ @ | ©®
Function Description
Input
MCSCLR EN: executes the function in case of 1
BOOL — EN ENO —BOOL NUM: Nesting (0~15)
INT = NUM OUT =BOOL
Output
ENO: if MCSCLR is executed, it will be 1
OUT: if MCSCLR is executed, it will be 1
B Function

> It clears Master Control instruction. And it indicates the end of Master Control.
D> If MCSCLR function is executed, it clears all the MCS instructions which are less than or equal to
Nesting (NUM).

* There’s no contact before MCSCLR function.

B Program example
Refer to the MCS function example.

8-155

8. Basic Function/Function Block Library

MEQ *%k%
Masked Equal Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application| @ @ @ | @ @ @ | ©®
Function Description
Input
MEQ EN: executes the function in case of 1.
BOOL — EN ENO | BOOL :r’:lé :zgﬂg
ANY_BIT — [IN1 ouUT = BOOL s
MY BIT = IN2 MASK: input data to mask
ANY_BIT = MASK output
ENO: without an error, it will be 1.
OUT: when equal, it will be 1
B Function

D> It compares whether two input variables are equal after masking. If it masks an 8-bit variable with 2#11111100,
then, lower 2 bits are excluded when it compares input values.

D> It's available to see whether or not specific bits are on in a variable. For example, in case of comparing 8-bit
variables, IN1 is an input variable, IN2 is 16#FF, and MASK for masking is a bit array 2#00101100. If IN1 and
IN2 after masking are equal, then output OUT is 1.

Function Input type Description
MEQ_BYTE BYTE
MEQ_WORD WORD

It compares whether two variables are equal after making.
MEQ_DWORD DWORD

MEQ_LWORD LWORD

8-156

8. Basic Function/Function Block Library

B Program example

LD
S0 WEQ_BYTE
= EN ENC
%0 .3.20
F O INPUTT q INT - OUIT) —
b INPUTZ 1 IN2
MASK | MASK

(1)”th e transmon Cond mon (%Mo) |s on MEQ_BYTE fun Ct| on |s exe CUted R
(2) Input variable INPUT1 (BYTE) = 2#01011100
INPUT2 (BYTE) = 2#01110101
MASK (BYTE) = 2#11010110
Then, the comparing bits of input variables after masking are as follows:
INPUT1 (BYTE) = 2#01010100
INPUT2 (BYTE) = 2#01010100
INPUT1 and INPUT2 are equal, therefore, output contact %Q1.3.20 is on.

8-157

8. Basic Function/Function Block Library

PUT_CHAR
Puts a character in a string Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ @ @ @ © @ | @
Function Description
Input
PUT_CHAR EN: executes the function in case of 1.
DATA: Byte input to insert a string
BOOL — EN ENO —BOOL IN: string input
BYTE — DATA OUT [—BYTE N: setting position in a string
STRING = IN
INT < N Output
ENO: without an error, it will be 1.
OUT: string output
v Function

It overwrites one byte input on a specific position (N) string.
v Error
> If N value exceeds a byte number of a string, ERR/_LER flags are set.

> If an error occurs, the output is 16#00.

v Program example

LD
1| FUT_CHAR
—] —EN EN-

INPUT {DATA OUT= RESLLT

PO TR ING_ [

M

2 il

(2) If the transition condition (%M1) is on, PUT_CHAR function is executed.

(2) If input variable INPUT = 16#41 (“A”) and STRING_IN = “TOKEN", and N = 2, then, output RESULT is
“TAKEN".

8-158

8. Basic Function/Function Block Library

RAD *%k%
Converts degree into radian Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ | @ | @
Function Description
Input
EN: executes the function in case of 1.
RAD IN: degree Input
BOOL — EN ENO =BOOL
ANY_REAL — IN OUT —ANY_REAL Output

ENO: without an error, it will be 1.
OUT: radian output

B Function

> It converts a degree value (°) into a radian value.
> If the degree is over 360°, its converts normally.
For example, if input is 370°, output is 370° - 360° = 10°.

Function Input type | Output type Description
RAD_REAL REAL REAL
RAD_LREAL LREAL LREAL

It converts a degree value (°) into a radian value.

B Program example

LD
MO RAD_REAL
P—{EN ENOm
F CEG_VAL 1IN OUTp= RAD_VAL

(1) If the transition condition (%MO0) is on, RAD_REAL function is executed.
(2) If input variable DEG_VAL = 127(°), its output RAD_VAL = 2.21656823.

8-159

8. Basic Function/Function Block Library

ROTATE A ***
Rotates array elements Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7

Application @ @ ©® ©® © @ @

Function Description
Input
EN: executes the function in case of 1.
ROTATE_A_#** N: element number to rotate
BOOL — EN ENO BOOL STRT: starting position to rotate in an array block
ANY_ARY — SRC OUT = STRING END: ending position to rotate in an array block
UINT = STRT
UINT = END Output
INT = N ENO: without an error, it will be 1
OUT: overflowing data
In/Out
SRC: array block to rotate

W Function
D> It rotates designated elements of an array block in the chosen direction.
> Setting:
- Scope: STRT and END set a data array to rotate
- Rotation direction and time: rotates N times in the chosen direction set by STRT and END (STRT— END)
- Input data setting: fills an empty element after rotation with Input data (IN)

- Output: the result is written at ANY_ARY designated by SRC, and the data to rotate from END to
STRT is written at OUT.

SRC SRC
ARRAY (0) ARRAY (0)
STRT:1 ARRAY (1) ARRAY (1)
ARRAY(2) ARRAY(2)
ARRAY(3) ARRAY(3)
ARRAY (4) ARRAY (4)
ARRAY (5) ARRAY (5)
ARRAY (6) ARRAY (6)
END:7 ARRAY (7) ARRAY (7)
ARRAY(8) ARRAY (8)
ARRAY(9) N=2 ARRAY(9)
Before After

8-160

8. Basic Function/Function Block Library

Function In/Out array type Description
ROTATE_A BOOL BOOL
ROTATE_A BYTE BYTE
ROTATE_A WORD WORD
ROTATE_A DWORD | DWORD
ROTATE_A LWORD | LWORD
ROTATE_A_SINT SINT
ROTATE_A_INT INT
ROTATE_A_ DINT DINT
ROTATE_A_LINT LINT i i
ROTATE_A_USINT USINT It rotates designated elements of an array block in the chosen
ROTATE_A UINT UINT direction.
ROTATE_A_ UDINT UDINT
ROTATE_A_ULINT ULINT
ROTATE_A REAL REAL
ROTATE_A LREAL LREAL
ROTATE_A TIME TIME
ROTATE_A DATE DATE
ROTATE_A TOD TOD
ROTATE_A DT DT
W Error

> If STRT or END exceed the range of SRC array element, ERR/ LER flags are set.
> If an error occurs, there's no change in SRC and output OUT is the initial value of each variable type
(i.e. INT=0, TIME=T#0S).

B Program example

+ SRC_ARY

8

2

LD
ROTATE_A
2 BYTE 1
—EN BN
2 N CUT= out

SAC

STRT

END

(2) If input condition (%M2) is on, ROTATE_A BYTE function is executed.

(2) It rotates designated elements (from 2nd to 8th elements) of SRC_ARY in the chosen direction set by
STRT and END (from index 8 to index 2): refer to the diagram on the opposite page.

(3) The overflowing data (16#44) is written at OUT.

8-161

8. Basic Function/Function Block Library

SRC_ARY SRC_ARY
16#11 16411
16422 16422
END:2 16#33 16#55
16#44 16466
16#55 16477
16466 16488
16477 16499
16488 16433
STRT:8 16499 16#44
16#AA 16#AA
OUT | 44
Before N=3 After

8-162

8. Basic Function/Function Block Library

ROTATE_C_***

Rotates a designated bit array of SRC bit arrays Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ @ @ @ @ @ | @
Function Description
Input
EN: executes the function in case of 1.
ROTATE_C_*=*= STRT: starting bit position of SRC bit array to
BOOL — EN ENO + BOOL rotate
ANY_BIT = SRC OUT + BOOL END: ending bit position of SRC bit array to
UINT = STRT rotate
UINT = END N: bit number to shift
UINT = N
Output
ENO: without an error, it will be 1
OUT: carry output
In/Out
SRC: variable for rotation
W Function
> It rotates a designated bit array of SRC bit arrays in the chosen direction.
> Setting:

- Scope: STRT and END set a bit data to rotate.

- Rotation direction and time: rotates N times in the chosen direction set by STRT and END (STRT — END)
- Output: the result is written at ANY_ARY designated by SRC, and the data to rotate from END to STRT is

written at OUT.
END:12 STRT:0
! !
B15B14|B13B12[B11|B10[B9 | B8 |B7 |B6|B5|B4 | B3 |B2|B1|B0O| Before
ouT B15B14|B13B12[B11|B10[B9 | B8 |B7 |B6|B5|B4 | B3 |B2|B1|BO| After
A
Function SRC type Description
ROTATE_C_BYTE BYTE
ROTATE_C WORD WORD It rotates a designated bit array of SRC bit arrays N times in the
ROTATE C DWORD DWORD chosen direction.
ROTATE_C_LWORD LWORD
W Error

> If STRT or END exceed the hit number of SRC variable type, ERR and _LER flags are set.
> There’s no change in SRC data.

8-163

8. Basic Function/Function Block Library

W Program example
LD

ROTATE_C
M2 WORD
—] |—{FN ENO=

F 1BHADAS (sRc QUTR= OUT

13 STRT
& END
2 M

(1) If the transition condition (%M2) is on, ROTATE_C_WORD function is executed.

(2) It rotates the designated bit array, from STRT (13) to END (3), of SRC (16#A5A5) 2 times in the chosen
direction set by STRT and END (from STRT to END): refer to the diagram as below.

(3) The result data after rotation is written at SRC (16#896D), and the overflowing bit (0) is written at OUT.

STRT: 13 END: 3
! !
1{o0y1fo0jo0j1jo0j1j1jfoj1y0j0]1j0741 Before
N=2
ouT
0 1{o0jo0foj1jofoj1rjof1{1yo0f{1j1j0f1 After

A A

A

8-164

8. Basic Function/Function Block Library

RTC _SET
Writes Time data Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ @ @ @ @ @ | @
Function Description
Input
E . o .
RTC_SET REQ: executes the function with rising pulse input
BOOL — REQ DONE = BOOL DATA: TIME data to input
ANY — DATA STAT = USINT
Output
DONE: without an error, it will be 1
STAT: If an error occurs, an error code is written
W Function
> It writes RTC data to Clock Device with a rising pulse input.
Variable Content Example | Variable Content Example
DATA[O] | Last 2-digit number of years | 16#01 | DATA[4] Minutes 16#30
DATA[1] Months 16#03 | DATAI[5] Seconds 16#45
DATA[2] Dates 16#15 | DATAI[6] Days 16#03
DATA[3] Hours 16#18 | DATA[7] | First 2-digit number of years | 16#20

* The above example is “2001-03-15 18:30:45, Thursday”.
* Days are indicated as follows: Mon (0), Tue (1), Wed (2), Thu (3), Fri (4), Sat (5), Sun (6).
> The above DATA variables are declared as array Byte variables and set as BCD data.

W Error
If CPU does not support RTC function or RTC data is out of range, the output is 0 and the error code is
written at STAT.

Error code Description
00 No error
01 No RTC module installed.
* GM6: GM6-CPUB and GM6-CPUC support RTC.
* GM7: G7E-RTCA should be installed.
02 Wrong RTC data. Example: 14 (Months) 32 (Dates) 25 (Hours)
* Modify RTC data.

W Program example
Its RTC data is 1999-01-17 11:53:24, Sunday.

COMMENWT ".'.'hen SET_S%'LE EET RTC_SET function block remews or modifies the SET_data (RTC data).
SET_S RTC_SET

Fow 1 Fl — REQ DEINEl-
Fow 2 [SET_DA - DATASTAT- ERROR
Fiow 3 4[

[

(1) When SET_SW is on, RTC_SET function block renews or modifies the SET_data (RTC data).

8-165

8. Basic Function/Function Block Library

2) Variable setting is shown as below.

Initialze Array

8-166

8. Basic Function/Function Block Library

(4) Use the following flags to read RTC data.
e.g. 1998-12-22 19:37:46, Tuesday

Flag Type Description Data
_RTC_TOD TOD Current time of RTC TOD#19:37:46
UINT Current day of RTC
_RTC_WEEK *(0: Mon, 1: Tue, 2: Wed, 3: Thu, 4: Fri, 1
5: Sat, 6: Sun)
DATE Current date of RTC
_RTC_DATE (1984-01-01 ~ 2083-12-31) D#1998-12-22
RTC ERR | BOOL When RTC data is wrong, it is 1. 0
ARRAY | BCD data of current time of RTC
OF _RTC _TIME[O0]: Last 2-digit number of years .
BYTE | _RTC _TIME[1]: Months —Eig —Emgm igﬁg
_RTC _TIME[2]: Dates "RTC _TIME[2]: 16#22
_RTC_TIME[n] —RTC _TIME[3] Hours “RTC _TIME[3]: 16#19
T _RTC _TIME[4]: Minutes .
no~7 : RTC _TIME[4]: 16437
_RTC _TIME[5]: Seconds “RTC _TIME[5]: 16446
_RTC _TIME[6]: Days “RTC _TIME[6]: 16#1
_RTC _TIME[7]: First 2-digit number of years “RTC _TIME[7]: 16#19

Days (0: Mon, 1: Tue, 2: Wed, 3: Thu, 4: Fri,
5: Sat, 6: Sun)

8-167

8. Basic Function/Function Block Library

SEG
Converts BCD or HEX into 7 segment display code Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ @ @ @ @ @ | @
Function Description
Input
SEG P " f
EN: executes the function in case of 1.
BOOL — EN ENO f~BOOL) .
WorRD = [N OUT b= WorD IN: Input data to covert into 7 segment code
Output
ENO: without an error, it will be 1.
OUT: result data converted into 7 segment data
W Function

If EN is 1, it converts BCD or HEX (hexadecimal) of IN into 7 segment display code as below and produces
output OUT. If an input is BCD type, it is available to display a number between 0000 and 9999. And in case
of HEX input, it's available to display a number between 0000 and FFFF on 4-digit 7 segment display.

Display example
1) 4-digit BCD -> 4-digit 7 segment code: use SEG function
2) 4-digit HEX -> 4-digit 7 segment code: use SEG function
3) INT -> 4-digit BCD-type 7 segment code: use INT_TO_BCD function first and SEG function
4) INT -> 4-digit HEX-type 7 segment code: use INT_TO_WORD function first and SEG function
5) When 7 segment display digits are more than 4,
A) in case of BCD, HEX type, use SEG function, after dividing them into 4 digits.
B) INT -> 8-digit BCD-type 7 segment code:
Divide INT by 10,000 and convert ‘quotient’ and ‘remainder’ into upper/lower 4-digit 7 segment code
using INT_TO_BCD and SEG function.

B Program example

LD IL
LD %MO
JMPN BBB
— — LD BCD_DATA
| —jr Emf) SEG
ST SEG_PATTERN
SEG_PATTE BBB:
ECD_DaTadINl oUTl ©N

8-168

8. Basic Function/Function Block Library

(1) If the transition condition (%M0)0| OndtH SEGfunction is executed.

(2) If input variable BCD_DATA (WORD) = 16#1234,

the output is ‘2#00000110 01011011 01001111 01100110’ which is displayed as a 7 segment code (1234)
and written at SEG_PATTERN (DWORD).

Input (IN1): BCD_DATA (WORD) = 16#1234 | O| O| O| 1| O|O | 1 |O |O |O |1 |1 |O| 1| o| O|
(SEG)
Output (OUT): SEG_PATTERN (DWORD) = upper [ol olo]lolof1]1lofofifoli]1]o]1]1]
16#065B4F66

ower ToTaJolo[f[iJifi Jo[i i JoJoT1T 1] 0l

7 segment configuration

L

85 ' 'B1
B6

Lk
B3

Conversion table for 7 segment code

Input Input Output Display
(BCD) (HEX) B7 B6 B5 B4 B3 B2 Data

Z

_|
o8}
=
uy]
o

0 0 O 0 1 1 1

[

O] O Nl o O | W[N|
O] O Nl O O | W[N| | O

=
o

=
[N

=
N

(BN
w

H
o

| m| O O W >| ©f o N o O] & W| M|
o| of of o o o] o] o] o] o] o] o] o] o ©
R |l k| O k| | Pl | O k| P PR P O
| k| o k| k| R | R R R| R | o 0o ©
F| |l | P | | O k| O | O] Of O] | O
o| | k| | | O] k| | O k| | Of k| | O
o| of r| o »r| Rr| | P| P| R| R| R| R| O|
o| of | of o | | | k| o O] | | | |+

[
o1

R Rl of r| of P | | | | | O | | O
TMMmMOO|m|>|lo|lo|~No|ug|d|lw(N|F|o

8-169

8. Basic Function/Function Block Library

SHIFT_A_***
Shifts array elements Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ @ @ @ © © | @
Function Description
Input
EN: executes the function in case of 1.
SHIFT_A_#x* IN: Input data to empty element after shifting
BOOL — EN ENO +— BOOL N: number to shift
ANY — N OUT = ANY STRT: starting position to shift in an array block
ANY_ARY - — SRC END: ending position to shift in an array block
UINT — STRT
UINT =N ENO: without an error, it will be 1
OUT: overflowing data
In/Out
SRC: array block to shift
W Function

> It shifts designated elements of an array block in the chosen direction.

> Setting
- Scope: STRT and END set a data array to rotate.
- Shifting direction and time: rotates N times in the chosen direction set by STRT and END (STRT —»END)
- Input data setting: fills an empty element after shifting with input data (IN).

- Output: the result is written at ANY_ARY designated by SRC, and the overflowing data by shifting from END
to STRT is written at OUT.

SRC SRC
ARRAY(0) IN ARRAY(0)
STRT:1 ARRAY(1) &: ARRAY(1)
ARRAY(2) \ ARRAY(2)
ARRAY(3) \ ARRAY(3)
ARRAY (4) ARRAY (4)
ARRAY (5) ARRAY (5)
ARRAY (6) ARRAY(6)
END:7 ARRAY(7) \‘ ARRAY(7)
ARRAY(8) ouT ARRAY(8)
ARRAY(9) N =2 ARRAY(9)
Before After

8-170

8. Basic Function/Function Block Library

Function In/Out Array Type Description
SHIFT_A BOOL BOOL
SHIFT A BYTE BYTE
SHIFT_A WORD WORD
SHIFT_A DWORD DWORD
SHIFT A LWORD LWORD
SHIFT A SINT SINT
SHIFT A INT INT
SHIFT A DINT DINT
23:E$:2:b”S\IILT ULSHI\II\-II-T Idtirserclitfitg,n.designated elements of an array block in the chosen
SHIFT A UINT UINT
SHIFT_A UDINT UDINT
SHIFT_A ULINT ULINT
SHIFT A REAL REAL
SHIFT A LREAL LREAL
SHIFT A TIME TIME
SHIFT_A DATE DATE
SHIFT_A TOD TOD
SHIFT A DT DT
W Error

> If STRT or END exceed the range of SRC array element, ERR and LER flags are set.
> If an error occurs, there’s no change in SRC and output OUT is the initial value of each variable type
(i.e. INT=0, TIME=T#0S).

B Program example

LD
SHIFT_A_I
M2 NT
— BN ENOe
555 N OUTR= OUT
I SRC_ARY {sAc
2 STRT
8 END
& N

(2) If the input condition (%M2) is on, SHIFT_A_INT function is executed.

(2) It shifts designated elements (from 2nd to 8th elements) of SRC_ARY.

(3) It shifts three times the designated elements.

(4) The empty elements after shifting, from array index 2 to array index 3, are filled with input ‘555'.
(5) The overflowing data (1234), carry output, is written at OUT.

8-171

8. Basic Function/Function Block Library

STRT : 2

END : 8

SRC_ARY SRC_ARY
000 IN 000
111 555 111
222 555
333 555
444 555
555 222
1234 333
777 444
888 555
999 999

Before OuT| 1234 After
N=3

8-172

8. Basic Function/Function Block Library

SHIFT_C_***

Shift with Carry

Model GMR [GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ @ ©® ©® © @ @

Function Description
Input
EN: executes the function in case of 1.
SHIFT_C_xxx CYI: Carry Input
Sgglﬂ — EN ENO = BOOL STRT: starting bit position of SRC bit array to shift
ANY BIT ggg oUT = ANY END: ending bit position of SRC bit array to shift
T N: bit number to shift
UINT = STRT
UINT — END
UINT N output
ENO: without an error, it will be 1
OUT: carry output
In/Out
SRC: variable for shifting
W Function

> It shifts a designated bit array of SRC bit arrays N times in the chosen direction.

> Setting:

- Scope: STRT and END set a bit data to shift.

- Shifting direction and time: shifts N times from STRT to END.
- Input data setting: fills empty bit after shifting with input data (CYI).

- Output: the result is written at ANY_BIT designated by SRC, and the overflowing bit data by shifting from
END to STRT is written at OUT.

EMD: 12

STRT: O

¥ «Jr
pispiapispizpiipio[ee|ps[p7[pe|es |pa[m3[B2[R1|RD| Betore

L

ouT E-lEE-lflE-lelZ

After

Function SRC type Description
SHIFT_C_BYTE BYTE
SHIFT_C_WORD WORD . . : . .
SHIFT C_DWORD DWORD It shifts a designated bit array of SRC bit arrays N times.
SHIFT_C_LWORD LWORD

8-173

8. Basic Function/Function Block Library

W Error

> If STRT or END exceed the hit number of SRC variable type, ERR and _LER flags are set.

> There’s no change in SRC data.

B Program example

&
13
2

1

M2
—] |—{F ENO-

F 16HADAS sk OUT)

LD

SHIFT_C_
CRD

STRT

END

M

CYl

our

(1) If the transition condition (%6M2) is on, SHIFT_C_WORD function is executed.

(2) 16#A5A5 is shifted from STRT to END by 2 bits and the empty bits after shifting are filled with 1 (CY1).
(3) SRC after shifting is 16#969D and the overflowing bit data (0) is written at OUT after 2-bit shifting.

END: 13 STRT: 3
| |
1j]0l1(O0fO0O]J1]J]0O011(1]0O0]1]O00O{|1 Before
=2
/ i o
0 11o0lOo]l1]Ooj1f1lOfl1]O]O]1]|1]|1 After

8-174

8. Basic Function/Function Block Library

SWAP_***
Swaps upper data for lower data Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application| @ @ @ @ @ @ | ©®
Function Description
Input
SIAP EN: executes the function in case of 1.
IN: Input
BOOL — EN ENO = BOOL
ANY_BIT = IN OUT —=ANY_BIT Output

ENO: without an error, it will be 1.
OUT: swapped data

B Function

It swaps upper data for lower data.

Function Input type Description
SWAP BYTE BYTE Swaps upper nibble for lower nibble data.
SWAP_WORD WORD Swaps upper byte for lower byte data.
SWAP_DWORD DWORD | Swaps upper word for lower word data.
SWAP_LWORD LWORD Swaps upper double word for lower double word data.

B Program example

LD

MO [SWAP_BYTI
—EN EN

INPUT g 1IN OUTP= RESULT

(2) If the transition condition (%MO) is on, SWAP_BYTE function is executed.
(2) If INPUT (BYTE) = 16#5F, RESULT (BYTE) = 16#F5.

8-175

8. Basic Function/Function Block Library

UNI *%k%
Unites data Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ @ @ @ © @ | @
Function Description
Input
UN| %% EN: executes the function in case of 1.
- IN: input data array
BOOL — EN ENO = BOOL ki i .
ANY_BIT_ARY = I o0UT = ANY BIT SEG: bit-number-designate array to unite data
INT_ARY =~ SEG Output
ENO: without an error, it will be 1
OUT: united data
W Function
It unites an input data array from the lower bit to a designated bit set by SEG and produces an output.
Function Input type | Output type Description
UNI_BYTE BYTE BYTE
UNI_WORD WORD WORD It cuts an input array into bit data set by SET and produces an

UNI_DWORD DWORD DWORD output (united data) with the same array type of input.
UNI_LWORD LWORD LWORD

b15 =SEG[D]:3 |,|:|=
]| az]at]an

b1 “SEGOT 4 w0
TH[L]| ez|ez]E1 |ED

- T

b15 SEGE:S w
INE]| [c4]ca]cz]ct]co

—-— 3
b15 SEGE]:Y

TH 3| [Dz|oz|oi]oo|

h15 : b

ourT|Dz Dz |o1 [oo|c4]ea]ez|ci Joo B[z]E1 [BO A2] A1 |20

> If the sum of value set by SEG exceeds the bit number of input data type, ERR and _LER flags are set.
> If the number of arrays of IN and SEG is different, output OUT is 0 and _ERR and _LER flags are set.

8-176

8. Basic Function/Function Block Library

W Program example

M0

b IN_ARY

b SEG_ARY

—EN EN

D

LM T _WCRD

IN QU

SEG

= RESLLT

T T he Transition conditon GoMO) & on. UNLWORD ncion e eecaied.
(2) If input IN_ARY and SEG_ARY are as below,

IN_ARY[0]
IN_ARY[1]
IN_ARY[2]

IN_ARY[3]

A3B5S

B4C6

C5D7

D6ES

SEG_ARY[0]
SEG_ARY[1]
SEG_ARY[2]

SEG_ARY[3]

3
4
7
2

output RESULT = 2#00 1010111 0110 101 = 16#2BBS5.

8-177

8. Basic Function/Function Block Library

WORD _BYTE
Divides WORD into two bytes Mode | GMR | GM1|GM2 |GM3 | GM4 | GM6 | GM7
Application @ @ @ @ @ @ | @
Function Description
Input
EN: executes the function in case of 1.
WORD_BYTE IN: WORD Input
BOOL — EN ENO = BOOL
WORD — IN OUT = BOOL Output
BYTE : LOW ENO: without an error, it will be 1.
BYTE HIGH OUT: dummy output
In/Output
LOW: lower BYTE output
HIGH: upper BYTE output
W Function

> It divides one word data into two byte data.
LOW: lower byte output, HIGH: upper byte output

B Program example

M WORD_BYTI

M3
—] BN BN
INPUT q IN CUTP= DUMMY
FBYTE_OUT 1| Lo

POV TE_CLITEY HY GH

(1) e transiion condition (%M 3) = on,WORD_BYTEfuncnon T
(2) If input variable INPUT is 16#ABCD, then BYTE_OUT1 = 16#CD and BYTE_OUT2 = 16#AB.

o

8-178

8. Basic Function/Function Block Library

WORD DWORD
Combines two WORD data into DWORD Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7

Application @ @ ©® ©® © @ @

Function Description
Input
WORD_DWORD EN: executes the function in case of 1.
BOOL < eN ENO BOOL LOW: lower WORD input
WORD —{ [ow OUT b~ DWORD HIGH: upper WORD input
WORD =~ HIGH
Output
ENO: without an error, it will be 1.
OUT: DWORD output
B Function

It combines two WORD data into one DWORD.
LOW: lower WORD input, HIGH: upper WORD input

B Program example
LD

WORD_DWWO)
®1X1.1.5 D
— |—{EN ENC-

FINPUTT qLOW OUTR= RESLLT

I INFUT2 qHIGH

(2) If the transition condition (%1X1.1.5) is on, WORD_DWORD function is executed.
(2) If input variable INPUT1 = 16#10203040 and INPUT2 = 16#A0B0CO0DO,
output variable RESULT = 16#A0B0C0D010203040.

8-179

8. Basic Function/Function Block Library

XCHG_ ***
Exchanges two input data Mode | GMR | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ @® | @® @ @ @ | @
Function Description
Input
EN: executes the function in case of 1.
XCHG Output
BOOL =~ EN ENO =BOOL ENO: Without an error, it will be 1.
ANY = INT oUT = B00L OUT: Dummy Output
ANY — IN2 In/Out
IN1: In/Output 1
IN2: In/Output 2
B Function

Exchanges inputl data with input2 data.

Function In/Out type Description
XCHG_BOOL BOOL Exchanges two BOOL input data.
XCHG_BYTE BYTE Exchanges two BYTE input data.
XCHG_WORD WORD Exchanges two WORD input data.
XCHG_DWORD | DWORD Exchanges two DWORD input data.
XCHG_LWORD | LWORD Exchanges two LWORD input data.
XCHG_SINT SINT Exchanges two SINT input data.
XCHG_INT INT Exchanges two INT input
XCHG_DINT DINT Exchanges two DINT input data.
XCHG_LINT LINT Exchanges two LINT input data.
XCHG_USINT USINT Exchanges two USINT input data.
XCHG_UINT UINT Exchanges two UINT input data.
XCHG_UDINT UDINT Exchanges two UDINT input data.
XCHG_ULINT ULINT Exchanges two ULINT input data.
XCHG_REAL REAL Exchanges two REAL input data.
XCHG_LREAL LREAL Exchanges two LREAL input data.
XCHG_TIME TIME Exchanges two TIME input data.
XCHG_DATE DATE Exchanges two DATE input data.
XCHG_TOD TOD Exchanges two TOD input data.
XCHG_DT DT Exchanges two DT input data.
XCHG_STRING | STRING Exchanges two STRING input data.

8-180

8. Basic Function/Function Block Library
W Program example

LD

MO [XCHG_BOC
—EN ENOe

b INPUTT { V2 OUTR= CUMY

F o INPUTZ {742

(1) If the transition condition (%MO0) is on, XCHG_BOOL function is executed.

(2) If INPUT1 = 0 and INPUT2 = 1, it will exchange two input data. After the function execution, INPUT1 = 1
and INPUT2 = 0.

8-181

8. Basic Function/Function Block Library

8.3 Basic Function Block Library
1. This chapter describes basic function blocks respectively.
2. It's much easier to apply function block library to your program after grasping the general of
function blocks.

8-182

8. Basic Function/Function Block Library

CTD
Down Counter (function block) Mode | GMR | GM1|GM2 |GM3 | GM4 | GM6 | GM7
Application | @ @ @ @ | ©® | @ @
Function block Description
Input CD: down counter pulse input
CTD LD: loads a preset value
BOOL= CD Q | BOOL PV: preset value
BOOL+ LD
INT o PV CVl INT Output Q: down counter output
CV: current value
W Function

> Down counter function block CTD decreases the current value (CV) by 1 with every rising pulse input.

[> CV decreases only when CV is more than the minimum value of INT (-32768); after reaching it, CV does
not change its value.

> When LD is 1, PV is loaded into CV (CV=PV).
> Output Q is 1 when CV is 0 or a negative number.

B Time Chart

LD (preset value input)

< PV setting

CV (current value) S 0 Max. coefficient
(-32768)

Q (down counter output)

8-183

8. Basic Function/Function Block Library

B Program Example .
This is the program that sets the output contact (%00.3.0) when the down counter pulse input enters the
input contact (%10.1.14) five times.

LD IL
_COUNT_D] CAL CTD COUNT_O
2I0.1.14 CTD
L —]eo ok comr_ o | CD %I0.1.14
LD _10N
_10F JLo 7 fm COUNT_Ci . PV 5
LD COUNT_D.Q
N i ST COUNT_Q
LD COUNT_D.CV
ST COUNT_cCV
COUNT_1Q 2Q0.3.0
— | {5 — LD COUNT_Q
S %0Q0.3.0

(1) Register the name of CTD function block (COUNT_D).

(2) Make the input contact (%10.1.14) attached to CD.

(3) Make the flag 10N (1 scan ON contact) that loads PV into CV.

(4) Set the PV value as 5.

(5) Set the CV value as the random output variable (COUNT_CV).

(6) Set the Q value as the random output variable (COUNT_Q).

(7) Compile and write your program to the PLC after completing the program.

(8) After writing, change the PLC mode (Stop -> Run).

(9) If program runs, PV 5 will be loaded into CV (Count_CV).

(10) The current value CV (COUNT_CV) decreases by 1 when the pulse input enters the input contact
(%10.1.14).

(12) When the down counter pulse input enters the input contact (%I10.1.14) five times, CV (COUNT_CV) will
be 0 and Q (COUNT_CV) 1

(12) If Q (COUNT_Q) is 1, the output contact (%Q0.3.0) will be set.

8-184

8. Basic Function/Function Block Library

CTuU
Up Counter (function block) Mode | GMR |GM1|GM2 |GM3 | GM4 | GM6 | GM7
Application | @ @ @ @ ©® @ ©
Function Block Description
Input CU: up counter pulse input
R: reset input
CTU PV: loads a preset value
BOOL = CU Q F BOOL
BOOL | R Output Q: increase counter output
INT = PV cvlk INT CV: current value
v Function

> Up counter function block CTU increases the current value (CV) by 1 with every rising pulse input.
> CV increases only when CV is less than the maximum value of INT (32767); after reaching it, CV does

not change its value.
> When the reset input (R) is 1, CV is cleared (0).
> Output Q is 1 when CV is equal to or more than PV.

v Time Chart

R (Reset input) _L | L

CU (CTU input) Ll e aET Max. coefficient (32767)

PV (preset value)

CV (current value)
Q (CTU output)

v Program Example
This is the program that sets the output contact (%00.3.1) when the increase counter pulse input enters the

input contact (%I10.1.15) ten times.

LD IL
COTHT 1
2I0.1.15 °cTiT CAL CTU COUNT_U
— O cowr_o 1 cu %10.1.15
R %10.1.5
FI0.1.5 JER Ciffm COUNT_CWF
PV 10
I LD COUNT_V.Q
ST COUNT_Q
LD COUNT_CV.Q
comT_q ‘050 ST COUNT_CV
— | {5 — LD COUNT_Q
S %Q0.3.0

8-185

8. Basic Function/Function Block Library

(1) Register the name of CTU function block (COUNT_U).

(2) Make the input contact %I10.1.15 attached to CU.

(3) Set the PV value as 10.

(4) Assign input contact %I0.1.5 to the reset input R.

(5) Set the CV value as the random output variable (COUNT_CV).

(6) Set the Q value as the random output variable (COUNT_Q).

(7) Compile and write your program to the PLC after completing the program.

(8) After writing, change the PLC mode (Stop - Run).

(9) The current value CV (COUNT_CV) increases by 1 when the pulse input enters the input contact
(%10.1.15).

(10) When the up counter pulse input enters the input contact (%10.1.15) ten times, CV (COUNT_CV) will be
10 and Q (COUNT_CV) 1

(12) If Q (COUNT_Q) is 1, the output contact (%Q0.3.0) will be set.

8-186

8. Basic Function/Function Block Library

CTuD

Up/Down Counter (function block)

Mode | GMR | GM1|GM2 |GM3

GM4

GM6

GM7

Application| @ | @

Function Block

Description

CTUD
BOOL CU QU BOOL
BOOL 5 CD QDp BOOL
BOOL q R
BOOL = LD
INT =PV CVP INT

Input CU: up counter pulse input

CD: down counter pulse input
R: reset
LD: loads a preset value

PV: preset value

Output QU: up counter output

QD: down counter output

CV: current value

v Function

> Up/Down counter function block CTUD increases the current value (CV) by 1 with every rising up-counter

pulse input (CU) and decreases CV by 1 with every rising down-counter pulse input (CD). Note that CV

is between -32768 and 32767 (INT).

When LD is 1, PV is loaded into CV (CV=PV).

When the reset input R is 1, CV is cleared (0).

When CV reaches PV, the output QV is 1; when CV is 0 or a negative integer, the output QD is 1.
The operation for each input signal is executed in order of R > LD > CU > CD. Note that if the input

VAR VAR VARV

signals are fed to the input (CU, CD, R, and LD) of CTUD at the same time, the operation of CTU follows

the above priority.

B Time Chart

LD (loading PV)

R (reset) —,_l

CU (CTU input)

CD (CTD input)

(P

eset

alug)

CV (current value)

QU (CTU output)

QD (CTD output) |-

8-187

8. Basic Function/Function Block Library

B Program Example

LD IL
CAL CTUD INS_CUD
_INS_CUD— CU:= %I10.1.0
210.1.0 cTUD STACK_FUL
— - L CD:= %I1.1.0
BT ACHK_EMP R := %MO
z11.1.0 Jeoo ol T¥
LD:= %M1
STOEED_HU
o Jm CUWl- MEER PV:= STACK_MAX
LD INS_CUD.QU
zrn Juo
ST STACK_FULL
ST ACK_MAXJPU LD INS_CUD.QD
ST STACK_EMPTY
LD INS_CU.CV
ST STORED_NUMBER

Conditions are: the temporary loading part STACK_MAX is 100; IN is 1 with every material-input signal while

OUT is 1 with every material-output signal. If the material input process is faster than the material-output one

and every material is loaded so that the STACK MAX is equal to or more than 100, then QU is 1
(STACK_FULL = 1); if there's no material left in the loading part, QD is 1 (STACK_EMPTY = 1). At the
STORED_NUMBER, the number of remaining material in the loading part is shown.

%M1

%MO ——r_w

%10.1.0 NN EENEEEEE

%I1.1.0

TACK_MAX (1

STORED_NUMBE

STACK_FULL

STACK_EMPTY

8-188

8. Basic Function/Function Block Library

F_TRIG

Falling Edge Detection (function block)

Mode | GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application @ @ @ ©® @ @

Function Block Description

Input CLK: input signal

F_TRIG
BOOL =CLK QF BOOL Output Q: falling edge detection result

W Function
The output Q of function block F_TRIG is 1 with the falling pulse input to CLK. And 1 scan later, without

further falling pulse input, the output Q is O ever after.

B Time Chart
CLK—I—I
o I
—4 |« (1 scan or F_TRIG execution time)
B Program Example

LD IL

CAL F_TRIG INS_FT

TI0.0.0 FALL_DETE

— 1 CLK:i= %0.0.0
: LD INS_FT.Q
ST FALL_DETECT

If the input variable (%I0.0.0) changes from 1 to O, while detecting its state, the output variable

FALL _DETECT will be 1. And 1 scan later, the output variable FALL_DETECT will be 0.

8-189

8. Basic Function/Function Block Library

RS

Reset Priority Bistable (function block)

Mode |

GMR | GM1|GM2 |GM3 | GM4

GM6

GM7

Aoplication| @ @ @ @ | @

Function Block Description
Input R1: Reset condition
RS S: Set condition
BOOL «S Q1 | BOOL
BOOL —R1 Output Q1: Operation result
v Function
R1 —J & Q1
S — =1
QA —

If R1is 1, output Q1 will be O regardless of the state of S.
The output variable Q1 is 1 when it maintains the previous state, R1is 0, and Sis 1, it will be 1.

The initial state of Q1 is O.

v Time Chart

R1

s | |

Q1

v Program Example

LD IL
CAL RS INS_R
e INZ_ P R1: = RESET1
_|SET|1_3 * 01}~ RESULT S = SET1
N LD INS_R.Q1
ST RESULT

(1) The output variable RESULT is 0 and maintains its value when the input variables SET1 and RESET1

become simultaneously ON.
(2) The output variable RESULT is 0 and maintains its value when RESET1 becomes ON and SET1 is OFF.
(3) The output variable RESULT is 1 and maintains its value when SET1 becomes ON and RESET1 is OFF,

8-190

8. Basic Function/Function Block Library

R_TRIG

Rising Edge Detection (function block) Model | GMR | GMIT |GM2 |GM3 | GM4 | GMG | GM7

Application] @ @ @ @ ©@® @ @

Function Block Description

R_TRIG Input CLK: input signal
BOOL =CLK Q| BOOL

Output Q: rising edge detection result

v Function

The output Q of function block R_TRIG is 1 with the rising pulse input to CLK. And 1 scan later, without
further falling pulse input, the output Q is O ever after.

v Time Chart
cLK —1 L
o — 1 1
- k- (1 scan or R_TRIG execution time)

v Program Example

LD IL
CAL R_TRIG INS_RT
— INZ_ET CLK: = IN_SIGNAL
I¥_21cHaL | B_TRIG | RISE_DETE
p—{cLx CT LD INS_RT.Q
ST RISE_DETECT

If the input variable IN_SIGNAL changes from 0 to 1, while detecting its state, the output variable
RISE_DETECT will be 1. And 1 scan later, the output variable RISE_DETECT will be 0.

8-191

8. Basic Function/Function Block Library

SEMA

Semaphore (System resource allocation)

Mode | GMR | GM1|GM2 |GM3 | GM4 | GM6

GM7

Application| @ @ @ @ @ @

Function Block

Description

Input CLAIM: signal to claim a resource monopoly

SEMA RELEASE: release signal
BOOL =—CLAIM BUSY |= BOOL
BOOL qRELEASE Output BUSY: waiting signal not to obtain the claimed
resource
v Function

This function block is used to get an exclusive control right for system resources.
BUSY is 1 when SEMA function is executed (CLAIM =1 or 0, RELEASE = 0) and other program is using the

resource. If you want to obtain the resource control right, wait until BUSY will be 0 after executing SEMA
function block (CLAIM = 1, RELEASE = 0). When BUSY is 0, it controls the associate resource and after

completing the control, it transfers the control right executing SEMA function block once again with CLAIM =

0 and RELEASE = 1. (At this time, the program that has the control right can execute SEMA function block
with CLAIM = 0 and RELEASE = 1)

* The instance of SEMA should be declared as "GLOBAL" so that its access is available in the programs

requiring the resource.

* Each program to claim the same resource should be designated as the same priority.

* Not available to use between multi-CPU modules in GM1.

¢ Internal execution structure of SEMA function block
=0; END_VAR

VAR X :BOOL:

BUSY :=X;

IF CLAIM THEN X:=1;
ELSIF RELEASE THEN BUSY:=0;X:=0;

END_IF
v Time Chart

The access right to control the same resource is transferred between the program block A and the program

bIOCk B ...
A B A B
CLAIM
A B A
RELEASE
BUSY
Control right A used B used A used B used

8-192

8. Basic Function/Function Block Library

v Program Example

LD IL

—FFINTER— . CAL SEMA PRINTER
3|T APiT L iEIE;:?JsY L NOT_&7AIL ! CLAIM:= START
I RELEASE:= END
= e ' LD PRINTER.BUSY
é ST NOT_AVAIL

When you want to produce a printer output in different program blocks with the printer attached to the PLC
system, you can easily control it by declaring the instance 'PRINTER' 'GLOBAL' and using SEMA function
block named as 'PRINTER' in each program. If you execute SEMA function block (PRINTER), when START
is 1 and END is 0, and claim the right to control the printer, while the printer is used in other program block,
BUSY is 1. If the printer is not used in other program block, BUSY will be 0, which means you can start the
program to produce the printer output with it. After completing the print control, execute SEMA with START =
0 and END = 1 so that other program can get the right to control it.

VAR_EXTERNAL S1 CLAIM_PT; claim the printer control right
PRINTER: SEMA
END_ VAR CAL SEMA PRINTER
CLAIM:= 1
RELEASE:= 0
S1 N CLAIM_PT Ti PT_AVAIL; printer control right check

LON PRINTER.BUSY
- T1 PT_AVAIL ST TRANS

S2 PRINTING; printer output

S2 —{ N | PRINTING Printgr cgntrol program
[f print is completed, PRINT_DONE:=1

L PRT_END T2 PRT_END; print completion check
LD PRINTER_DONE
ST TRANS
S3 P | REL_PRT S3 REL_PRT; transfer printer control
CAL SEMA PRINTER
-+ T3 RE_PRT CLAIM:= 0
RELEASE:= 1

T3 RE_PRT; printer request again

LD PRT_REQ
ST TRANS

8-193

8. Basic Function/Function Block Library

Bl Bl FR.INT CLATM PT
Linel [~/ Fd { | e I
Bl Bl
Linel [— | Fd,
Bl Bl FR.INT Iz
Line? | | { | >>
B
Line3 -
~FR INTER -
CLATM PT LEMY B
Line4 CLATRTEY -
I
Line3 1] 4EELE
A5E
Lined
a1
LineT {5 —
FRINT XM
PR INTING E
Linef Printer Output COME { —
ser-define
Line® Function Block
or Program
Linel0
Bl
Linell {5—
FRINT LW
E B
Linel? |~/ -
- FF. INTEE:
_OFF SEML
Lineld |~ p—{CLAIBTEY
I
Linel4 1 4EELE
A5E
Linel3
_OH |
Lineld |~ | {R—
Bl
LinelT R —
FE.INT
Lineld —{ R
B
Linel%

8-194

8. Basic Function/Function Block Library

SR
Set Priority Bistable (function block) Mode | GMR | GM1|GM2 |GM3 | GM4 | GM6 | GM7
Application] @ @ @ @ ©@® @ @
Function Block Description
SR Input S1: set condition
BOOLH s1 o1f BooL R: reset condition
BOOL" R
Output QI1: operation result
v Function
S1 21 Q1
R—Q &
Q1 ——

If S1is 1, output Q1 will be 1 regardless of the state of R.
The output variable Q1 is 0 and it maintains the previous state when S1is 0, and R is 1.
The initial state of Q1 is 0.

v Time Chart

S1 ‘ :

R [1] [1]
Q1

v Program Example

LD IL

CAL SR INS_S

e IND_ P . S1:= SET1
|SET|1 51 SR Qlj= REZVLT ; R: = RESET1
T INS_S.01
T ST RESULT

(2) If input variable SET1 becomes 1, output variable RESULT will be ON.
(2) The output variable RESULT becomes 0 when input variable SET1 becomes 0 and RESET1 ON.

8-195

8. Basic Function/Function Block Library

TOF

OFF Delay Timer (function block) Mode | GMR | GM1|GM2 |GM3 | GM4 | GM6 | GM7
Application] @ @ @ @ ©@® @ @

Function Block Description

Input IN: timer operation condition

PT: preset time
TOF

BOOL= IN Qf BOOL
TIME = PT ETp TIME

Output Q: timer output

ET: elapsed time

v Function

If INis 1, Q will be 1. And after IN becomes 0 and the preset time (PT) of TOF passes, Q becomes 0.

After IN becomes 0, the elapsed time (ET) will be shown. If IN becomes 1 before ET reaches the preset time,

ET will be 0 again.

v Time Chart
IN

Q

PT PT
Preset time PT

ET

v Program Example

LD IL

CAL TOF INS_TOF

IN:= T_OFF
; PT:= T#10S
T_OFF TIMER_OK LD INS_TOF.Q
T#10S ET_TIME ST TIMER_OK
LD INS_TOF.ET
ST ET_TIME

8-196

8. Basic Function/Function Block Library

T_OFF

TIMER_OK 10s

Preset time 10s

ET_TIME

(1) Output variable TIMER_OK is 1 when input variable T_OFF becomes 1.

(2) TIMER_OK is 0 only if 10 seconds passes after T_OFF becomes 0.

(3) If T_OFF becomes 1 again in 10 seconds after it turned OFF, TOF will be initialized (TIMER_OK is 1).
(4) After T_OFF becomes 0, the elapsed time (ET_TIME) will be measured and shown.

8-197

8. Basic Function/Function Block Library

TON

ON Delay Timer (function block) Mode | GMR | GM1|GM2 |GM3 | GM4 | GM6 | GM7
Application| @ @ @ © ©® @ | ©

Function Block Description

Input IN: timer operation condition

PT: preset time
TON

BOOL- IN Q | BOOL
TIME - PT ET[J TIME

Output Q: timer output

ET: elapsed Time

v Function

Elapsed time (ET) is measured and shown after IN becomes 1. When IN becomes 0 before ET reaches the
preset time, ET will be 0. If IN becomes 0 after Q is 1, Q will be 0.

v Time Chart
IN
Q
PT
. i Preset time PT
ET

v Program Example

LD 5 IL

CAL TON INS_TON
IN:= T_ON
PT:= T#10S
TIMER_OK W INS_TON.Q
ET_TIME ST TIMER_OK
D INS_TON.ET
ST ET_TIME

8-198

8. Basic Function/Function Block Library

T_ON

TIMER_OK

10s

Preset timel0s

ET_TIME

(1) The output TIMER_OK = 1 ten seconds later after the input T_ON is asserted (T_ON =1).
(2) Elapsed time ET_TIME is measured and shown after the input T_ON becomes 1.

(3) When T_ON = 0 before ET_TIME reaches the preset time (10s), ET_TIME will be 0.

(4) If T_ON =0 after TIMER_OK =1, then TIMER_OK =0 and ET_TIME = 0.

8-199

8. Basic Function/Function Block Library

TP
Pulse timer (function block) Mode | GMR | GM1|GM2 |GM3 | GM4 | GM6 | GM7
Application] @ @ @ @ © @ | ©
Function Block Description
Input IN: timer operation condition
PT: preset time
TP
BOOL N Qf BOOL Output Q: timer output
TIME P T ETF= TIME ET: elapsed Time
v Function

If IN =1, Q will be 1 only during the preset time PT; if ET reaches PT, Q will be 0.

If IN = 1, elapsed time ET starts to be measured and maintains its value after when it reaches PT; if IN = 0
after ET reaches PT, ET = 0.

The state of IN doesn't matter while ET is measured (increased).

v Time Chart
IN
Q
PT
Preset time PT
ET

v Program Example

LD IL

CAL TP INS_TP

IN:= T_TP
PT:= T#10S
T TP TIMER_OK LD INS_TP.Q
T#10S ET_TIME ST TIMER_OK
LD INS_TP.ET
ST ET_TIME

8-200

8. Basic Function/Function Block Library

T_TP —|_H

TIMER_OK 10s Preset time 10s

ET_TIME

(1) TIMER_OK is 1 during 10 seconds after input T_TP was asserted (T_TP = 1). While ET_TIME increases
during 10 seconds, the state of input T_TP doesn't affect TIMER_OK.
(2) ET_TIME increases when it reaches T#10S and then it becomes O when T_TP = 0.

8-201

8. Basic Function/Function Block Library

8.4 Application Function Block Library
1. This chapter describes each application function block library (MASTER-K and others).
2. It's much easier to apply function block library to your program after grasping the general of function
blocks.

8-202

8. Basic Function/Function Block Library

CTR
Ring Counter Mode | GMR | GM1|GM2 |GM3 | GM4 | GM6 | GM7
Application| @ @ @ | @® @ @ | @
Function Block Description
Input
CD: pulse input of Ring Counter
BO0L - CTR a ool PV: preset value
] B RST: reset
INT = PV CV = INT
ROOI — RST
Output
Q: Ring Counter output
CV: current value
W Function

> CTR function block (Ring Counter) functions: current value (CV) increases with the rising pulse input (CD) and if,
after CV reaches PV, CD becomes 1, then CVis 1.

> When CV reaches PV, output Q is 1.

> If CVis less than PV or reset input (RST) is 1, output Q is O.

W Timing Chart

R (Reset)

CD (Pulse input) 111 TITITE
PV (Preset Value)

CV (Current Value)

Q (CTR Qutput)

8-203

8. Basic Function/Function Block Library

W Program Example
Output %Q1.3.1 is on with 10-time rising pulse input of %I1.1.0 is depicted as below.

LD
—INS_CTR

%11.1.0 CTR
— O = COLNT_Q
10 Py Cip=COUNT_NUM

k5011 109 RST

_C(iUNTI_Q

as
~e
w
)

(1) Define CTR function block as INS_CTR.

(2) Set %I11.1.0 to the input contact of CD referring to the above.

(3) Set 10 to PV.

(4) Set %11.1.10 to RST resetting CV.

(5) Set random variable COUNT_NUM to CV.

(6) Set random output variable COUNT_Q to Q.

(7) After a program is complete, compile and write it to PLC.

(8) When ‘Write’ is complete, do ‘Mode Change’ (Stop = Run).

(9) CV (COUNT_NUM) increases by 1 in number with the rising input pulse of %I11.1.0, CD

(10) With 10-time rising input pulse of input contact, CV is 10 which is the same as PV and output variable
COUNT_Qiis 1.

(12) If Q (COUNT_Q) is 1, output contact %Q1.3.0 is on.

(12) If the rising input pulse is loaded into input contact %I1.1.0, then Q (COUNT_Q) is 0 and output
contact %Q1.3.0 is off.

8-204

8. Basic Function/Function Block Library

DUTY

Scan setting On/Off

Model | GMR [GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application| @ | @ @ @ @ | ©® | @

Function Block

Description

Input
REQ: requires to execute the function block

DUTY SON: scan number to turn on
SOFF: scan number to turn off
BOOL — REQ OONE [—BOOL
INT =] SON OUT [~ BOOL
DONE: itis 1 when REQ is on and both input
variables are not less than 0.
OUT: output is 1 during on scan time
W Function

> DUTY function block produces a pulse which is on during the SON scan time and off during the SOFF scan

time while REQ is on.
If SON =0, OUT is always off.

If SON >0 and SOFF =0, OUT is always on.

>
>
> If REQ is off, OUT is off.
>

If SON < 0 or SOFF < 0, then DONE is off and OUT is O.

B Timing Chart

REQ

Timing Pulse

ouT

- SON Scan : SOFF Scan -

8-205

8. Basic Function/Function Block Library

W Program Example

_Ifinput contact %I1.1.0 is set, output contact %Q1.3.0 is on during 3 scan times and off during 4 scan times.
LD

rINS_DUTY-
%11.1.0 CuTY
—{ REC DONER

%21.3.0
3 SON - oUTy —

4 S0FF

(1) Define DUTY function block as DUTY_C.

(2) Set %I1.1.0 to REQ (the input contact) of DUTY.

(3) Set 3to SON.

(4) Set 4 to SOFF.

(5) Set %Q1.3.0 to output OUT.

(6) After a program is complete, compile and write it to PLC.

(7) When ‘Write' is complete, do ‘Mode Change’ (Stop = Run).

(8) Ifinput contact %I1.1.0 is on, output contact %Q1.3.0 is on during 3 scan times and off during 4 scan times.

8-206

8. Basic Function/Function Block Library

FIFO_***
Load/Unload data to FIFO stack Mode | GMR | GM1|GM2 |GM3 | GM4 | GM6 | GM7
(First In First Out) Application| @ @ @ @ @ @ | @
Function Block Description
Input
REQ: requires to execute the function block
IN: input data to be stored at FIFO stack
FIFO LOAD: FB is on the input mode, if it's on.
_ | UNLD: FB is on the output mode, if it's on,
8285 _ ﬁ\% q D8”$ | iﬁgL RST: pointer value reset
ANY_ARY — FIFO PNT f—INT output
BOOL = — BOOL
BOOL — bﬁﬁg EH'{\L(L BOOL DONE: it's 1 after first execution
BOOL — RST OUT: on output mode, it's the data from FIFO stack
PNT: pointer for input data of FIFO stack
FULL: if FIFO stack is full, it's 1
EMTY: if FIFO stack is empty, it's 1
In/Output
FIFO: array used as FIFO stack
W Function

> Itloads IN to FIFO or unloads data from FIFO.

> If Input and Output mode are set at the same time, it executes In/Output simultaneous.

> If data is unloaded from FIFO, then the output is the lowest element of stack, the rest elements are shifts, PNT
value is decreased by 1, and the element position of PNT is cleared (0).

> If RST is loaded to FIFO, PNT is initialized as 0, EMTY is on and all the data of FIFO stack are cleared as 0.

> The stack number is the input array number set by In/Output variable FIFO.

> If you want to keep the data of FIFO array variables and FIFO function block instance in case that power is off
or power failure occurs, set them as 'RETAIN'.

> Reset functions without REQ input.

> PNT shows the position of IN to be loaded next time, or the number of pointers to be loaded.

> Ifit's on the input mode, output OUT is 0.

8-207

8. Basic Function/Function Block Library

Function FIFO variable type Description
FIFO Q BOOL It functions as FIFO for BOOL-type data
FIFO B BYTE It functions as FIFO for BYTE-type data
FIFO W WORD It functions as FIFO for WORD-type data
FIFO DW DWORD It functions as FIFO for DWORD-type data
FIFO_ LW LWORD It functions as FIFO for LWORD-type data
FIFO_SI SINT It functions as FIFO for SINT-type data
FIFO | INT It functions as FIFO for INT-type data
FIFO DI DINT It functions as FIFO for DINT-type data
FIFO LI LINT It functions as FIFO for LINT-type data
FIFO_USI USINT It functions as FIFO for USINT-type data
FIFO_UlI UINT It functions as FIFO for UINT-type data
FIFO_UDI UDINT It functions as FIFO for UDINT-type data
FIFO_ULI ULINT It functions as FIFO for ULINT-type data
FIFO R REAL It functions as FIFO for REAL-type data
FIFO LR LREAL It functions as FIFO for LREAL-type data
FIFO_TM TIME It functions as FIFO for TIME-type data
FIFO _DAT DATE It functions as FIFO for DATE-type data
FIFO TOD | TOD It functions as FIFO for TOD-type data
FIFO DT DT It functions as FIFO for DT-type data

LoAD
FIFO FIFO
4 PMI: 4[4
PNT: 3 [3 [FIFO[3]
I Bl FIFO[2] Bl FIFO[Z]
FIFO[b
mf FIFO[1] m| FIFO[1]
M| FIFC[0] M| FIFC[O]
Befare after
UHLOAD
FIFO FIFO
PNT: 4 [#] [
[FIFO[3] PN 33 [3] ot
m| FIFO[2] | —"> W| FIFO[3] FIFO[m)
) FIFO[1] m| FIFO[Z]
M| FIFO[0] M| FIFO[1]
Befara after

8-208

8. Basic Function/Function Block Library

LD
%11.1.0 LOAD
— | (P>—
%11.1.1 LINL0AD
— (F—
£01.1.15 RESET
1} { P —
LR = oo [
[_
! - | ————————{ REQ] DONE}
311,11 LNLOAD
— | CPO— 5555 { 1N OUTR= OUTPUT
%11.1.15 RESET
= | — L F— FIFO {#7F0 PNTRPNT_ INDEX
LOAD FIFO_|
] REQ DOMER 1 LOAD FULL=FLLL _FLAG
LUNLDAD
] 5555 IN OUTk= OUTPUT 0 IMNLD EMTY=EMTY _FLAG
FIFO {#7FC PNTP=PNT_INDEX RESET | RST
LOAD {LOAD FULLI=FLLL _FLAG INS_FIF
LNL 04D FIFO_|
REQ DONE
UNLOAD { UMLD EMTj=EMTY_FLAG
0 N OUTp= OUTPUT
RESET {RST
FIFD {747 PNTRPNT_ INDEX
1 LOAD FULL=FLLL _FLAG
0 { UMD EMTYR=EMTY_FLAG
RESET {RST

FIFO_*** function block is used as the above. The two examples of the above execute the same operation.
The left one is a program which executes input and output functions at the same time to use only one
function block while the right one is a program which executes input and output functions independently to
use input function and output function respectively. Note that the instance name should be the same on the
right program.

(2) If the input conditions (%I11.1.0, %I1.1.1, %I1.1.15) are on, FIFO_INT is executed.
(2) If input contact %I1.1.0 is on, load function is executed. 5555 is loaded to FIFO stack and PNT_INDEX
increased by 1.
(3) If input contact %I1.1.1 is on, unload function is executed. 1111 is unloaded from FIFO stack and
PNT_INDEX decreased by 1.
(4) If input contact %I1.1.15 is on, reset function is executed. All the stack of FIFO is cleared as O,
PNT_INDEX is initialized as 0 and EMTY_FLAG is on.

8-209

8. Basic Function/Function Block Library

IN=
5555

[+

El

]
[

[+
Fl

[2]
]

]

[+
Fl

6]
o

]

LOAD (%I1.1.01s OM)

FIFO FIFO

" p| 55355
4444 |:>m 4444
3333 m| 337
2222 m| 2222
1111 M 11
PHT=4 PHT=5

UNLOAD (%01.1,1 is ON)
FIFO FIFO
5555 #] 1]
4444 |:>131 5555 | g RPUT=
1111

3333 m| 4444
2222 ml 3333
1111 Ml 2222
PHT=5 PHT=4

RESET (%l1.1.15i= ON}

FIFO FIFO
0)
5555 |:>131 0
4444 m 0
3333 Mo g
2222 Mg

PNT=4 PNT=0

8-210

8. Basic Function/Function Block Library

LIFO_***
Load/Unload data to LIFO stack Mode | GMR | GM1|GM2 |GM3 | GM4 | GM6 | GM7
(Last In First Out) Application| @ @ @ @ @ @ | @
Function Block Description
Input
REQ: requires to execute the function block
IN: input data to be stored at LIFO stack
LIFO LOAD: FB is on the input mode, if it's on
BOOL — REQ DONE = BOOL UNLD: FB is on the output mode, if it's on
ANY =1 IN OUT 1= ANY RST: pointer value reset
ANY_ARY = LIFO PNT = INT
BOOL — LOAD FULL [BOOL out
B put
BOOL — UNLD EMTY 1= BOOL DONE: it's 1 after first execution
BOOL — RST OUT: on output mode, it's the data from LIFO stack
PNT: pointer for input data of LIFO stack
FULL: if LIFO stack is full, it's 1
EMTY: if LIFO stack is empty, it's 1
In/Output
LIFO: array used as LIFO stack
W Function

> Itloads IN to LIFO or unloads data from LIFO.

> If LOAD and UNLD are on at the same time, input IN is produced as output OUT.

> If data is unloaded from LIFO by unload function of LIFO_*** unloaded data is deleted in stack and initialized
as 0.

> If RST is loaded to LIFO, PNT is initialized as 0, EMTY is on and all the data of LIFO stack are cleared as 0.

> The stack number is the array number set by In/Output variable LIFO.

> If you want to keep the data of LIFO array variables and LIFO function block instance in case that power is off
or power failure occurs, set them as 'RETAIN'.

> Reset functions without REQ input.

> PNT shows the position of IN to be loaded next time, or the number of pointers to be loaded.

> Ifit's on the input mode, output OUT is 0.

8-211

8. Basic Function/Function Block Library

Function FIFO variable type Description
LIFO Q BOOL It functions as LIFO for BOOL-type data
LIFO B BYTE It functions as LIFO for BYTE-type data
LIFO W WORD It functions as LIFO for WORD-type data
LIFO_DW DWORD It functions as LIFO for DWORD-type data
LIFO_LW LWORD It functions as LIFO for LWORD-type data
LIFO_SI SINT It functions as LIFO for SINT-type data
LIFO | INT It functions as LIFO for INT-type data
LIFO DI DINT It functions as LIFO for DINT-type data
LIFO LI LINT It functions as LIFO for LINT-type data
LIFO_USI USINT It functions as LIFO for USINT-type data
LIFO_UI UINT It functions as LIFO for UINT-type data
LIFO_UDI UDINT It functions as LIFO for UDINT-type data
LIFO_ULI ULINT It functions as LIFO for ULINT-type data
LIFO R REAL It functions as LIFO for REAL-type data
LIFO LR LREAL It functions as LIFO for LREAL-type data
LIFO_ T™M TIME It functions as LIFO for TIME-type data
LIFO_DAT DATE It functions as LIFO for DATE-type data
LIFO TOD | TOD It functions as LIFO for TOD-type data
LIFO DT DT It functions as LIFO for DT-type data

LOAD
LIFD LIFD
PNT: 4 1]
PNT: 3 Fl Bl LIFO[3]

i)

Lropr— P_LIFOR] > m LIFO[2]
Rl LIFO[L] Bl LIFO[L]
M| LIFO[0] M| LIFO[O]

Before Efter

LMLOAD
LIFD LIFD
PNT. 4] [+
Bl LIFO[3] PNI: 3 Fl OTT

[2]
]
[

LFoR] | —— | LiFop] LFOE]

LIFO[L

]
LIFO[0]

Before

m| LIFO[1]
m| LIFO[0]
&fter

8-212

8. Basic Function/Function Block Library

LD
%11.1.0 LOAD
| I -\.P)
%11.1.1 LNLOAD
| I -\.P)
%11.1.15 RESET
| I -\.F)
NS LIF
L OAD L IFOL_TH
| | REQ DONE
%11.1.0 LOAD
— | (P> T#s55 { N OUTR OUT
%1111 UNLOAD
— | (P> LIFO {ZZ7C PNT=PNT_INDEX
k11115 RESET
— | NS LIF P 1 {LOAD FULLP=FLLL FLAG
LOAD L IFO_TH
— GRS 0 { UNLD EMTYI=EMTY_FLAG
LN 0AD
— THRES { N OUTR QT eeser |t
LIFD {ZZFCF PNTPNT_ INDEX
LML OAD [lLNISF_Eg_ ITFM
LOAD { LOAD FLLLI=FLLL _FLAG = 0 oL
LNLOAD { UNLD EMTYI=EMTY_FLAG TN TS E———
GERR (S LIFO {Z/2F22 PHT=PNT_ INDEX
0 {LOAD FULLI=FLLL_FLAG
1 LINL DY EMTY}mEMTY_FLAG
RESET {RST

LIFO_*** function block is used as the above. The two examples of the above execute the same operation.
The left one is a program which executes input and output functions at the same time to use only one
function block while the right one is a program which executes input and output functions independently to
use input function and output function respectively. Note that the instance name should be the same on the
right program.

(2) If the input conditions (%I11.1.0, %I1.1.1, %I1.1.15) are on, LIFO_TM is executed.

(2) If input contact %I11.1.0 is on, load function is executed. T#55S is loaded to LIFO stack and PNT_INDEX
increased by 1.

(3) If input contact %I1.1.1 is on, unload function is executed. T#55S is unloaded from LIFO stack and
PNT_INDEX decreased by 1.

(4) If input contact %I1.1.15 is on, reset function is executed. All the stack of LIFO is cleared as T#0S,
PNT_INDEX is initialized as 0 and EMTY_FLAG is on.

8-213

8. Basic Function/Function Block Library

IN=
T#5583

[+

(2]
]
]

[+

Fl

[2]

o
0]

]
Fl
2]
m
]

LOAD (%11.1.0is ORN)

LIFO LIFO
TH#0S Ml Tess
T#443 [::i>ﬁl T#a4%
T#333 m| T3z
T#223 m| T3
TH#113 m| T#11g
PNT=4 PHT=5
UNLOAD (%I1.1.1 is ON)
LIFO LIFO
T#553 M| Tens
TH#443 [::i>ﬁ] THA4Z
T#333 m| T#3zs
T#223 m| T#zzs
TH#113 ml T#I1S
PHT=5 PNT=4
RESET (%l1.1.15is OM)
LIFO LIFO
TH#0S M| T#DS
T#443 [::j>ﬁl THOS
T#333 m| THEDS
T#223 m| T#EDS
TH#113 m| T#DS
PNT=4 PHT=0

OuT=
T#358

8-214

8. Basic Function/Function Block Library

SCON

Step Controller

Model | GMR [GM1 |GM2 |GM3 | GM4 | GM6 | GM7
Application| @ | @ @ @ @ | ©® | @

Function Block

Description
Input
REQ: if it's 1, the function block is executed
SCON S/O: if 0, SET function is enabled;
BOOL = REQ DONE = BOOL if 1, OUT function is enabled.
ROl = ST_0/JP_1 S =BOOI ARY SET: step humber (0 ~ 99)
INT = SET CUR_S = INT

Output

DONE: without an error, it will be 1
S: produces an set bit array
CUR_S: produces a current step number

W Function
I> Setting of step controller group

- The instance name of function block is the name of step controlling group.
(Examples of FB declaration: S00, G01, Manul

Examples of step contacts: S00.5[1], GO1.S[1], Manul.S[1])

> In case of SET function (ST_0/JP_1=0)
- In the same step controller group, the present step number can be on when the previous step number is on
- If the present step number is on, it keeps its state even when the input is off.

- Only one step number is on even when several input conditions are on at the same time.
- If Sxx.S[0] is on, all the SET output is cleared.

> In case of JUMP function (ST_0/JP_1=1)

- In the same step controller group, only one step number is on, even when several input conditions are on.
- If input conditions are on at the same time, last programmed one is produced.

- If the present step number is on, it keeps its state even when the input is off.
- If Sxx.S[0] is on, it returns to its first step.

W Error

> An error occurs when step setting (SET) is out of its range (0 ~ 99).
> If an error occurs, DONE is off and step output maintains its previous step.

8-215

8. Basic Function/Function Block Library

W Program Example

Row 0
Row 1
Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8
Row 9
Row 10

Row 11

Row 12

In case of SET function (ST_0/JP_1 = 0), using SC1 group

- Ssci -
%M1 SCON %
F———REQ DONE[4 %M1
- o i;f? sk s i %
- %M2
— 1 dger CURLE]
S
B — SC1 7 T %
%M2 SoON %M3
it —|REQ DONE[-
- o {510 o} spiT 4 wmo
JP_1 . i
- 2 Jeer ol 4 input condition
S to clear SC1
- m scl T 7]
%M3 SCON
—AF———{rReQ ponef -
- o 4510 st sair 4
P
~ 3 Aser ORp -
S
w0 [S |
F REQ DONE[7
- ST_0 i i
° 1 w1 SpSBIT S_BIT[1]
B 0 ser CURL 4
S
B - S_BIT[2
S_BIT[0] %0090 _BIT[2]
[} R
S BIT[1] A4
0,
T /“%0'3'1 S_BIT[2]
S_BIT[2] %Q0.9.2
I €)
S_BIT[3] %Q0.0.3
L 9,

Step control produces an output when the previous step is on and its present condition is on.

8-216

8. Basic Function/Function Block Library

W Program Example
In case of JUMP function (ST_0/JP_1 = 1), using SC2 group (last input priority)

r SC2 7

9%MO SCON
Row 0 ——AF———REQ nONE[1
ST_0
= 1 8l st s.o0 .
Row 1 P _
Row 2 - 1 dse7 CURF -
N
Row 3 o - SC2 - -
%M1
SCON
Row 4 A0 nonef T
Row 5 - 1 {50 slso .
JP_1
Row 6 - 23 Jse7 OURE]
N
Row 7 - — —
%6M2 SCON
Row 8 —AF———ReQ ponef T
ST_0
Row 9 = 1 4= sk so 4
JP_1 -
Row 10 - 98 4se7 CURL 4
N
Row 11 o — p b
o3 on
Row 12 | L — [=V o)
Row 13 B [Y Sk S0 1
JP_1 -
Row 14 - 0 dser CURE —
N

NO | %M1 [%M2 [%M3 | %M4 | S _O[1] | S O[23] | S_0[98] | S_O[0]

1 On Off Off Off @)

2 On On Off Off O

3 On On On Off (@)

4 Oon On On on O

8-217

8. Basic Function/Function Block Library

TMR
Integration Timer Mode | GMR | GM1|GM2 |GM3 | GM4 | GM6 | GM7
Application| @ @ @ | @® @ @ | @
Function Block Description
Input
IN: operation condition for Timer
TMR PT: preset time
BOOL — N Q =BOOL RST: reset
TIME — PT ET ~TIME
BOOL — RST Output
Q: timer output
ET: elapsed time
W Function

> When IN is 1, elapsed time is produced at ET.

> Even if IN is O before ET reaches PT, ET keeps its value. If IN is 1 again, elapsed time is produced at ET
integrating its previous value.

> If ET reaches PT, Qs 1..

> IfRSTis 1, QandET are 0.

W Timing Chart

RST

PT

ET

PT

A
Y.

8-218

8. Basic Function/Function Block Library

—INS_TMR
T_TMR ™R
— = TIMER_OK

F THI0S qPT ET= ET_TIME

F %I 1 12{RST

T_TMR —

%l1.1.12

10s

ET_TIME

TIMER_OK

(1) If 10 seconds passes after input variable T_TMR is 1, output variable TIMER_OK is 1.

(2) Elapsed time is produced at ET_TIME after T_TMR is 1.

(3) ET_TIME keeps its value even if T_TMR is 0 before ET_TIME reaches its preset time 10 seconds.
(4) If T_TMR is 1, elapsed time is produced at ET_TIME integrating its previous value.

(5) If input contact %I11.1.12 is 1, elapsed time ET_TIME and output variable TIMER_OK are all cleared.

8-219

8. Basic Function/Function Block Library

TMR_FLK
TMR with Flicker Mode | GMR | GM1|GM2 |GM3 | GM4 | GM6 | GM7
Application| @ @ @ | @® @ @ | @
Function Block Description
Input
TMR_FLK IN: operation condition for Timer
BOOL — IN @ —B00L ON: TON setting time
TIME — ON ET —TIME OFF: TOF setting time
TIME — OFF
BOOL —{ RST Output
Q: Timer output
ET: elapsed time
W Function

> IfINis 1, Qis 1 and maintains its value during TON setting time.

> After TON setting time set by ON, Q is O during TOF setting time.

> If IN is O, it stops its function of either on or off operation and keeps its time. If IN is 1 again, it is executed with
its previous data.

> Output Q is 0 while IN is 0.

> If ONis 0, output Q is always 0.

B Timing Chart

IN —
ON Time
ON
ON Time .
< > OFF Time
OFF QFF Time=
Q |

8-220

8. Basic Function/Function Block Library

___ Lo
I THAR_FLE.
T_TMR_FLE | TMRA_FLE 20%1.1.5
— — o]

TH#EE qOM ETP ET_TIME
TRZS |OFF

21,112 qRST

(2) If input variable T_TMR_FLK is 1, TMR_FLK function block is executed.

(2) Output contact %QX1.1.5 is 1 during 5 seconds set by ON after input variable T_ TMR_FLK is 1.

(3) Output contact %QX1.1.5 is 0 during 2 seconds set by OFF after 5 seconds set by ON.

(4) TON time (ON) when Q is 1 and TOF time (OFF) when Q is 0 are produced at ET_TIME by turns while

T_TMR_FLK is 1.
(5) Ifinput variable T_TMR_FLK is 0, then it keeps its time and output contact %QX1.1.5is 0. If T_TMR_FLK

is 1, it is executed again.
(6) Ifinput T_TMR_FLK is 1, elapsed time ET_TIME and output contact %QX1.1.5 are all cleared.

8-221

8. Basic Function/Function Block Library

TMR_UINT
TMR with integer setting Mode | GMR | GM1|GM2 |GM3 | GM4 | GM6 | GM7
Application| @ @ @ @ @ @ | @
Function Block Description
Input
TMR_UINT IN: operation condition for Timer
PT: preset time
—_ — BOOL
BOOL IN o 00 UNIT: time unit of setting time
UINT — PT ET [~ TIME RST: reset input
UINT = UNIT
BOOL = RST Output
Q: timer output
ET: elapsed time
W Function

> Elapsed time is produced at ET after IN is 1.

> Even if IN is O before ET reaches PT, ET keeps its value. If IN is 1 again, elapsed time is produced at ET
integrating its previous value.

> Qis 1 when elapsed time reaches preset time.

> IfRSTis 1, Qand ET are 0.

> Setting time is PT x UNIT (ms).

W Timing Chart

IN —
RST
Setting Time
(PT xUNIT)
ET
« PT x UN|=T
Q

8-222

8. Basic Function/Function Block Library

LD
FTMR_LINT.
T_TMR TMFLU\NT-|
| o WY = TIMER_OK
10 PT ET= ET_TIME
1000 {UNIT
F %11 1. 54 RST

(1) Setting time is PT x UNIT[ms] = 10 x 1000[ms] = 10[s].

(2) Output variable TIMER_OK is 1, if 10 seconds passes after input variable T_TMR is 1.

(3) Elapsed time is produced at ET_TIME after input variable T_TMR is 1.

(4) Evenif T_TMRis 0 before ET_TIME reaches preset time 10 seconds, ET_TIME keeps its value.

(5) If input variable T_TMR is 1 again, elapsed time is produced at ET integrating its previous value.

(6) If input contact %IX1.1.5 is 1, elapsed time ET_TIME and output contact TIMER_OK are all cleared.

T_TMR EE—

%IX1.1.5

Setting Time
(10000ms)

ET_TIME

TIMER_OK

10x 1000

<

8-223

8. Basic Function/Function Block Library

TOF_RST

TOF with Reset Mode | GMR |GM1|GM2 |GM3 | GM4 | GM6 | GM7
Application| @ @ @ | @® @ @ | @
Function Block Description
Input
TOF_RST IN:. operatlo_n condition for Timer
PT: preset time
BOOL —{ IN Q —B0o0L RST: reset
TIME — PT ET —TIME
BOOL — RST
Output
Q: Timer output
ET: elapsed time
W Function

> QislwhenINis 1andQ is O after preset time (PT) after IN is O.
> Elapsed time is produced at ET after IN is 0.
> Elapsedtime is O if IN is 1 before ET reaches PT.
> IfRSTis 1, QandET are 0.

W Timing Chart

RST

Preset Time

(PT)

ET

PT

8-224

8. Basic Function/Function Block Library

rl_TOFRST:
T_TOF_RST| TOF_RST
—]] N = TIMER_OK

F TH10S g PT ETp= ET_TIME

X1 .1 15 AST
T_TOF_RST
%IX1.1.15
10s
Preset Time
(10s)
ET_TIME
TIMER_OK _ [|

(2) If input variable T_TOF_RST is 1, output variable TIMER_OK is 1. And TIMER_OK is 0 after 10 seconds
after T_TOF_RST s 0.
(2) If T_OF_RST is 1 within 10 seconds after it turns off, TOF_RST is initialized.

(3) Elapsed time is produced at ET_TIME.
(4) If input contact %1X1.1.15 is 1, elapsed time ET_TIME and output contact TIMER_OK are all cleared.

8-225

8. Basic Function/Function Block Library

TOF_UINT

TOF with integer setting

Mode | GMR | GM1|GM2 |GM3

GM4

GM6

GM7

Application| @ @ | @ | @

Function Block

Description

TOF_UINT
BOOL — IN Q =BOOL
UINT — PT ET —TIME
UINT — UNIT
BOOL =— RST

Input
IN: operation condition for Timer
PT: preset time
UNIT: time unit of setting time
RST: reset

Output
Q: Timer output
ET: elapsed time

W Function

\

Elapsed time is produced at ET after IN is O.
If IN is 1 before ET reaches PT, ET is 0.
IfRSTis 1, Q and ET are 0.

Setting time is PT x UNIT (ms).

AV VAR VAR V4

W Timing Chart

Qis1whenINis 1. And Q is O, if setting time (PT) passes after IN is 0.

IN
RST m
PT X T
Preset Time
(PT xUNIT)
ET
0 N

8-226

8. Basic Function/Function Block Library

TOF_UINT
T.10F [TOF0INT]
— N L TIMER, OK

10 PT ET= ET_TIME
1000 QUNIT

k%X 15 ReT

(1) Preset time PT x UNIT[ms] = 10 x 1000[ms] = 10[s].

(2) If input variable T_TOF is 1, output variable TIMER_OK is 1. TIMER_OK is 0, if 10 seconds passes after
T_TOFis 0.

(3) If T_TOF is 1 within 10 seconds, TOF_UINT is initialized.

(4) Elapsed time is produced at ET_TIME.

(5) If input contact %I1X1.1.5is 1, TIMER_OK and ET_TIME are all cleared.

T_TOF —
%IX1.1.5 0% 1000
X
Preset Time
(10 x1000)
ET_TIME
TIMER_OK L

8-227

8. Basic Function/Function Block Library

TON_UINT
TON with integer setting Mode | GMR | GM1|GM2 |GM3 | GM4 | GM6 | GM7
Application| @ @ @ | @® @ @ | @
Function Block Description

TON_UINT
BOOL — IN Q
UINT —~ PT ET
UINT = UNIT

— BOOL
— TIME

Input

Output

Q: timer output
ET: elapsed time

IN: operation condition for Timer
PT: preset time
UNIT: time unit of setting time

W Function

> Elapsed time is produced at ET after IN is 1.

> Elapsed time ET is O, if IN is O before ET reaches PT.

> QisO,ifINis 0 after Qs 1.
> Presettime is PT x UNIT[ms].

W Timing Chart

Preset Time

(PT xUNIT)

ET E—

PTxUNIT

8-228

8. Basic Function/Function Block Library

1000

rTON_UINT:

TON_UINT]

IN

FT ET

UNIT

= TIMER_OK

= ET_TIME

(1) Preset time is PT x UNIT[ms] = 10 x 1000[ms] = 10[s].

(2) If 10 seconds passes after input variable T_TON is on, output variable TIMER_OK is 1.
(3) Elapsed time is produced at ET_TIME after input variable T_TON is on.

(4) If T_TON is 0 before elapsed time ET_TIME reaches 10 seconds, ET_TIME is 0.

(5) If T_TON is O after TIMER_OK is 1, TIMER_OK and ET_TIME are 0.

T_TON

Preset Time
(10,000ms)

ET_TIME

TIMER_OK

10 x 1000

8-2

29

8. Basic Function/Function Block Library

TP_RST

TP with Reset

Mode | GMR |GM1|GM2 |GM3 | GM4

GM6

GM7

Application] @ @ | @ @ | @

Function Block

Description

Input
IN: operation condition for Timer

TP_RST PT: preset time
BOOL = IN Q ~=BOOL RST: reset
TIME — PT ET —TIME
BOOL =— RST
Output
Q: timer output
ET: elapsed time
W Function

> IfINis 1, Qis 1. And if elapsed time reaches preset time, timer output Q is O.
> ET increases its value from when IN is 1, keeps its value at PT and is cleared when IN is 0.
> It doesn't matter whether IN changes its state or not while timer output Q is 1 (during a pulse output).

> If RSTis 1, output Q and ET are 0.

B Timing Chart

IN EE—

RST

ul

Preset Time

(PT)

ET -
PT

A
A4

8-230

8. Basic Function/Function Block Library

rl_TP_RST
T_TP_RsT [TP_RST
—] =N = TIMER_CK

F THIOS 4 PT ET= ET_TIME

b %I T 124 RET

T_TP_RST —— u ‘

%l1.1.12

Preset Time
(10s)

ET_TIME —_—

TIMER_OK

(2) If input variable T_TP_RST is 1, output variable TIMER_OK is 1. And 10 seconds later, TIMER_OK is 0.
Once TP_RST timer is executed, input T_TP_RST doesn't matter.

(2) ET_TIME value increases and stops at 10S. And if T_TP_RSTis 0, itis 0.

(3) If input contact %11.1.12 is 1, TIMER_OK and ET_TIME are all cleared.

8-231

8. Basic Function/Function Block Library

TP_UINT
TP with integer setting Mode | GMR | GM1|GM2 |GM3 | GM4 | GM6 | GM7
Application] @ @ @ © @ © | @
Function Block Description
Input
TP_UINT IN: operation condition for Timer
BOOL — |IN Q =BOOL PT: preset time
UINT — PT ET TIME gg_er timet unit of setting time
UINT = UNIT - rese
BOOL - RST OUtpUt
Q: timer output
ET: elapsed time
W Function
> IfINis 1, Qis 1. And if elapsed time reaches preset time, timer output Q is 0.

ET increases its value from when IN is 1, keeps its value at PT and is cleared when IN is O.

It doesn't matter whether IN changes its state or not while timer output Q is 1 (during a pulse output).
If RST is 1, output Q and ET are 0.

Preset time is PT x UNIT[ms].

AVAR VAR VAR VS

W Timing Chart
RST
Preset Time
(PTXUNIT)
ET —_
 PTXUNIT
Q]

8-232

8. Basic Function/Function Block Library

LD)
TP_UINT,
_I‘T?_TTNPMNJ- TIMER_OK -
i |pT ET| ET_TIME :
1000 {UNIT
9611, 1.5{ RS T

(1) Preset time is PT x UNIT[s] = 10 x 1000[s] = 10]s].

(2) If input variable T_TP is 1, output variable TIMER_OK is 1. And 10 seconds later, TIMER_OK is 0. Once
TP_UINT timer is executed, input T_TP doesn't matter.

(3) ET_TIME value increases and stops at 10000. And if T_TPis O, itis O.

(4) If input contact %I1X1.1.5is 1, TIMER_OK and ET_TIME are all cleared.

T_TP — U —

%IX1.1.5

Preset Time
(10,000ms)

ET_TIME S

10 1000

TIMER_OK

’-233

8. Basic Function/Function Block Library

TRTG
Retriggerable Timer Mode | GMR | GM1|GM2 |GM3 | GM4 | GM6 | GM7
Application] @ @ @ @ © @ @
Function Block Description
Input
IN: operation condition for Timer
TRTG PT: preset time
BOOL — N Q P=B0OOL RST: reset
TIME — PT ET —TIME
BOOL = RST Output
Q: timer output
ET: elapsed time
B Function

> IfINis 1, Qis 1. And if elapsed time reaches preset time, timer output Q is 0.
> If IN turns on again before elapsed time reaches preset time, then elapsed time is set as 0 and increased

again. And if it reaches PT, Q is 0.
> If RSTis 1, timer output Q and elapsed time ET are 0.

B Timing Chart

IN —_— L

RST

Preset Time

(PT) /

ET - PT
Q i

8-234

8. Basic Function/Function Block Library

rINS_TRT
T_TRTG TRTG
= N = TIWMER_OK

- THI0S {PT ET= ET_TIME

%l1.1.15
= R:T

T_TRTG — L
%l1.1.15
Preset Time
(10s) /
ET_TIE ~ ——— 10s /
TIMER_OK

(1) TIMER_OK is 1 during 10 seconds after input variable T_TRTG becomes 1 from 0. If T_TRTG becomes 1
from O after timer is executed, ET_TIME is set as 0 and increased again.

(2) TIMER_OK is 1 during 10 seconds even when T_TRTG becomes 0 from 1.

(3) ET_TIME value increases and stops at T#10S. And itis 0 when T_TRTG is 0.

(4) If input contact %I1.1.15 is 1, TIMER_OK and ET_TIME are all cleared.

8-235

8. Basic Function/Function Block Library

TRTG_UINT
TRTG with integer setting Mode | GMR | GM1|GM2 |GM3 | GM4 | GM6 | GM7
Application] @ @ @ @ © @ @
Function Block Description
Input
TRTG UINT IN: operation condition for Timer
h PT: preset time
BOOL — IN Q |—Bo0L UNIT: time unit of setting time
UINT — PT ET —TIME RST: reset
UINT = UNIT
BOOL =t RST Output
Q: timer output
ET: elapsed time
W Function

> IfINis 1, Qis 1. And if elapsed time reaches preset time, timer output Q is 0.
> If IN turns on again before elapsed time reaches preset time, then elapsed time is set as 0 and increased

again. And if it reaches PT, Q is 0.
> If RSTis 1, timer output Q and elapsed time ET are 0.
> Presettime is PT x UNIT[ms].

B Timing Chart

IN S L

RST

Preset Time

(PT) /

ET<UNIT — —— PTXUNIT
Q |

8-236

8. Basic Function/Function Block Library

B Program Example

N

1000 {UNIT

R X1 1.5 RST

- 1RTG_UI 4
T_TRTG [TRTG_UINT|

10 PT ET= ET_TIME

LD

= TIMER_QOK

(1) Preset time is PT x UNIT[ms] = 10 x 1000[ms] = 10[s].

(2) TIMER_OK is 1 during 10 seconds after input variable T_TRTG becomes 1 from O. If T_TRTG becomes 1
from O after timer is executed, ET_TIME is set as 0 and increased again.

(3) TIMER_OK is 1 during 10 seconds even when T_TRTG becomes 0 from 1.

(4) ET_TIME value increases and stops at 10000. And it is 0 when T_TRTG is 0.

(5) If input contact %I1X1.1.5is 1, TIMER_OK and ET_TIME are all cleared.

T_TRTG —

%l1X1.1.5

i

Preset Time

(10,000ms)

ETxTIME —/

TIMER_OK

<

10 1000

8-237

	GLOFA-GM Instructions
	Table of Contents
	1. Overview
	1.1 Characteristics of IEC 1131-3 Language
	1.2 Type of Language

	2. The Structure of Software
	2.1 Overview
	2.2 Project
	2.3 Configuration
	2.3.1 Resource
	2.3.1.1 Program
	2.3.1.2 Resource Global Variable
	2.3.1.3 Task

	2.3.2 Configuration Global Variable
	2.3.3 Access Variable

	3. Common Elements
	3.1. Expression
	3.1.1. Identifiers
	3.1.2. Data Expression
	3.1.2.1. Numbers
	3.1.2.2. Character String
	3.1.2.3. Time Letters
	3.1.2.3.1. Duration
	3.1.2.3.2. Time of Day and Date

	3.2 . Data Type
	3.2.1. Basic Data Type
	3.2.2. Data Type Hierarchy Chart
	3.2.3. Initial Value
	3.2.4. Data Type Structure

	3.3. Variable
	3.3.1. Variable Expression
	3.3.2. Variable Declaration
	3.3.3. Reserved Variable

	3.4. Reserved Word
	3.5. Program Type
	3.5.1. Function
	3.5.2 Function Block
	3.5.3 Program

	4. SFC (Sequential Function Chart)
	4.1. Overview
	4.2. SFC Structure
	4.2.1. Step
	4.2.2. Transition
	4.2.3. Action
	4.2.4. Action Qualifier

	4.3. Extension Regulation
	4.3.1. Serial Connection
	4.3.2. Selection Branch
	4.3.3. Parallel Branch (Simultaneous Branch)
	4.3.4. Jump

	5. IL (Instruction List)
	5.1. Overview
	5.2. Current Result: CR
	5.3. Instructions
	5.3.1. Label
	5.3.2. Modifier
	5.3.3. Basic Operator
	5.3.3.1. Basic Operator

	5.4. Calling of Function and Function Block

	6. LD (Ladder Diagram)
	6.1. Overview
	6.2. Bus Line
	6.3. Connection Line
	6.4. Contact
	6.5. Coil
	6.6. Calling of Function and Function Block

	7. Function and Function Block
	7.1. Function
	7.1.1. Type Conversion Function
	7.1.2. Arithmetic Function
	7.1.2.1. Numerical Operation Function with One Input
	7.1.2.2. Basic Arithmetic Function

	7.1.3. Bit Array Function
	7.1.3.1. Bit-shift Function
	7.1.3.2. Bit Operation Function

	7.1.4. Selection Function
	7.1.5. Data Exchange Function
	7.1.6. Comparison Function
	7.1.7. Character String Function
	7.1.8. Time/Time of Day/Date and Time of Day Function
	7.1.9. System Control Function
	7.1.10. Data Manipulation Function
	7.1.11. Stack Operation Function

	7.2. MK (MASTER-K) Function
	7.3. Array Operation Function
	7.4. Basic Function Block
	7.4.1. Bistable Function Block
	7.4.2. Edge Detection Function Block
	7.4.3. Counter
	7.4.4. Timer
	7.4.5. Other Function Block

	8. Function/Function Block Library
	8.1 Basic Function Library

